
Integrating Heterogeneous Variability Modeling
Approaches with Invar

[Tool Demonstration]

Deepak Dhungana
Siemens AG Österreich
Corporate Technology

Vienna, Austria
deepak.dhungana

@siemens.com

Dominik Seichter
and Goetz Botterweck
Lero–The Irish Software

Engineering Research Center
Limerick, Ireland

goetz.botterweck@lero.ie

Rick Rabiser
and Paul Grünbacher
Christian Doppler Lab for

Automated Software
Engineering

JKU Linz, Austria
rick.rabiser@jku.at

David Benavides
and José A. Galindo
Department of Computer
Languages and Systems

University of Seville
Seville, Spain

benavides@us.es

 ABSTRACT

There have been several proposals to describe the variability of
software product lines by using modeling languages. In larger or-
ganizations or projects (e.g., multi product line environments) this
can lead to a situation where multiple variability modeling tech-
niques are used simultaneously. Rather than enforcing a single
modeling language, we present an integrative infrastructure that
provides a unified perspective for users configuring products in
such multi product line environments, regardless of the different
modeling methods and tools used internally. In this tool demonstra-
tion paper, we present a prototypical implementation of our frame-
work based on Web services. So far, the prototype has been used
with a feature-based, an OVM-style and a decision-oriented vari-
ability modeling approach.

 Keywords

Variability Modeling, Product Configuration, Integrated Tool, Web
Service

1. INTRODUCTION
The existing diversity in software product lines has led to the de-

velopment of different tools, techniques, and languages to describe
the variability of software product lines (e.g., [11, 3, 8, 5]). To re-
flect the complexity of real-world systems it is often appropriate
to use different modeling approaches to describe different system
parts. Different modeling languages have benefits and drawbacks
depending on the system to be described and the personal prefer-
ences of the product line engineers.

However, the use of different “island solutions” for variability
modeling and product configuration restricts communication and
hinders collaboration between distributed product line engineers.
Hence, there is a need for an integrative infrastructure enabling the
collaboration between different organizations developing product
lines. Such an infrastructure has to support different variability
modeling languages, notations, and tools. The specific tools or data
formats used when creating the variability models are not relevant
for end users who only care about the available choices and their
implications for the product.

Consider the example of a multi product line1of an Enterprise
Resource Planning (ERP) application. The main vendor of the
ERP application integrates several suppliers providing specific en-
capsulated functionality. In the sample case, the vendor might
for instance use a feature model to present the set of available
choices and to communicate extension and integration possibilities
for other systems. The suppliers might use different approaches
and tools for their particular parts of the system. For example, one
supplier could use decision modeling tools [6], while others apply
orthogonal variability modeling [9] or feature modeling [5].

For the configuration of an ERP solution in such a context an
integrative infrastructure is needed, which is able to represent and
implement constraints across model boundaries. In doing so, the
needs of both modelers and end users (of configuration tools) must
be considered.

In an earlier paper [7], we introduced the Invar approach sup-

1The concept of a “multi product line” refers to product lines,
where the different sub systems are also product lines themselves.

porting the integration of heterogeneous variability modeling ap-
proaches and presented an initial evaluation. In this tool demonstra-
tion paper, we present the Invar infrastructure that facilitates the
integration of heterogeneous variability models. The Invar pro-
totype currently supports integration of three different variability
modeling approaches, i.e., a feature modeling [12], a decision mod-
eling [6], and an orthogonal variability modeling approach [10].
Invar enables the communication between different languages and
tools for variability management. It eliminates the need to stick to
one concrete variability modeling approach when designing multi
product lines. A configuration front-end for end users transparently
presents models created in different notations.

We first explain the key assumptions underlying Invar and then
present the Invar infrastructure and its implementation.

2. UNDERLYING ASSUMPTIONS
In the current state of practice multiple heterogeneous variability

modeling approaches are used by different organizations. Different
reasoning and analysis engines – for instance, SAT, BDD, or CSP
solvers [1] or rule engines [6] – are adopted for interpreting and
implementing the models’ semantics. This is problematic, since
there is no integration of these diverse tools supporting different
notations. In some organizations variability is managed “manu-
ally” using textual descriptions or spreadsheets; these “tools” are
typically not integrated with other variability modeling tools due
to their lack of formality or simply because of a lack of dedicated
configuration tools.

