
Reverse-Engineering Reusable
Language Modules from Legacy

Domain-Specific Languages

David Méndez-Acuña, José A. Galindo, Benoit Combemale,
Arnaud Blouin, Benoit Baudry, and Gurvan Le Guernic

Abstract. The use of domain-specific languages (DSLs) has become a
successful technique in the development of complex systems. Neverthe-
less, the construction of this type of languages is time-consuming and
requires highly-specialized knowledge and skills. An emerging practice to
facilitate this task is to enable reuse through the definition of lan-guage
modules which can be later put together to build up new DSLs. Still, the
identification and definition of language modules are complex and error-
prone activities, thus hindering the reuse exploitation when developing
DSLs. In this paper, we propose a computer-aided approach to (i) identify
potential reuse in a set of legacy DSLs; and (ii) capitalize such potential
reuse by extracting a set of reusable language modules with well defined
interfaces that facilitate their assembly. We validate our approach by
using realistic DSLs coming out from industrial case studies and obtained
from public GitHub repositories.

1 Introduction

A domain-specific language (DSL) is a software language whose expressiveness is
limited to a well-defined domain. A DSL offers the abstractions (a.k.a., language
constructs) needed to describe an aspect of a system under construction. For
example, we find DSLs to build graphical user interfaces [22] and to specify
security policies [15]. The use of DSLs has become a successful technique to
achieve separation of concerns in the development of complex systems [7].

Naturally, the adoption of such a language-oriented vision relies on the avail-
ability of the DSLs necessary to describe all the aspects of the system [3]. This
implies the development of many DSLs, which is a challenging task due the spe-
cialized knowledge it demands. The ultimate value of DSLs has been severely
limited by the cost of the associated tooling (i.e., editors, parsers, etc.) [13].

To improve cost-benefit when using DSLs, the research community in soft-
ware languages engineering has proposed mechanisms to increase reuse during

the language development process. The idea is to leverage previous engineer-
ing efforts and minimize implementation from scratch. In particular, there are
approaches that take ideas from Component-Based Software Engineering [4] in
the construction of DSLs (e.g., [17,24]). Language constructs are grouped into
interdependent language modules that can be later integrated as part of the
specification of future DSLs. Current approaches for the modular development
of DSLs are focused on providing foundations and tooling that allow language
designers to specify dependencies among language modules as well as to provide
the composition operators needed during the subsequent assembly process.

In practice, however, reuse not necessarily achieved through monolithic
processes where language designers define language modules while trying to pre-
dict that they will be useful in future DSLs. Contrariwise, the exploitation of
reuse is often an iterative process where reuse opportunities are discovered in
the form of replicated functionalities during the construction of individual DSLs.
Those functionalities can be extracted in reusable language modules. For exam-
ple, many DSLs offer expression languages with simple imperative instructions,
variables management, and mathematical operators. Xbase [1] is a successful
experiment that shows that, using compatible tooling, such replicated function-
ality can be encapsulated and (re)used in different DSLs.

A major complexity of this reuse process is that both, the identification of
replicated functionalities and the extraction of the corresponding language mod-
ules are manually-performed activities. Language designers must compare DSL
specifications to identify replicated language constructs, and then, to perform a
refactoring process to extract those replications in language modules. Due the
large number of language constructs defined within a DSL, and the dependencies
among them, this process is tedious and error-prone [9]. As a result, modulariza-
tion approaches are often discarded, and non-systematic reuse practices such as
simple copy&paste are still quite popular in DSLs development processes. This
type of solutions produce many code clones within DSLs’ specifications thus
replicating bugs and increasing maintenance costs [26].

In this paper, we propose the use of reverse-engineering techniques to auto-
matically extract reusable language modules from a given set of legacy DSLs.
To this end, we define some comparison operators that allow the identifica-
tion of replicated language constructs. These operators take into account not
only the names of the constructs but also the inter-constructs relationships and
the semantics. Then, we extract replicated constructs as interdependent lan-
guage modules whose dependencies are expressed through well-defined inter-
faces. Those language modules can be later assembled among them to build up
new DSLs. The approach presented in this paper is implemented in a language
workbench on top of the Eclipse Modeling Framework.

