ViViD: A Variability-Based Tool for Synthesizing Video
Sequences

Mathieu Acher Mauricio Alférez José A. Galindo

DiverSE Team, Inria DiverSE Team, Inria DiverSE Team, Inria
University of Rennes 1, France Rennes, France Rennes, France

mathieu.acher@inria.fr mauricio.alferez@inria.fr jagalindo@inria.fr

Pierre Romenteau
InPixal
Rennes, France

Benoit Baudry
DiverSE Team, Inria
Rennes, France

pierre.romenteau@inpixal.com benoit.baudry@inria.fr

ABSTRACT

We present ViViD, a variability-based tool to synthesize
variants of video sequences. ViViD is developed and used in
the context of an industrial project involving consumers and
providers of video processing algorithms. The goal is to
synthesize synthetic video variants with a wide range of char-
acteristics to then test the algorithms. We describe the key
components of ViViD (1) a variability language and an en-
vironment to model what can vary within a video sequence;(2)
a reasoning back-end to generate relevant testing config-
urations; (3) a video synthesizer in charge of producing vari-
ants of video sequences corresponding to configurations. We
show how ViViD can synthesize realistic videos with differ-ent
characteristics such as luminances, vehicles and persons that
cover a diversity of testing scenarios.

Keywords

Variability Modeling, Combinatorial Interaction Testing, Pri-
oritization, T-wise, Video Generation

1. INTRODUCTION

Acquisition, processing and analysis of video sequences
has many applications in our modern society [1,2]. Some
application examples are surveillance systems, computer-
aided medical imaging systems, traffic control, and mobile

robotics. Such systems are software-intensive and rely on
signals captured by video cameras, which are then processed
through a chain of algorithms. Signal processing algorithms
are assembled in different ways, depending on the goal of im-
age recognition (e.g., patterns identification, objects track-
ing). The algorithms produce information helpful for hu-
mans or subject to subsequent analysis. For example, al-
gorithms could determine rectangles that cover the zone of
a specific object in a scene. This information is useful for
human observers that can react accordingly, e.g., to trigger
alarms when tracking the movement of a vehicle or a person.

Problem. Numerous algorithms for video analysis have
been and will be developed — each specialized in a specific
task (e.g., segmentation, object recognition). Even for a
category of algorithm, many alternatives exist; a one-size-
fits-all solution capable of handling the diversity of scenarios
and signal qualities is hardly conceivable. An algorithm may
excel in tracking a vehicle in a desert but completely fails
when the luminance is low or some distractors are present in
the video scene. Another algorithm may be less performant
in a normal situation, but more robust when luminance is
changed and distractors are added. The diversity of situa-
tions poses a challenge for both developers and users of video
algorithms. For consumers (users), the practical problem is
to determine what algorithms are likely to fail or excel in
certain conditions before the actual deployment in realistic
settings. For providers (developers), how to have confidence
and produce evidence that the algorithms are capable of
handling certain situations?

A fundamental and common challenge is the testing of
algorithms. Practitioners face severe difficulties to get an
input test suite (i.e., a set of video sequences) large and di-
verse enough to test (e.g., benchmark) the algorithms. The
current practice is indeed to find out some existing videos or
film video sequences outside. The effort of manually collect-
ing videos is highly consuming in resources and economically
not viable. In addition, practitioners have limited control
over the scenarios covered or not by the set of video se-
quences. We give more details in Section 2 about the indus-
trial context and problem. As a result, the major challenge
for testing the algorithms remains: How to obtain a suitable
and comprehensive input set of video sequences?