Despite the differences in modeling notations, data formats and
reasoning technologies, variability modeling approaches do share
characteristics and can be described by common concepts: A Vari-
ability Model consists of Variables and Constraints over these vari-
ables. Each variable has a Type, for instance, Boolean, Integer,
or String. Depending on the particular approach there are differ-
ent Types of Constraints, e.g., “Optional Sub-features”, “Alterna-
tive Groups”, or “requires/excludes”. A modeler creates a set of
variables and constraints. An Assignment of values to the variables
corresponds to a Configuration of the model.

For a given configuration, we can decide whether it satisfies the
constraints defined in the model. Hence, a model defines a set of
compliant configurations. Users add more constraints as they make
configuration decisions. Based on the current set of constraints
the remaining possible values for each variable can be determined.
Adding more constraints eventually leads to a model that has ex-
actly one valid assignment in which each variable has exactly one
value. This represents the configured product, for instance in terms
of selected and deselected capabilities. If no valid assignment is
left then the model is unsatisfiable.

When presenting remaining configuration options in a configura-
tion tool, we can ensure that the model remains satisfiable, i.e., only
those options are offered for interaction, which, when they would
be chosen, leave at least one valid assignment.

Our approach relies on the assumption that variability models
can (from the perspective of the end user) be broken down into
options that are either available, selected, constrained or not avail-
able during configuration and that are related in different ways, e.g.,
defining an order for selecting options.

This can be compared to a pivot format for all kinds of variabil-
ity models, which is general enough such that concepts of existing
approaches can be translated to this simplified view. The formal
semantics of the pivot format has yet to be defined, but this paper is
a step towards this direction in a pragmatic way through illustrative
implementation.

3. THE INVAR INFRASTRUCTURE
The Invar infrastructure allows to “plug-and-play” variability

models. “Plugging” refers to adding new variability models to a
shared repository. “Playing” refers to presenting the options pro-
vided by variability models to end users when configuring a prod-
uct. For this purpose, a variability model is treated as an modular
entity, which can be plugged into the configuration space to provide
configuration options. However, being modular does not necessar-
ily mean the models are independent of each other. In Invar this is
reflected by the fact that variability models can be related to each
other by interdependencies [7] enabling the use of cross-model con-
straints such as, “if feature A is selected in model X then feature B
in model Y is required”.

Our approach allows using variability models distributed across
multiple repositories by accessing them through Web services, which
are providing configuration choices. An end user then works with
a front-end for product configuration and can use the services with-
out knowing details about the concrete variability models under-
lying the services. Figure 1 depicts the architecture of the Invar
infrastructure comprising five main components:

Vendor model repositories (see (1) in Figure 1) – Product ven-
dors or suppliers add their variability models to model repositories.
The models may or may not contribute to the same product and are
not necessarily dependent on each other.

Invar repository (2) – This repository defines aggregations of
different models from the vendor repositories by logically grouping
them. For instance, one particular model may be part of multiple
product lines, as it may contribute to more than one product.

Configuration Web services (3) – The different models residing
in (possibly distributed) repositories are accessed by configuration
Web services. A Web service provides a standard interface for dif-
ferent configuration front-ends such as websites, mobile devices, or
stand-alone applications. For each type of model, designated con-
figuration services are developed (by implementing an interface)
that can read the data formats, interpret the content, and perform
operations on the models.

Configuration broker (4) – The configuration broker enables
the communication between the Web services. It reads the inter-
model dependency information to determine which Web services
are affected when products are configured. The configuration bro-
ker also translates events from the end user performing the config-
uration and passes them on to the Web services that need to react
to this input.

End-user product configuration front-ends (5) – The configu-
ration choices defined in the variability models are presented to the
end user in a product configuration front-end. This can be a web-
site or a stand-alone application. We provide an example user in-
terface through the Invar framework website at http://invar.lero.ie
also shown in Figure 2.