The validation of our approach is twofold. Firstly, we apply the reverse-
engineering strategy to a case study, deeply explained by Crane et al. [8], and
composed of a set of DSLs for finite state machines. Secondly, we explore pub-
lic GitHub repositories in search of insights that indicate how common is the
phenomenon of specification clones in DSLs development process.

The reminder of this paper is organized as follows: Sect. 2 introduces a set of
preliminary definitions/assumptions that we use all along the paper. Section 3
presents a motivation to the problem by introducing a concrete development
scenario. Section 4 describes the proposed approach. Section 5 presents the vali-
dation. Section 6 discusses the related work. Section 7 concludes the paper.

2 Background: Domain-Specific Languages in a Nutshell

We use this section to introduce some basic definitions intended to establish a
unified vocabulary that facilitates the comprehension of the ideas presented in
the rest of the paper.

DSLs Specification. Like general purpose languages, domain specific languages
are defined regarding three implementation concerns: abstract syntax, concrete
syntax, and semantics [11]. The abstract syntax refers to the structure of the
DSL expressed as the set of concepts that are relevant to the domain and the
relationships among them. The concrete syntax relates language concepts to a
set of symbols that facilitate the usage of the DSL. These representations are
usually supported by editors acting as the user interface of the DSL. Finally,
the semantics of a DSL assigns a precise meaning to each of its language con-
structs. More precisely, static semantics constrains the sets of valid programs
while dynamic semantics specifies how they are evaluated.

Technological Space. There are diverse technological spaces available for the
implementation of the aforementioned concerns [18]. The abstract syntax can be
specified using context-free grammars or metamodels. The concrete syntax can
be either textual or graphical. The static semantics can be expressed through
diverse constraint languages. Finally, the dynamic semantics can be defined oper-
ationally, denotationally, or axiomatically [20].

In this paper, we are interested in executable domain-specific modeling lan-
guages (xDSMLs) where the abstract syntax is specified by means of metamod-
els, and dynamic semantics is specified operationally as a set of domain-specific
actions [5]. Domain-specific actions are weaved on the metaclasses of a meta-
model [12]. The concrete syntax and static semantics are out of the scope of this
paper.

Example: A DSL for Finite State Machines. Figure 1 shows a DSL for finite
states machines. In that case, the metamodel that implements the abstract syn-
tax contains three metaclasses: StateMachine, State, and Transition. There
are some references among those metaclasses representing the relationships exist-
ing among the corresponding language constructs.

The domain-specific actions at the right of the Fig. 1 introduce the opera-
tional semantics to the DSL. In this example, there is one domain-specific action
for each metaclass. In executable metamodeling, the interactions among domain-
specific actions can be internally specified in their implementation by means of
the interpreter pattern, or externalized in a model of computation [5].

Fig. 1. A simple DSL for finite state machines

3 Motivating Scenario

Suppose a team of language designers working on the construction of the DSL for
finite state machines presented in Sect. 2. During that process, language designers
implement the constructs typically required for expressing finite state machines:
states, transitions, events, and so on. Besides, a constraint language that allows
final users to express guards on the transitions should be provided, as well as an
expression language for the specification of actions in the states.

After language designers release the DSL for state machines, they are required
to build another DSL. The new DSL is intended to manipulate the traditional
Logo turtle, which is often used in elementary schools for teaching the first foun-
dations of programming [21]. Instead of states and transitions, Logo offers some
primitives (such as Forward, Backward, Left, and Right) to move a character
(i.e., the turtle) within a bounded canvas. Still, Logo also requires an expres-
sion language to specify complex movements. For example, final users may write
instructions such as: forward (x + 2).

At this point, language designers face the problem of reusing the expression
language they already defined for the state machine DSL. Because this expression
language was not implemented separately from the DSL for state machines, the
typical approach is to copy&paste its corresponding specification segment in
the second DSL. In doing so, language designers introduce specification clones
all along the project. This practice is repeated in the construction of each new
DSL where some reuse is needed. For example, if our language designers team
is required to build a third DSL such as a flowchart language that uses not only
expressions but also constraints, they will (again) copy&paste the corresponding
specification segments. After some iterations, we obtain a set of DSLs with many
specification clones, which is quite expensive to maintain.