Solution: ViViD. In this paper, we present ViViD, a
variability-based video sequences synthesis tool. ViViD is
based on variability modeling techniques and languages for

(b) Variant #2 of video sequence

(d) Variant #4 of video sequence

(e) Variant #5 of video sequence

(f) Variant #6 of video sequence

Figure 1: Six variants of video sequences synthesized with ViViD

synthesizing video variants — only video sequences that fulfill
some criteria are generated. The first criterion to generate a
set of video sequences (a.k.a., a test data set) is that any pair
of values of features/attributes (e.g., luminance_mean=72,
tilt_motion=0.4) will be covered in at least one video se-
quence. ViViD can also prioritize the input data sets ac-
cording to one or more optimization functions, for example,
synthesis time or any ad-hoc function. ViViD is a compre-
hensive solution with a textual editor (integrated in Eclipse),
solvers, and a connection with an industrial video generator
in charge of synthesizing video sequence variants. ViViD is
build in a way that mimic feature model automated analy-
sis [3] process to obtain only meaningful video sequences.
Previous research proposed to use different metrics to
optimize test-suites for concrete users needs in variability-
intensive systems [4-6]. These approaches allowed assigning

more importance to some inputs than others when testing.
However, they only focused on functional testing of the main
system features without considering different testing objec-
tives including quality attributes as part of the testing space.
Other evolutionary-based approaches do not consider testing
aspects [7].

The intended audience of the demonstration are twofold.
First, SPL practitioners and researchers can learn a new
variability modeling language with advanced language con-
structs (e.g., attributes, meta-information, deltas over val-
ues) and an efficient reasoning backend to support combi-
natorial testing and multi-objective prioritization. ViViD is
built upon the theoretical foundations exposed in [8] and our
industrial experience in designing a variability language [9].
Second, the application of an SPL-based tool in an original
domain (video) and in an industrial context can be of inter-

est both for researchers and practitioners. We will demon-
strate how ViViD can synthesize numerous realistic video
variants (see Figure 1).

2. AN INDUSTRIAL PROBLEM IN THE
VIDEO DOMAIN

We face the challenge of synthesizing a high number of di-
verse video sequences variants in an industrial project. The
MOTIV project aims at evaluating computer vision algo-
rithms such as those used for surveillance or rescue oper-
ations. A targeted scenario is usually as follows. First,
airborne or land-based cameras capture on-the-fly videos.
Then, a video processing chain analyzes video sequences to
detect and track objects, for example, survivors in a natural
disaster. Based on that information the operation manager
triggers a rescue mission quickly based on the video sequence
analysis information.

Two companies are part of the MOTIV project as well as
the DGA (the French governmental organization for defense
procurement). The two companies develop and provide nu-
merous algorithms for video analysis. The diversity of sce-
narios and signal qualities poses a difficult problem for all
the partners of MOTIV: which algorithms are best suited
given a specific application? From the consumer side (the
DGA), how to choose, select and combine the algorithms?
From the provider side (the two companies), how to guar-
antee that the algorithms meet a large variety of situations?
How to propose innovative solutions able to handle new sit-
uations?

Our partners need to collect video sequences to test their
video analysis solutions and different detection algorithms.
Synthesizing a high diversity of video sequences is difficult as
there are many ways in which a video can change (e.g., phys-
ical properties, types and number of objects, backgrounds).
Yet, synthesizing video sequences is still more feasible than
filming them in real environments. Our partners calculate
that an initial input data set of 153000 video sequences (of 3
minutes each), corresponds to 320 days of video footage and
requires 64 years of filming outside (working 2 hours a day).
These numbers were calculated at the starting point of the
project based on the previous experiences of the partners.
A related problem to the difficulty of synthesizing video se-
quences is that practitioners ignore what kinds of situations
are covered or not by the set of video sequences. Therefore,
it is not possible to ensure the quality of the video analysis
solutions and detection algorithms in all situations. Overall,
more automation and control are needed to synthesize video
sequence variants and cover a diversity of testing scenarios.

3. THE ViViD TOOL

We promoted the use of variability techniques to address
the problem: (1) a variability model to formally document
what can vary within a video sequence; (2) an exploita-
tion of the variability model to generate a certain number
of testable configurations; (3) a synthesis of video variants
corresponding to configurations.

