Leveraging Software Product Lines Engineering
in the development of external DSLs: A systematic
literature review

David Méndez-Acuila, José A. Galindo, Thomas Degueule, Benoit
Combemale, Benoit Baudry

Keywords:

Software language engineering
Domain-specific languages
Variability management

Software Product Lines Engineering

ABSTRACT

The use of domain-specific languages (DSLs) has become a successful technique in the
development of complex systems. Consequently, nowadays we can find a large variety of
DSLs for diverse purposes. However, not all these DSLs are completely different; many of
them share certain commonalities coming from similar modeling patterns - such as state
machines or petri nets — used for several purposes. In this scenario, the challenge for
language designers is to take advantage of the commonalities existing among similar DSLs
by reusing, as much as possible, formerly defined language constructs. The objective is to
leverage previous engineering efforts to minimize implementation from scratch. To this
end, recent research in software language engineering proposes the use of product line
engineering, thus introducing the notion of language product lines. Nowadays, there are
several approaches that result useful in the construction of language product lines. In this
article, we report on an effort for organizing the literature on language product line
engineering. More precisely, we propose a definition for the life-cycle of language product
lines, and we use it to analyze the capabilities of current approaches. In addition, we
provide a mapping between each approach and the technological space it supports.

1. Introduction

The increasing complexity of modern software systems has motivated the need of raising the level of abstraction at which
software is designed and implemented [1]. The use of domain-specific languages (DSLs) has emerged in response to this need
as an alternative to express software solutions in relevant domain concepts, thus hiding fine-grained imple-mentation
details and favoring the participation of domain experts in the software development process [2].

DSLs are software languages whose expressiveness is localized in a well-defined domain, and which provide the
abstractions (a.k.a., language constructs) intended to describe certain aspect of a system under construction [3]. Naturally, the
adoption of such a language-oriented vision relies on the availability of the DSLs needed to describe the diverse aspects

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2016.09.004
http://dx.doi.org/10.1016/j.cl.2016.09.004
http://dx.doi.org/10.1016/j.cl.2016.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.09.004&domain=pdf
mailto:david.mendez-acuna@inria.fr
mailto:jagalindo@inria.fr
mailto:thomas.degueule@inria.fr
mailto:benoit.combemale@inria.fr
mailto:benoit.baudry@inria.fr
http://dx.doi.org/10.1016/j.cl.2016.09.004
http://dx.doi.org/10.1016/j.cl.2016.09.004

of the system [4]; consequently, nowadays there is a large variety of DSLs conceived for diverse purposes [5]. We can find,
for example, DSLs to build graphical user interfaces [6], or to specify security policies [7].

Although each of the existing DSLs is unique and has been developed for a precise purpose, not all the existing DSLs are
completely different among them. Recent research has shown the existence of DSLs providing similar language constructs
[8,9]. A possible explanation to such phenomenon is the recurrent use of certain modeling patterns that, with proper
adaptations, are suitable for several purposes. Consider, for instance, the case of finite state machines which have inspired
many DSLs dealing with diverse problems such as the design of integrated circuits [10], performing software components
composition [11], or the alignment of business processes with legislation [12].

In this context, the challenge for language designers is to take advantage of the commonalities existing among similar
DSLs by reusing, as much as possible, formerly defined language constructs [13]. The objective is to leverage previous
engineering efforts to minimize implementation from scratch. Ideally, the reuse process should be systematic. This requires,
on one hand, to define reusable segments of language specifications that can be included in the definition of several DSLs,
and on the other hand, an appropriate management of the variability introduced by the particularities of each DSL [2].

To overcome this challenge, the research community in software language engineering has proposed the use of Software
Product Lines Engineering (SPLE) in the construction of DSLs [14]. Indeed, the notion of Language Product Lines Engineering
(LPLE) - i.e., construction of software product lines where the products are languages - has been recently introduced [13,15].
The main principle behind language product lines is to implement DSLs through language features. A language feature
encapsulates a set of language constructs that represents certain functionality offered by a DSL [16].