Fig. 2. Approach overview

4 Proposed Approach

We propose the use of reverse-engineering techniques to deal with the problem
illustrated above. Our proposal, summarized in Fig. 2, starts from a classical
language development process where a team of language designers develops a set
DSLs (a.k.a., the DSLs portfolio) introducing specification clones by copy&paste
repeated constructs. This portfolio is the input of a reverse-engineering strategy
to extract a set of reusable language modules. Those modules are useful for two
purposes. First, they can be assembled to build a new version of the portfolio that
does not contain specification clones, thus reducing maintenance costs. Second,
they can be used in the construction of future DSLs. In that case, language
designers might have to build new language modules.

4.1 Principles of Reverse-Engineering for Language Reuse

Our reverse-engineering strategy is based on five principles that will be intro-
duced in this section. Then, we explain how we use those principles to extract a
catalog of reusable language modules.

Principle 1: DSL specifications are comparable. Hence, specification
clones can be automatically detected. Two DSL specifications can be com-
pared each other. This comparison can be either coarse-grained indicating if the
two specifications are equal regarding both syntax and semantics, or fine-grained
detecting segments of the specifications that match. The latter approach permits
to identify specification clones between two DSLs and supposes the comparison
of each specification element. In the case of the technological space discussed in
this paper, specification elements for the abstract syntax are metaclasses whereas
specification elements for the semantics are domain-specific actions.

For the case of comparison of metaclasses, we need to take into account
that a metaclass is specified by a name, a set of attributes, and a set of references

to other metaclasses. Two metaclasses are considered as equal (and so, they are
clones) if all those elements match. Formally, comparison of metaclasses can be
specified by the operator �.

� : MC × MC → bool (1)

MCA � MCB = true =⇒
MCA.name = MCB .name ∧
∀a1 ∈ MCA.attr | (∃a2 ∈ MCB .attr | a1 = a2) ∧
∀r1 ∈ MCA.refs | (∃r2 ∈ MCB.refs | r1 = r2) ∧
|MCA.attr| = |MCB .attr| ∧ |MCA.refs| = |MCB .refs|

(2)

In turn, for the case of comparison for domain-specific actions we need
to take into account that –like methods in Java– domain-specific actions have
a signature that specifies its contract (i.e., return type, visibility, parameters,
name, and so on), and a body where the behavior is implemented. Two domain-
specific actions are equal if they have the same signature and body.

Whereas comparison of signatures can be performed by syntactic comparison
of the signature elements, comparison of bodies can be arbitrary difficult. If we
try to compare the behavior of the domain-specific actions, then we will have
to address the semantic equivalence problem, which is known to be undecid-
able [16]. To address this issue, we conceive bodies comparison in terms of its
abstract syntax tree as proposed by Biegel et al. [2]. In other words, to compare
two bodies, we first parse them to extract their abstract syntax tree, and then we
compare those trees. Note that this decision makes sense because we are detect-
ing specification clones more than equivalent behavior. Formally, comparison of
domain-specific actions (DSAs) is specified by the operator �.

� : DSA × DSA → bool (3)

DSAA � DSAB = true =⇒
DSAA.name = DSAB .name ∧
DSAA.returnType = DSAB .returnType ∧
DSAA.visibility = DSAB .visibility ∧
∀p1 ∈ DSAA.params | (∃p2 ∈ DSAB .params | p1 = p2) ∧
|DSAA.params| = |DSAB .params| ∧
DSAA.AST = DSAB.AST

(4)

Principle 2: Specification clones are viewed as overlapping. If a DSL
specification is viewed as sets of metaclasses and domain-specific actions, then
specification clones can be viewed as intersections (a.k.a., overlapping) of those
sets. Figure 3 illustrates this observation for the case of the motivation scenario
introduced in Sect. 3. We use two Venn diagrams to represent both syntax and
semantic overlapping. In that case, the fact that the expression language is used

in all the DSLs is represented by the intersection in the center of the diagram
where the three sets overlap the metaclass Expression (and its domain-specific
actions). In turn, the intersection between the state machines DSL and Logo
shows that they overlap the metaclass Constraint that belongs to the constraint
language. Note that the identification of such overlapping is only possible when
there are comparison operators (principle 1) that formalize the notion of equality.