We developed a tool, called ViViD, in close collabora-
tion with the industrial partners of MOTIV. A website
with all the components of ViViD is available at https:
//github.com/ViViD-DiverSE/.The ViViD tool supports a
novel approach that improves the current practice of filming
different video sequences. We describe this tool by means of

its functionality, architecture and special features.

3.1 Functionality

The main functionality of ViViD are:

e support of variability modeling with a dedicated lan-
guage, called VM. We design the language through-
out different iterations with the partners. In particu-
lar, the language can be used for modeling physical,
numerical properties of videos while the information
of the variability model can be exploited by a video
generator. More information about VM is described
in a technical report [9] and at https://github.com/
ViViD-DiverSE/VM-Source;

e reasoning support to prioritize pair-wise configurations
while maximizing or minimizing ad-hoc objective func-
tions. The rationale is that the number of valid con-
figurations in a variability model can be huge. Practi-
tioners thus need efficient techniques to get a relevant
and representative subset. Combinatorial techniques
are applied to produce a subset that covers many kinds
of situations. Objective functions help practitioners to
focus on certain kinds of situations (e.g., by prioritiz-
ing some features)

e support for synthesizing video sequences. We reuse the
video generator developed by the industrial partner.
The generator is written in Lua' language. There are
extra activities that support the creation of the core
assets that compose video sequences. For example,
an engineering effort is needed to model 3D objects
and creating masks to allow to overlap moving objects
in the background. We take those extra activities as
prerequisites of the ViViD tool. They are not part of
the tool demonstration and out of the scope of the

paper.

3.2 Architecture and Main Components

Figure 2 relates the above mentioned actions to the ViViD
tool chain. We mark with red the video property lumi-
nance_mean and its trace through the entire tool chain.

In the variability model specified with the VM language,
luminance_mean was modeled as a real attribute of the fea-
ture signal quality. The attribute will automatically receive
a value in each one of the configurations, for example, the
upper-most Lua configuration file assigns a value of 72.55 to
the signal_quality.luminance_mean of the configuration file
for one video sequence variant. Finally, the video sequences
generator has functions in charge of producing a video se-
quence with the features and attribute values established in
the configuration files. The ViViD tool chain is composed of
three main tools:

3.2.1 VM model editor

Developers and video domain experts use the VM language
editor to create a VM model of the video domain. The VM
language is used to model attributed features models while
adding extra information that eases the analysis of variabil-
ity. This extra information is listed in Section 3.3.

This editor was created using the open source Xtext lan-
guage workbench (http://www.xtext.com). Xtext helped
us to covers all aspects of the VM language infrastructure,

"http://www.lua.org/

Ecipse ?..

[ETaNEvr = Benutar
B [guesourse T— (2] (Henvetica = I Reaular
=0 g T ERE YT S P N

S T L
21 e | mirET
T_U_vj Hewvetica) (Reguizr__:)12 [+ (WCE)
0

0
-§
=S > i 13

Wallpw

bl

13
::g—-slu Y L. {7 A ¢ T Ts
sig :!9 - Signal quality
sig ... Signal_guality.picture_width = 1920
s i geic e aight =

sig :PG signal_quality.chrominance_U_mean = 131.81
sig .. signal_guality.chrominance_U_dev = 16.91
sig signal_quality.chrominance_V_mean = 119.41
-~ signal_quality.chrominance_V_dev = 8.07
signal_quality.biur_level = 0
signal_quality.static_noise_level = 0

Writable

Insert 15:1

i€ Signal_quality.luminance_mean = 72.55 T S s mm mm et == == =1
==

T1o

VM Model

(VM Eclipse Editor) (Lua Configuration Files)

N Video Sequences Configurations

Video Sequences Generator
(PixKit - proprietary Lua framework)

=~

@

VM interpreter and configuration files customizer
(Java Eclipse plugins)

Pair-wise covering set | Lua Conf.
VM Parser Multi-optimization Files.
(Choco CSP encoding) | Composer

ko Pep—y

Figure 2: ViViD Tool chain

such as parsing, interpretation, user plugins code generation
and Eclipse IDE integration.