Language features can be combined in different manners to produce tailor-made DSLs targeting the needs of well-
defined audiences. This feature-oriented approach for DSLs engineering requires the definition of DSLs in a modularized
fashion where language features are implemented as interdependent and composable language modules. Additionally,
language designers should model the existing variability [17,18], and provide a configuration mechanism that enable the
selection and composition of the language features required in a concrete scenario [19]. The aforementioned challenges
constitute the life-cycle of a language product line.

Nowadays, there are several approaches that result useful in the construction of language product lines. Yet, it is difficult
to realize what are the most appropriated approach to build a language product line in a particular language engineering
project. This difficulty is due to two reasons. Firstly, approaches rarely address the whole life-cycle of language product lines.
Rather, many of them focus on a specific issue, and integral solutions are rarely provided. Secondly, approaches are quite
dependent on the technological space where DSLs are implemented. For instance, an approach conceived for grammars-
based DSLs might be not applicable for metamodels-based DSLs.

This article reports on an effort for organizing the literature on language product line engineering through a systematic
literature review. We consider two different perspectives. On one hand, we propose a definition to the life-cycle of language
product lines. We use such a life-cycle to analyze the current approaches available in the literature. On the other hand, we
establish a mapping between each approach and the technological space it supports. In this sense, this article targets both
researchers and practitioners. Researchers will find a comprehensive analysis of the life-cycle of language product lines, as
well as a deep study of the strategies used in the state of the art to address such a life-cycle. In turn, practitioners will find in
this article a practical guide that they can use to find out the most convenient approach for a particular project according to
the technological space used in the implementation of the involved DSLs.

The reminder of this article is structured as follows. Section 2 introduces some background knowledge and states the
motivation of this literature review. Section 3 describes the used research method. Section 4 presents the results of this
literature review. Section 5 discusses the threats to validity of our study. Finally, Section 6 concludes the article.

2. Background and motivation
2.1. Basics on domain-specific languages and Software Product Lines Engineering

In this section, we introduce a unified vocabulary to facilitate the comprehension of the ideas presented in the rest of the
article. In particular, we present a brief background in domain-specific languages and software product line engineering.

2.1.1. Domain-specific languages (DSLs)

In recent years, growing interest in DSLs has led to the proliferation of formalisms, tools, and methods for software
language engineering. Hence, numerous techniques for implementing DSLs have emerged. In this section, we shed some
light on the most prominent approaches.

Implementation concerns for DSLs: Just as traditional general purpose languages, domain specific languages are typically
defined through three implementation concerns: abstract syntax, concrete syntax, and semantics [20]. The abstract syntax of
a DSL specifies the set of language constructs that are relevant to its domain and the relationships among them. The concrete
syntax of a DSL maps its language constructs to a set of symbols (either graphical or textual) that the users manipulate to
create models and programs conforming to its abstract syntax. These representations are usually supported by editors that
enable users to write programs using the symbols defined by the concrete syntax acting as the graphical user interface of

Domain-Specific Language

— — = —=—Y
Abstract Syntax Concrete Syntax | Semantics

>~ e

Grammar—basej \mamodel—based Textual [Craphical | Dynamic | Static
: s

I =
1

requires ; = e)
Operatwonal” Denotational \ | Axiomatic

Key: ® Mandatory feature =T Alternative features (XOR)
© Optional feature —=_ |nclusive features (OR)

Fig. 1. Technological spaces for the implementation of domain-specific languages.

the DSL. Finally, the semantics of a DSL assigns a precise meaning to each of its language constructs. More precisely, static
semantics constrains the sets of valid programs while dynamic semantics specifies how they are evaluated at runtime.

Technological spaces for the implementation of DSLs: There are different technological spaces available for the realization of
each of these concerns. The abstract syntax of a DSL can be expressed using grammars or metamodels. Since concrete syntax
and semantics are usually defined as a mapping from the abstract syntax, the choice of the abstract syntax formalism
strongly impacts the choice of concrete syntax and semantics specification.