Fig. 3. Syntactic and semantic overlapping in a set of DSLs

Principle 3: Breaking down overlapping produces reusable language
modules. According to principle 2, overlapping between two DSLs implies
the existence of repeated metaclasses/domain-specific actions (i.e., specification
clones). Those repeated elements can be specified once and reused in the two DSLs
[25, pp. 60–61]. Hence, reusable language modules can be obtained by breaking-
down the overlapping existing among DSL specifications as illustrated in Fig. 4;
each different intersection is encapsulated in a different language module.

Fig. 4. Breaking down overlapping for obtaining reusable language modules

Principle 4: Abstract syntax first, semantics afterwards. As aforemen-
tioned, the abstract syntax of a DSL specifies its structure in terms of meta-
classes and relationships among them. Then, the domain-specific actions add
executability to the metaclasses. Hence, the abstract syntax is the backbone of
the DSL specification, and so, the process of breaking down overlapping should
be performed for the abstract syntax first. Afterwards, we can do the proper

for the semantics. In doing so, we need to take into consideration the phenom-
enon of semantic variability. That is, two cloned metaclasses might have different
domain-specific actions. That occurs when two DSLs share some syntax specifi-
cation but differ in their semantics.

Principle 5: Metamodels are directed graphs. Hence, breaking down a
metamodel is a graph partitioning problem. The metamodel that specifies
the abstract syntax of a DSL can be viewed as a directed graph G.

G =< V,A >

where:

– V: is the set of vertices each of which represents a metaclass.
– A: is the set of arcs each of which represents a relationships between two

meta-classes (i.e., references, containments, and inheritances).

This observation is quite useful at the moment of breaking down a metamodel
to satisfy the principle 4. Breaking down a metamodel can be viewed as a graph
partitioning problem where the result is a finite set of subgraphs. Each subgraph
represents the metamodel of a reusable language module.

4.2 Reverse-Engineering Process: The 5 Principles in Action

The reverse-engineering strategy to produce a catalog of reusable modules is
illustrated in Fig. 5. It is composed of two steps: identifying overlapping and
breaking down.

Fig. 5. Breaking down the input set by cutting overlapping

Identifying Overlapping: match and merge. To identify syntactic overlap-
ping in a given set of DSLs, we start by producing a graph for each DSL according
to the principle 5. Then, we identify specification clones (the matching phase)

using the comparison operators defined in principle 1. After that, we have a set
of graphs (one for each DSL) and a set of matching relationships among some
of the vertex. At that point we can proceed to create the overlapping defined
in principle 2. To this end, we merge the matched vertex as illustrated in the
second square of Fig. 5. This merging permits to remove cloned metaclasses.

To identify semantic overlapping, we check whether the domain-specific
actions of the matched metaclasses are equal as well. If so, they can be consid-
ered as clones in the semantic specification, so there is semantic overlapping. In
that case, these domain-specific actions are merged. If not all the domain-specific
actions associated to the matched metaclasses are the same, different clusters of
domain-specific actions are created, thus establishing semantic variation points.

Breaking Down: cut and encapsulate. Once overlapping among the DSLs
of the portfolio has been identified, we extract a set of reusable language mod-
ules. This process corresponds to break-down the graph produced in the last
phase using a graph partitioning algorithm. The algorithm receives the graph(s)
obtained from the merging process and returns a set of vertex clusters: one clus-
ter for each intersection of the Venn diagram. Arcs defined between vertices in
different clusters can be considered as cross-cutting dependencies between clus-
ters. Then, we encapsulate each vertex cluster in the form of language modules.
Each module contains a metamodel, a set of domain-specific actions, and a set
of dependencies towards other language modules.