3.2.2 VM interpreter and configuration files cus-
tomizer

The VM interpreter and configuration files customizer is
a complex piece of code that supports three main activities:
i) to parse the VM model , ii) to translate the VM model
to a Constraint Satisfiability Problem (CSP) to prioritize
pair-wise video sequences configurations while maximizing
or minimizing ad-hoc objective functions, and iii) to calcu-
late and compose one video sequence by each one of the N
Lua configuration files.

The VM interpreter was created as a Java application that
communicates with an advanced CSP solver called Choco
(http://www.emn.fr/z-info/choco-solver/) to calculate
optimal video sequences configurations.

The information about the configurations is stored inter-
nally by the VM model and can be displayed in different
formats: 1) the VM language format for configurations, and
ii) the Lua configuration files format. The first format is
useful to create extra configurations manually or to visualize
multiple configurations in a same file using a nice and abbre-
viated concrete syntax (e.g., grouping value assignments by
attribute instead by feature). The second format is useful
for the video sequences generator as this is the format that
it reads faster.

3.2.3 Video sequences generator

The video sequences generator is composed of an editor
and video manipulation libraries created entirely in C code

and the embeddable scripting language Lua. The reason
for using Lua tools is that it is very suitable to be used
in small devices as it runs fast and it is considered very
lightweight (the entire Lua language engine source contains
around 20000 lines of C code).

Lua combines simple procedural syntax with powerful
data description constructs based on associative arrays and
extensible semantics. Lua is dynamically typed, runs by
interpreting bytecode for a register-based virtual machine,
and has automatic memory management with incremental
garbage collection. These characteristics made Lua ideal for
configuration, scripting, and rapid prototyping activities re-
quired by the ViViD tool.

3.3 Special Features in Action

One of the special features in the ViViD tool chain is the
large support for variability modeling in the video domain.
The domain is characterized by the presence of parameters
with values defined in continuous domains (e.g., real num-
bers), and the use of configurable copies of objects, called
multi-features (e.g., multiple vehicles and people).

Listing 1 shows a small example of the video sequences
variability model written in the VM language that is part
of the ViViD tool. The VM language is special as domain
experts can specialize advanced variability models by in-
cluding additional information. The most common types
of additional information are:

e default values that help to complete partial configura-
tions,

e deltas to discretise real domains,

Relationships:

sequence {
signal_quality
cloneBetween 0 and 5 vehicle
/7.

}

0N A W N

Attributes:

9 |@NT string sequence.comment

10 |@RT int vehicle.speed [0..130] delta 5 default 40
11 |@ND int *.cost [0 .. 1000] default 150

12 | real signal_quality.luminance_mean

13 [0.0 .. 32.0] delta 2.0

14 [32.0 .. 224.0] delta 8.0
15 [224.0 .. 255.0] delta 2.0
16 default 72.55

o |/

19 | Descriptions: //.
21 | Constraints: //.

23 | Objectives:

24 | objective generate_low_cost_configurations {
25 min (sum (*.cost))

26 |}

27 | Configurations: //.

Listing 1: Example variability model written in the VM
language

e controlled descriptions in natural language about the
model itself, features, attributes and constraints,

o multi-ranges and multi-deltas that allow to use several
ranges and deltas to define the domain of the values
of an attribute (e.g., luminance_mean in Line 12 has
three ranges),

e meta-information annotations such as: not translatable
—@NT (tags a purely informative element, such as the
scene comment in Line 9), not decidable ~-@ND (a ele-
ment that does not help to differentiate (visually) one
video sequence from other, such as cost in Line 11),
and runtime —@RT (a feature or attribute that vary
only at runtime, such as vehicle speed in Line 20), and

e objective functions, such as generating only low cost
video sequence configurations, as shown in Line 23-25.