By using Invar stakeholders can create variability models us-
ing an approach of their choice. Invar defines key operations and
queries (configuration primitives) on variability models to allow the
integration of heterogeneous approaches (for details please refer to
our earlier work [7]). The configuration primitives are implemented
as operations of a Web service to allow uniform access to the mod-
els. This allows the involved organizational units and teams to use
their preferred modeling approaches while reusing variability mod-
els from other units. Invar provides a single and transparent con-
figuration tool to end users to ensure interoperability and reuse of
variability models in different contexts. For example, one model
may be shared between several companies and each one may use it
to create different products. The participating organizational units
could also create their own configuration tools and access diverse

IMDI

Configuration Broker

In
va

r
R

ep
o

si
to

ry

Model IMDI

Model IMDI

Configuration events
from the front-end

Configuration
Web Services

End-user product configuration
applications (e.g., web sites)

In
va

r
Se

rv
ic

es
Fr

o
n

t-
en

d

Legend

3

2

4

5

Model IMDI

Model IMDI

Model IMDI

Model IMDI
1

Configuration Events

Variability Model

Inter-Model Dependency
Information (IMDI)

Event flow

Web service calls

Data flow

Figure 1: Architecture of the Invar infrastructure (adapted from [7]).

models via the Invar Web services without having to know all the
details about the actual modeling approaches underneath.

Whenever a variability model is plugged into the configuration
environment, it needs to explicitly define its relationships to the
other models. This is done by adding an inter-model dependency
information (IMDI) packet together with the model. Dependencies
are defined using if condition then action clauses which can be com-
pared to conventional cross-tree constraints used in single models.
IMDI packets do not affect the internal semantics of the models in
use. An IMDI action is executed when its condition evaluates to
TRUE. Details on the IMDI packets and the conditions and actions
currently supported by Invar can be found in [7].

4. IMPLEMENTATION
The Invar implementation allows creating and maintaining repos-

itories for sharing variability models and supports end-user config-
uration based on these models. The infrastructure relies on Web
services for accessing variability models and on the configuration
front-end to provide these models to the user. Any Web service API
can be used to generate Web services, which can be plugged into
the Invar framework based on a provided WSDL description. For
the front-end, a layered Java/J2EE application platform based on
the Spring Framework was used to provide centralized, automated
configuration and integrative wiring of the application objects.

Web services were chosen as a base technology for the Invar
prototype since they allow for an easy, standardized integration of
potentially distributed and heterogeneous software components. In
Invar Web services are used to enable the different variability mod-
eling tools to communicate with the core component. The flexible
composition of Web services allows to configure products dynami-
cally and to include different variability models from different Web

services into the configuration environment when they are needed.
Similar to many typical architectures for serviced-based applica-
tions Invar also uses the concepts of providers, consumers, and
a registry. The different Web services are providers of variability
models and the Invar configuration site simultaneously represents
both the service registry and the consumer of the models.

Central to the implementation of Invar is the generic configu-
ration interface defined for programmatically accessing the diverse
variability models. The configuration service definition has to be
implemented once for each modeling notation. The Web service
is designed such that the configuration options are presented to
the end user as questions. Questions are only a means to render
the variation points/options/features to present it to the user. This
means the user is asked questions about a certain “feature” (in the
wider sense) or a property of the system she configures. The possi-
ble answers to the question (the available alternatives) are presented
to the user such that she may choose one or many of them depend-
ing on the type of variability. The notion of “questions” and possi-
ble answers as options is therefore key to the Invar configuration
service.

The interface consists of two parts: A variability model query
part providing basic information about models (e.g., the set of avail-
able questions and the possible answers) and an operational part
directly interacting with models to assign answers to specific ques-
tions (e.g., when selecting a particular feature).

The configuration service also defines a set of predefined ques-
tion types. The types have been defined based on how the end user
is supposed to answer them. For example, the question type Alter-
native refers to questions where the user can select exactly one op-
tion (rendered using radio buttons or combo-boxes in the UI); for
Optional the user can pick multiple items (rendered using check-
boxes in the UI) and MoreThanOne refers to cardinality (1..*) (ren-

Figure 2: The Invar prototype: plugging in heterogeneous variability models to create configuration projects (top left), defining and
visualizing inter-model dependencies (top right), and answering configuration questions (bottom). The Invar prototype can be tested
at http://invar.lero.ie (username: a; password: a).

dered using multi-selection checkboxes in the UI).
The Invar service configuration interface is offered out of the

box for the feature-oriented FaMa tool suite [12], the OVM-oriented
FaMa tool [10], and the decision-based DOPLER [6] tool suite. The
selection to implement these particular approaches in Invar was
based on the experience gained by several years of experience of
applying them in academic and industrial settings including large-
scale product lines [1, 2, 6, 10, 12]. Furthermore, these three ap-
proaches represent three distinct classes of modeling techniques in
software product line engineering, i.e., feature modeling, orthogo-
nal variability modeling, and decision modeling [5, 9]. Refer to [7]
for details on the implementation of Invar for DOPLER and FaMa.
Since that earlier work, Invar has been extended by the support for
OVM models.