Dependencies between language modules can be viewed through the clas-
sical required and provided roles in components-based software development
illustrated in Fig. 6. There is a requiring module that uses some constructs pro-
vided by a providing module. The requiring module has a dependency relation-
ship towards the providing one. To avoid direct references between modules, we
introduce the notion of interfaces for dealing with modules’ dependencies. The
requiring language has a required interface whereas the providing one has the
provided interface. A required interface contains the set of constructs required
by the requiring module that are supposed to be replaced by actual construct
provided by another module(s).

Fig. 6. Interfaces for language modules

We use model types [23] to express both required and provided interfaces.
A module can have some references to the constructs declared in its required

interface. In turn, the relationship between a module and its provided interface
is implements (deeply explained in [9]). A module implements the functionality
exposed in its model type. If the required interface is a subtype of the pro-
vided interface, then the provided interface fulfills the requirements declared in
a required interface.

Implementation. The approach presented in this paper is implemented in the
Puzzle tool suite1, which is developed on top of the Eclipse Modeling Frame-
work (EMF). In that context, metamodels are specified in the Ecore language
whereas domain-specific actions are specified as methods in Xtend. The map-
ping between metaclasses and domain-specific actions are specified through the
notion of aspect introduced by Kermeta [12] and Melange [9].

5 Evaluation

The evaluation of our approach is twofold. First, we evaluate the correctness of
the approach using a test oracle that consists of a well-documented case study
where we exactly know the existing overlapping among the involved DSLs. We
execute the reverse-engineering on the case study, and we check that the pro-
duced language modules are consistent with the known overlapping. Second, we
evaluate relevance of our proposal. More concretely, we use empirical data to
demonstrate that the phenomenon of specification clones actually appears in
DSLs that we obtain from public GitHub repositories.

5.1 Evaluating Correctness: The State Machines Case Study

Test Oracle. To evaluate the correctness of our approach, we use the case study
introduced by Crane et al. [8]. It is composed of three different DSLs for express-
ing state machines: UML state diagrams, Rhapsody, and Harel’s state charts.
These three DSLs have some commonalities since they are intended to express
the same formalism. For example, all of them provide basic concepts such as
StateMachine, State, and Transition. According to the development scenario
we address in this paper, these commonalities will be materialized as clones in
the DSL specifications. However, not all those DSLs are exactly equal. They
have both syntactic and semantic differences.

Syntactic differences are reified by the fact that not all the DSLs provide
the same constructs. There are differences in the support for transition’s trig-
gers and pseudostates. Whereas Rhapsody only supports atomic triggers, both
Harel’s statecharts and UML provide support for composite triggers. In Harel’s
statecharts triggers can be composed by using AND, OR, and NOT operators. In
turn, in UML triggers can be composed by using the AND operator. In addition,
whereas there are pseudostates that are supported by all the DSLs (Fork, Join,

1 Puzzle’s website: http://damende.github.io/puzzle/.

http://damende.github.io/puzzle/

ShallowHistory, and Junction); there are two psueudostates i.e., DeepHistory
and Choice that are only supported by UML. The Conditional pseudostate is
only provided by Harel’s state charts. Figure 7 shows a table with the language
constructs provided by each DSL.

Fig. 7. Oracle for evaluation of correctness

In turn, semantic differences are reified by the fact that not all the DSLs have
the same behavior at execution time. For example, whereas Harel’s statecharts
attend simultaneous events in parallel, both UML and Rhapsody follow the run
to completion principle. So, simultaneous events are attended sequentially [8].
Consequently, not all the domain-specific actions are the same. In particular, the
domain-specific actions eval() and step() in the StateMachine metaclass are
different in each DSL.

Results. Figure 8 presents the results produced by Puzzle for the first part of the
analysis: identification of overlapping. The figure shows the Venn diagrams for
both syntactic and semantic overlapping. In the case of the syntactic overlap-
ping, the cardinalities of the intersections in the Venn diagram match the test
oracle. In turn, the domain-specific actions eval() and step() associated to the
StateMachine metaclass are correctly identified as different in each DSL.