Regarding concrete syntax, DSLs can have either textual or graphical representations (or a mix of both). This decision is
usually motivated by the requirements of final users, and the scenarios where the DSL will be used [21]. The implementation
of a concrete syntax may for instance rely on the definition of a parser, or a projectional editor [22].

Regarding the specification of static semantics, there are not many design decisions to make beyond the constraints
language to use. Usually, this selection is based on technological compatibilities with the formalism in which the abstract
syntax is defined.

In turn, there are different methods for the definition of dynamic semantics: operational semantics, denotational
semantics, and axiomatic semantics [23]. Operational semantics expresses the meaning of the language constructs of a DSL
through the computational steps that will be performed during the execution of a program [23]. The definition of the
operational semantics thus consists in an endogenous transformation that changes the execution state of conforming
programs. Typically, the implementation of operational semantics corresponds to the definition of an interpreter.

Denotational semantics expresses the meaning of a DSLs through functions that map its constructs to a target formal
language where the semantics is well-defined [24,25]. When the target language is not a formal one (e.g., another pro-
gramming language with its own semantics), the term translational semantics is favored. The implementation of the
translational semantics typically takes the form of a compiler.

Axiomatic semantics offers a mechanism for checking if the programs written in a DSL own certain properties. Examples
of such properties are equivalence between programs or functional correctness (e.g., checking if the program is correct with
respect to its specification in terms of pre- and post-conditions) [26].

It is worth noting that the different methods for implementing the semantics of software languages are not mutually
exclusive. Indeed, some works suggest that one language should own the three types of semantics since each of them
provides better support for certain kind of users [27,26].

Fig. 1 sums up the discussed taxonomy in the form of a feature model [28]. Each feature represents a technological space,
and the relationships between features represent constraints on the combination of technological spaces. This taxonomy is
compatible with the state of the art of language workbenches presented in [29]. Nevertheless, our taxonomy is more focused
on the characteristics of the languages themselves rather than on the characteristics of the language workbenches. Our
taxonomy also complies with the classification of DSLs introduced in [30].

External versus internal DSLs: Another important decision when designing a DSL concerns the shape of the resulting
language. Language designers can choose to build either an external or an internal DSL." The construction of an external DSL
can be viewed as the creation of a new language [5] with its own dedicated infrastructure: editors, compilers and/or
interpreters, tools, etc. In such a case, language designers must write a complete specification of their language using
dedicated formalisms that offer the suitable expressiveness for defining each implementation concern. Since those form-
alisms are languages intended to specify languages, they are usually known as meta-languages and vary depending on the
technological space chosen for the construction of the DSL.

In the case of internal DSLs, the principle is to take advantage of the infrastructure already provided by a host language
[5]. The high-level domain concepts of the DSLs are implemented using the language constructs offered by the host lan-
guage. Editors, parsers, or compilers of the host language are reused, thus lowering the development costs compared to

1 Although the terms “internal” and “embedded” are sometimes used interchangeably, we use the term internal DSL to avoid the confusions sometimes
associated with embedding as composition operator [31].

Modularization Variability Management

Modular Design Variability Modeling
Domain
Engineering oo ﬁ 3
L2

Modules Composition Configuration

Application
Engineering c o £ Y
) :fé ;" 2]&“

Analysis Design Implementation Testing

Evolution

Fig. 2. Phases of the SPLE's life cycle.

external DSLs. However, following this approach also implies that the capabilities of an internal DSL are restricted to the
capabilities of the host language. The DSL must work with the programming paradigm, the type system, and the tooling
provided by the host language. Because of all these reasons, an appropriate selection of the host language is of vital
importance [32].

Language workbenches: The notion of language workbench originates from the seminal work of Fowler [33]. The main
intent of language workbenches is to provide a unified environment to assist both the language designers and users in,
respectively, creating new DSLs and using them. Modern language workbenches typically offer a set of meta-languages that
the language designers use to express each of the implementation concerns of a DSL [34], along with tools and methods for
composing and analyzing their specifications.