A website with the VM grammar, full-fledged editor and
user guide is available at http://mao2013.github.io/VM/.

4. CONCLUSIONS

We presented ViViD, a tool that synthesizes video se-
quence variants. ViViD is based on variability techniques:
(1) a variability language and an environment to model what
can vary within a video sequence; (2) variability-aware gen-
eration of relevant, testing configurations. A video generator
produces variants of video sequences corresponding to con-
figurations. ViViD can synthesize realistic videos with dif-
ferent characteristics (e.g., variations of luminance, adding
of vehicles and persons) to cover a diversity of testing sce-
narios.

We are developing ViViD with industrial partners in the
context of a research project (MOTIV). We are now in the
process of launching a large-scale testing experience involv-
ing hundreds of video sequences — something not possible at
the beginning of the project. The ViViD tools has different

licenses, while the VM language and the VANE tool are dis-
tributed as open source, the video-sequence generator has a
close license. Those free parts of the tool can be found in
the tool website and are being integrated in FaMiLiar [10].

We hope that the demonstration of the ViViD tool and
its design can inspire other practitioners to apply variabil-
ity modeling, combinatorial testing, multi-objective priori-
tization and product synthesis techniques in other original
domains and industrial contexts.

Acknowledgements

This works was financed by the project MOTIV of the Di-
rection Générale de I’Armement (DGA) - Ministére de la
Défense, France.

5. REFERENCES
[1] J. R. Parker, Algorithms for image processing and

computer vision. Wiley. com, 2010.
[2] J. Ponce, D. Forsyth, E.-p. Willow,
S. Antipolis-Méditerranée, R. d’activité RAweb,
L. Inria, and I. Alumni, “Computer vision: a modern
approach,” Computer, vol. 16, p. 11, 2011.
[3] D. Benavides, S. Segura, and A. Ruiz-Cortés,
“Automated analysis of feature models 20 years later:
a literature review,” Information Systems, vol. 35,
no. 6, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.i5.2010.01.001
[4] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon, “Multi-objective test generation for
software product lines,” in Proceedings of the 17th
International Software Product Line Conference, ser.
SPLC ’13. New York, NY, USA: ACM, 2013, pp.
62-71. [Online|. Available:
http://doi.acm.org/10.1145/2491627.2491635
[5] M. F. Johansen, O. y. Haugen, and F. Fleurey, “An
algorithm for generating t-wise covering arrays from
large feature models,” Proceedings of the 16th
International Software Product Line Conference on -
SPLC ’12 -volume 1, p. 46, 2012. [Online|. Available:
http://dl.acm.org/citation.cim?doid=2362536.2362547
[6] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and
Y. Traon, “Pairwise testing for software product lines:
comparison of two approaches,” Software Quality
Journal, pp. 605-643, Aug. 2011. [Online]. Available:
http://www.springerlink.com/index/10.1007/
$11219-011-9160-9
A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar,
“Scalable product line configuration: A straw to break
the camel’s back,” in ASE. IEEE, 2013, pp. 465-474.

[8] J. A. Galindo, M. Alférez, M. Acher, and B. Baudry,
“A variability-based testing approach for synthesizing
video sequences,” in ISSTA, To appear in 2014.

[9] M. Alférez, J. A. Galindo, M. Acher, and B. Baudry,
“Modeling Variability in the Video Domain: Language
and Experience Report,” Tech. Rep. RR-8576, July
2014. [Online]. Available:
http://hal.inria.fr /hal-01023159

[10] M. Acher, P. Collet, P. Lahire, and R. France,
“Familiar: A domain-specific language for large scale
management of feature models,” Science of Computer
Programming (SCP) Special issue on programming
languages, p. 22, 2013.

7