Figure 9 presents the results for the second part of the approach: breaking
down overlapping. There is a language module that contains all the constructs
shared by the three DSLs. That is, the constructs existing in the intersection
Harel∩UML∩Rhapsody. Note that the behavioral differences are materialized by
several implementations of the semantics, i.e., semantic variation points.

Also, other language modules encapsulate pseudostates and triggers sepa-
rately. This is because pseudostates and triggers are supported differently in the
DSLs, so they should be specified in different language modules. In this way,
language designers can pick the desired constructs to build a particular DSL.
Particularly, to obtain the Harel’s statecharts DSL, we need to compose the
modules 1, 2, and 5. In turn, to obtain UML we need to compose modules 1, 3,
and 4. Finally, to obtain Rhapsody we need to compose modules 1 and 5. The
instructions to replicate this experiment are available online2.

2 Website for experiment 1: http://puzzlestatemachines.weebly.com/.

http://puzzlestatemachines.weebly.com/

Fig. 8. Overlapping detected by Puzzle in the state machines case study.

5.2 Evaluating Relevance: Are Specification Clones a Real
Phenomenon in DSLs Development Processes?

Although our experience indicates that copy&paste is a real practice in language
development processes so it is normal to find specification clones, we still need
to verify that it is a phenomenon that appears in other development teams,
and industrial contexts. To answer that question, we explored public GitHub
repositories in search of DSLs that are built on the same technological space that
we used in our approach. The intention is to confirm the existence of specification
clones among those DSLs. The results are presented in this section, and all the
data and tooling needed to replicate these experiments are available on-line3.

Data. We conducted an automatic search on GitHub repositories to find Ecore
metamodels enriched with operational semantics written as Kermeta aspects
in Xtend. As a result of this search, we obtained a data set composed 2423
metamodels. Nevertheless, because Kermeta 3 and its implementation in Xtend
is a quite recent idea, we found very few data for the semantics part. Besides, all
of them have been developed in our research team. We decided to conduct the
analysis only in the metamodels since we consider that detection of specification
clones at the level of the abstract syntax can give us a good insight about the
existence of copy&paste practices in DSLs development processes.

Experiment. To identify specification clones in the metamodels from our data
set, we performed a pair-wise comparison among all the metamodels (w.r.t. the �
operator introduced in Sect. 4). Then, we compute the matrix O(i, j) where each
cell (i, j) contains the number of cloned metaclasses between the metamodels
i and j. O(i, j) = 0 means that there is no cloned metaclasses between the
metamodels i and j. We are interested in the cells (i, j) such that O(i, j) 	= 0
3 Website for experiment 2: http://empiricalpuzzle.weebly.com/.

http://empiricalpuzzle.weebly.com/

Fig. 9. Language modules extracted by Puzzle in the state machines case study.

and i 	= j. Those cells correspond to a pair of metamodels with some specification
clones. Then, we analyze the matrix with two questions in mind: (1) how many
metamodels have some specification clones among them?; and (2) how many
classes are cloned from one metamodel to the other?

Results. Figure 10 shows two charts with the results to the experiment. The chart
at the left is intended to answer the first question. In this chart, each entry x of
the horizontal axis represents one metamodel of the data set. In turn, the vertical
axis i.e., y(x) shows the amount of metamodels with some specification clones
for x. Formally, y(x) = (+k| 0 ≥ k ≥ 2423 ∧ O(x, k) > 0 : 1). For example, the
metamodel with ID 1.053 has some specification clones with 272 metamodels.
Note that each point located up the zero line of the vertical axis represents a
metamodel with some specification clones with one or more metamodels, thus
suggesting that specification clones is a real phenomenon.

The chart at the right of the Fig. 10 is intended to answer the second question.
In this chart, each entry x of the vertical axis represents one metamodel of the
data set. The vertical axis i.e., z(x) shows the average amount of cloned classes
for x. Formally, z(x) = 1/y(x) ∗ (+k| 0 ≥ k ≥ 2423 : O(x, k)) For example, the
metamodel 1.928 shares, in average, 99.4 metaclasses with other metamodels.
Note that there is an important amount of metamodels whose average over-
lapping size is between 0 and 100 metaclasses. Note also that there are four
metamodels that share about 600 metaclasses. This case corresponds to a set of
different versions of a metamodel for UML.