Most state-of-the-art approaches for software language engineering thus ultimately materialize as features of a language
workbench. Therefore, language workbenches occupy a prominent place in this literature review. Similarly, future
approaches for language product line engineering should be integrated in language workbenches to promote their adoption
by a wide audience. The interested reader can refer to [35] for an in-depth study of the features offered by different popular
language workbenches.

2.1.2. Software Product Lines Engineering (SPLE)

While traditional approaches to software development are intended to build individual software products, the SPLE
approach proposes the construction of families of software products through a production lines' perspective [36]. A software
product line is an infrastructure that enables to assembly several software products that share some commonalities with
well-defined variations [36].

The central principle of the SPLE approach relies on the notion of feature. A feature encapsulates a characteristic that
might be included in a software product. In that sense, a software product line can be viewed as a set of features available for
the construction of a family of software products. Fig. 2 shows the life-cycle of a software product line; it is divided into two
phases: domain engineering and application engineering [36].

During the domain engineering phase, the objective is to build the product line itself (i.e., the infrastructure). This process
includes the design and implementation of a set of common assets, as well as the explicit representation of the possible
variations. The common assets of a software product line correspond to the software artifacts that implement the features.
In turn, the possible variations of a software product line correspond to the combination of features that produce valid
software products [37].

Since the notion of feature is intrinsically associated with encapsulation of functionality (i.e., characteristics), the
implementation of the common assets requires a modular design of software artifacts that allows the definition of inter-
dependent and interchangeable software modules. Those modules should be linked to the features they implement. In turn,
the explicit representation of the variations requires a formalism to express the rules defining which are the valid com-
binations of features. Typically, those rules encode dependencies and/or conflicts between features. Feature models (FMs)
[38] became the “de facto” standard to express these rules [39].

During the application engineering phase, the objective is to derivate software products according to the needs of specific
customer segments [36]. Such derivation process comprises the selection of the features that should be included in the
product, i.e., product configuration, as well as the assembly of the corresponding software modules, i.e., modules
composition.

It is worth mentioning that both the domain engineering and the application engineering phases are intended to be
formal software development process. Hence, these phases require the typical steps towards the construction of software:
requirements analysis, solution design, implementation, and testing [36]. Besides, software product lines are not static in
time. The market needs evolve, and software product lines should support changes and adaptations to new business needs
[40].

2.2. Motivation for a systematic literature review

As aforementioned, there is synergy between the construction of DSLs and software product line engineering [15]. The
ideas towards systematic management of software variants provided the product line engineering approach can be used to
build similar DSLs while adapting them to specific application contexts [14]. To this end, the life-cycle of software product
lines should be adapted to the particularities of DSLs development process. In addition, language workbenches should
provide the capabilities that allow language designers to adapt those ideas in concrete DSLs [2]. Nowadays, we can find
several approaches from the software language engineering community that directly or indirectly support this vision. Each
approach provides insights and/or tooling that can be used during the construction of a language product line. However, it is
yet difficult for language designers to realize how those approaches can be used in a concrete DSLs development project.
Such difficulty has two dimensions.

The first dimension is the partial coverage of the language product lines life-cycle. Not all the approaches address all the
steps of the life-cycle. Rather, they are often focused on a particular step (such as modular design) without discussing the
other ones. This can be explained by the fact that approaches that result useful in language product line engineering were
not necessarily conceived to this end. For example, not all the approaches in languages modular design are intended to
support variability; many of them are motivated by other factors such as domain evolution and maintenance [41].

The second dimension is the misalignment between the technological space supported by each approach and the
technological constraints of a particular DSLs development project. Approaches in software language engineering are quite
dependent on a specific technological space which not always matches the requirements of a specific DSL development
project. For example, an approach conceived for grammars-based DSLs with operational semantics may be difficult (or even
impossible) to apply in a project where DSLs are meant to be metamodels-based with denotational semantics.

Research questions: The objective of this literature review is to help language designers to find out approaches to leverage
software product line engineering in the development of DSLs. To this end, we need to first analyze how the life-cycle of
software product line engineering can be adapted to the construction of language product lines. Then, we need to explore
the current approaches that result useful in the construction of language product lines, and identify what are the steps of
the life-cycle they address as well as the technological space they support. Finally, we need to identify open issues. In
summary, this literature review is intended to answer the following research questions:

RQ.1: What is the life-cycle of a language product line?