6 Related Work

Reuse in DSLs Development Processes. The research community in software
language engineering has previously studied mechanisms to leverage reuse in
the development of DSLs. In this context, languages modularization is probably

Fig. 10. Results for the evaluation of overlapping in GitHub metamodels

the most popular approach. We can find approaches supporting complex mod-
ularization scenarios such languages extension (e.g., [10]) applicable to diverse
technological spaces such as metamodeling [24] or attribute grammars [17].

Another approach to leverage reuse in DSLs is the definition of domain-
specific metamodeling languages [14,26]. The idea is to define abstract language
constructs that can be useful in several DSLs, and to provide mechanisms to spe-
cialize such abstract constructs to particular application contexts. For example,
a language designer can define a DSL for finite state machines with an abstract
behavior, and adapt it to several DSLs according to the needs of the final users.

More recent approaches are focused on facilitating the reuse process itself.
For instance, Melange [9] is a tool-supported language that introduces some
operators (such as slice, inheritance, and merge) intended to manipulate legacy
DSLs in such a way that they can be easily integrated into new developments.

The main contribution of our approach is the advance towards the automa-
tion of the reuse process. We show that, under certain conditions, the process
can be automated through reverse-engineering techniques. We exploit the reuse
opportunities in the form of specification clones, thus reducing maintenance costs
and facilitating the construction of future DSLs.

Déjà vu in Object-Oriented Programming? There is a symbiosis between exe-
cutable metamodeling and object-oriented programming. Besides, there are sev-
eral approaches intended to extract reusable modules from legacy object-oriented
software systems (e.g., [6,19]). Our approach, however, should not be viewed as
yet another technique to extract reusable object-oriented components. Rather,
we propose to take advantage of such symbiosis and use advances achieved in
object-oriented programming to solve problems that also occur during the devel-
opment of executable DSL. Indeed, there is still large room to exploit those ideas
to improve reverse-engineering techniques in DSLs. In doing so, the central issue
to consider is the separation of concerns in DSL specifications. That is, the fact
that the syntax and semantics of the DSLs are usually specified separately, in
many cases, using different metalanguages.

7 Conclusion

In this paper, we presented an approach to exploit reuse during the construction
of DSLs. We show that it is possible to automate the reuse process by identify-
ing specification clones in DSLs and automatically extracting reusable language
modules that can be later used in the construction of new DSLs. We evaluated
our approach in an industrial case study, and we demonstrate that there is an
important amount of potential reuse in DSLs we obtain from public repositories.

Acknowledgments. This work is supported by the ANR INS Project GEMOC
(ANR-12-INSE-0011), the bilateral collaboration VaryMDE between Inria and Thales,
and the bilateral collaboration FPML between Inria and DGA.

References

1. Bettini, L., Stoll, D., Völter, M., Colameo, S.: Approaches and tools for implement-
ing type systems in xtext. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS,
vol. 7745, pp. 392–412. Springer, Heidelberg (2013)

2. Biegel, B., Diehl, S.: Jccd: a flexible and extensible api for implementing custom
code clone detectors. In: Proceedings of the International Conference on Automated
Software Engineering, ASE 2010, pp. 167–168, Antwerp, Belgium. ACM (2010)

3. Clark, T., Barn, B.S.: Domain engineering for software tools. In: Reinhartz-Berger,
I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering: Prod-
uct Lines, Languages, and Conceptual Models, pp. 187–209. Springer, Heidelberg
(2013)

4. Cleenewerck, T.: Component-based DSL development. In: Pfenning, F., Macko, M.
(eds.) GPCE 2003. LNCS, vol. 2830, pp. 245–264. Springer, Heidelberg (2003)

5. Combemale, B., Hardebolle, C., Jacquet, C., Boulanger, F., Baudry, B.: Bridg-
ing the chasm between executable metamodeling and models of computation. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 184–203. Springer,
Heidelberg (2013)

6. Constantinou, E., Naskos, A., Kakarontzas, G., Stamelos, I.: Extracting reusable
components: a semi-automated approach for complex structures. Inf. Process. Lett.
115(3), 414–417 (2015)

7. Cook, S.: Separating concerns with domain specific languages. In: Lightfoot, D.E.,
Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 1–3. Springer, Heidelberg
(2006)

8. Crane, M., Dingel, J.: Uml vs. classical vs. rhapsody statecharts: not all models
are created equal. Softw. Syst. Mod. 6(4), 415–435 (2007)

9. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.-M.: Melange: a
meta-language for modular and reusable development of dsls. In: Proceedings of
the International Conference on Software Language Engineering, SLE 2015, pp.
25–36, Pittsburgh, PA, USA. ACM (2015)

10. Erdweg, S., Rieger, F.: A framework for extensible languages. In: Proceedings of
the International Conference on Generative Programming, GPCE 2013, pp. 3–12,
Indianapolis, USA. ACM (2013)

11. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

12. Jézéquel, J.-M., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup
of metalanguages and its implementation in the kermeta language workbench.
Softw. Syst. Mod. 14(2), 905–920 (2015)

13. Jézéquel, J.-M., Méndez-Acuña, D., Degueule, T., Combemale, B., Barais, O.:
When systems engineering meets software language engineering. In: Boulanger,
F., Krob, D., Morel, G., Roussel, J.-C. (eds.) CSD&M 2014, pp. 1–13. Springer
International Publishing, Heidelberg (2015)

14. de Lara, J., Guerra, E.: Domain-specific textual meta-modelling languages for
model driven engineering. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 259–274. Springer,
Heidelberg (2012)

15. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

16. Lucanu, D., Rusu, V.: Program equivalence by circular reasoning. In: Johnsen,
E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 362–377. Springer, Heidelberg
(2013)

17. Mernik, M.: An object-oriented approach to language compositions for software
language engineering. J. Syst. Softw. 86(9), 2451–2464 (2013)

18. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

19. Mishra, S., Kushwaha, D., Misra, A.: Creating reusable software component from
object-oriented legacy system through reverse engineering. J. Object Technol. 8(5),
133–152 (2009)

20. Mosses, P.D.: The varieties of programming language semantics. In: Bjørner, D.,
Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 165–190. Springer,
Heidelberg (2001)

21. Olson, A., Kieren, T., Ludwig, S.: Linking logo, levels and language in mathematics.
Educ. Stud. Math. 18(4), 359–370 (1987)

22. Oney, S., Myers, B., Brandt, J.: Constraintjs: programming interactive behaviors
for the web by integrating constraints and states. In: Proceedings of the Annual
Symposium on User Interface Software and Technology, UIST 2012, pp. 229–238,
Cambridge, Massachusetts, USA. ACM (2012)

23. Steel, J., Jézéquel, J.-M.: On model typing. Softw. Syst. Mod. 6(4), 401–414 (2007)
24. Voelter, M.: Language and IDE modularization and composition with MPS. In:

Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 383–
430. Springer, Heidelberg (2013)

25. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and
Using Domain-Specific Languages. CreateSpace Independent Publishing Platform,
Hamburg (2013). dslbook.org

26. Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-specific
metamodelling languages for software language engineering. In: van den Brand,
M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 334–353. Springer,
Heidelberg (2010)

http://dslbook.org

	Reverse-Engineering Reusable Language Modules from Legacy Domain-Specific Languages
	1 Introduction
	2 Background: Domain-Specific Languages in a Nutshell
	3 Motivating Scenario
	4 Proposed Approach
	4.1 Principles of Reverse-Engineering for Language Reuse
	4.2 Reverse-Engineering Process: The 5 Principles in Action

	5 Evaluation
	5.1 Evaluating Correctness: The State Machines Case Study
	5.2 Evaluating Relevance: Are Specification Clones a Real Phenomenon in DSLs Development Processes?

	6 Related Work
	7 Conclusion
	References