RQ.2: What are the approaches supporting language product line engineering?
RQ.3: How those approaches support the life-cycle of a language product line?
RQ.4: What are the technological spaces that current approaches support?
RQ.5: What are research open issues in language product line engineering?

Scope: It is worth mentioning that this literature review is restricted to approaches for external DSLs. Conducting a
literature review that also includes internal DSLs might be too broad, specially because the development of internal DSLs can
resemble to the development of traditional software libraries [42]. Establishing the boundary of the discussion is quite
difficult.

Other surveys and literature reviews on software languages engineering: There are other literature studies in the field of
software languages engineering. Perhaps the most notable one is presented by Mernik et al. [5] which provides a com-
prehensive analysis of the different development phases in the construction of DSLs: analysis, design, and implementation.
Besides, the study introduces some insights to identify the situations in which the development of a DSL is a correct
decision, and discusses the capabilities of some of the language workbenches available in 2005.

Some years later, Kosar et al. [43] published a new research work in the form of a systematic mapping study which
analyzes the trends of the research in DSLs from 2006 to 2012. The conclusions of the study permit to identify the issues that
require more attention in the research of DSLs. For example, the authors clearly identify a lack of research on domain
analysis and maintenance of DSLs.

A similar study is presented by Marques et al. [44]. In this case the objective is to provide a systematic mapping study
that allows to identify the tools and techniques used in the construction of DSLs. For example, the authors provide a
comprehensive list of the host languages used in the development of internal DSLs. Besides, this work permit to understand
in which domains the DSLs are being used. One of the conclusions in this regard is that the most popular domain for DSLs is
the construction of Web-based systems. Other popular domains are embedded systems and networks.

Another relevant study on the literature of software languages engineering is the one presented by Erdweg et al. [45].
More than studying research trends and techniques, this work focus on the analysis of language workbenches. The authors
identify a comprehensive set of features provided by the current language workbenches. Then, these features are used to
compare the language workbenches among them. The technological spaces are viewed as features of the language
workbenches.

As the reader might notice, all the studies presented so far are intended to provide a general vision on the field of
software languages engineering. They analyze a large amount of approaches and offer different perspectives on the past, the
present, and the future of the research in software languages. The literature review that we present in this article is intended

Perform Apply Apply
f 1018 Remove 829 . : 236 q 38
automatic articles duplications JEILEl dISC.a rd_mg articles sel.eCt'_On articles
search driteria driteria
Fig. 3. Protocol used to chose the articles included in the discussion.
Table 1
Strings for automatic search.
Research area Challenge Scope
A: “languages engineering” D: “variability” G: “domain-specific languages”
B: “languages implementation” E: “modularity” -
C: “languages definition” F: “composition” -

to be more specific. Instead of global perspectives, we propose a detailed study in a localized issue: the use of software
product lines techniques to increase reuse in the construction of domain-specific languages.

In that sense, our literature review can be compared with other studies addressing localized issues. Some examples of
those localized studies are: (1) the work presented by Ober et al. [46] surveys different techniques to deal with inter-
operability between DSLs; (2) the work presented by Kusel et al. [47] studies approaches to leverage reuse in model-to-
model transformations; and (3) the work by Silva et al. [48] focuses on describing the elements of model-driven software
development which has been used as technological space in the implementation of domain specific languages.

3. Research method

In this section we provide the details about the research method that we followed during the conduction of this lit-
erature review. Concretely, we describe the search protocol that we used to find and select the articles included in the
discussion that ends up to the answers for the research questions introduced in Section 2.2. The search protocol is illustrated
in Fig. 3; it was inspired on the guidelines for systematic literature reviews presented by Kitchenham et al. [49].

Perform automatic search: The first phase of the protocol corresponds to an automatic search that collects a preliminary
set of articles potentially interesting for the discussion. It was performed on four digital libraries: ACM-DL, IEEEXplore,
SpringerLink, and ScienceDirect. These digital libraries were selected because they are used to publish the articles accepted in
the conferences and journals typically targeted by the community of software languages engineering. We decided to discard
other sources such as GoogleScholar that do not guarantee that the indexed documents are validated through peer-
reviewing.

That the automatic search was based on the following boolean expression: (A OR B OR C) AND (D OR E OR F) AND (G)
where the corresponding strings are presented in Table 1. Naturally, there might be several variants of these strings. For
example, we can consider plurals and acronyms. However, at the end of the searching protocol we performed a validation of
the results (that we will explain later in this section) and we concluded that the strings we used are appropriate. This first
phase resulted in 1018 articles.

Remove duplications: There are some cases in which an article is indexed by more than one digital library. As a con-
sequence, some of the entries resulting from the first phase corresponded to the same article. Then, the second phase of our
protocol was dedicated to remove those repetitions by checking the title of the paper as well as the target (conference or
journal) in which it was published. This phase ends up with a set of 829 unique articles.

Apply discarding criteria: The keywords-based automatic search retrieved many articles discussing problems and solu-
tions on software language engineering. However, not all of them were relevant to the scope of the literature review.
Therefore, we conducted a discarding process based on a two-fold discarding criteria presented below. Those criteria were
applied on titles, abstracts and conclusions. At the end of this phase we obtained 236 articles.

e Discard the articles which do not deal with design and/or implementation of DSLs.
® Discard the articles which do not target any of the issues that we have identified as relevant language product line
engineering i.e., modularity, composition, and variability management.

Apply selection criteria: After applying the discarding criteria, we applied a second filter intended to select the articles will
be definitely part of the discussion. To this end, we defined a two-fold selection criteria that we applied on the article's
introductions. This phase resulted in 38 articles.

16
" 14
<
i 12
=
(i 10
15}
] 8
0
£ 6
z
4
: I .
. 1 I
1999-2003 2004-2007 2008-20M 2012-2015
Workshops 0 0 5 6
Conferences 1 3 6 7
B journal 2 2 3 3

Fig. 4. Number of articles per year and type of publication.

® Select the articles that have a clear contribution to one or several issues which are relevant on language product line
engineering for external DSLs. It is worth highlighting that this filter will exclude works, such as the one presented by
Sanchez Cuadrado et al. [50], dealing with issues on language product lines of internal DSLs.

e Select the articles that present case studies if and only if they offer clear insights to address at least one issue of language
product line engineering.

Final result: Fig. 4 presents the selected articles classified by year and type of publication. Of the 38 articles included in
this literature review, 9 were published in journals, 17 in conferences, 11 in workshops. The figure shows an increasing
interest on the subject represented in an increasing number of publications. The list of articles selected and discarded and in
each step of the search protocol is available on-line.? It is worth mentioning that a possible threat to validity associated to
our research protocol is that all the phases were performed by the same person. This decision favors the uniformity of the
results but, at the same time, avoids possible discussions which might enrich the selection process.

Validation of the searching protocol: Despite the rigorous process that we followed in order to identify the articles dis-
cussed in this literature review, we wanted to be sure that we considered all the papers that are relevant in the area. In
particular, we wanted to be sure that the automatic search does not omit any important article. So, we used three strategies
to reduce such a risk. First, before conducting this literature review we established a set of articles that we knew in advance
and that are relevant in this study. Afterwards, we checked if those papers were included by the automatic search. The
results were positive, all papers in the predefined set were included in the automatic search. Second, we checked the papers
cited by the 38 articles finally included in the literature review. We select those references that we considered as relevant
and we checked that they were also included in the automatic search. The results in this second validation strategy were
positive as well; all these relevant articles were included in the automatic search. Finally, we ask a variety of researchers to
check our corpus and see if it has some missing works. We obtained several answers pointing out that the main works were
considered.

4. Results

In this section, we answer the research questions introduced before. These results were achieved through a systematic
process where each paper was read and analyzed according to the vocabulary presented in Section 2.
4.1. RQ.1: The life-cycle of a language product line

The life-cycle of a language product line addresses the