5. SUMMARY AND OUTLOOK
In this tool demonstration paper, we presented the Invar infras-

tructure facilitating the integration of variability models for product
configuration regardless of the modeling techniques, notations and
tools used. We have presented the key assumptions underlying the
approach, discussed the Invar architecture, and showed the web-
based configuration front-end for end users. So far Invar has been
used with and implemented for one feature modeling, one decision
modeling, and one orthogonal variability modeling approach.

The key contributions of Invar are that (i) it enables the commu-
nication between different languages and tools for variability man-
agement; (ii) it eliminates the need to stick to one concrete vari-
ability modeling approach when designing multi product lines; and
(iii) its configuration front-end for end users transparently presents
models created in different notations.

We are currently working on the integration of more modeling
approaches to Invar like TVL [4] or COVAMOF [11]. We are
also working on improving the underlying reasoning mechanisms.
Furthermore, we plan (i) to formalize the integration concepts, in-
cluding the semantics of the IMDI links, so that verification and
validation across models is possible, (ii) to visualize the models
and the relations between them beyond modeling notations, so that
the modelers are aware of dependencies and the impact of changes
to models, and (iii) to evaluate the framework in an industrial con-
text, so that the practical value and usefulness can be demonstrated.

Acknowledgements
This work was supported, in part, by Science Foundation Ireland
grant 10/CE/I1855 to Lero; by the Christian Doppler Forschungs-
gesellschaft, Austria; by the European Commission (FEDER) and
Spanish Government under project SETI (TIN2009-07366); and by
the Andalusian Government under project THEOS (TIC-5906) and
the Talentia program.

6. REFERENCES
[1] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated

analysis of feature models 20 years later. Information
Systems, 35(6):615–636, 2010.

[2] G. Botterweck, M. Janota, and D. Schneeweiss. A design of
a configurable feature model configurator. In 3rd
International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS 2009), pages 165–168,
Sevilla, Spain, 2009. ICB Research Report vol. 29.

[3] L. Chen, M. Babar, and N. Ali. Variability management in
software product lines: A systematic review. In 13th
International Software Product Line Conference (SPLC
2009), pages 81–90, San Francisco, CA, USA, 2009. ACM.

[4] A. Classen, Q. Boucher, and P. Heymans. A text-based
approach to feature modelling: Syntax and semantics of
TVL. Science of Computer Programming,
76(12):1130–1143, 2011.

[5] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and
A. Wasowski. Cool features and tough decisions: a
comparison of variability modeling approaches. In 6th
International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS 2012), pages 173–182,
Leipzig, Germany, 2012. ACM.

[6] D. Dhungana, P. Grünbacher, and R. Rabiser. The DOPLER
meta-tool for decision-oriented variability modeling: A
multiple case study. Automated Software Engineering,
18(1):77–114, 2011.

[7] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser,
P. Grünbacher, D. Benavides, and J. Galindo. Configuration
of multi product lines by bridging heterogeneous variability
modeling approaches. In 15th International Software
Product Line Conference (SPLC 2011), pages 120–129,
Munich, Germany, 2011. IEEE.

[8] L. B. Lisboa, V. C. Garcia, D. L. dio, E. S. de Almeida, S. R.
de Lemos Meira, and R. P. de Mattos Fortes. A systematic
review of domain analysis tools. Information and Software
Technology, 52(1):1–13, 2010.

[9] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques.
Springer, 2005.

[10] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer, and
K. Lauenroth. Quality-aware analysis in product line
engineering with the orthogonal variability model. Software
Quality Journal, 20(3-4):519–565, 2012.

[11] M. Sinnema and S. Deelstra. Classifying variability
modeling techniques. Information and Software Technology,
49(7):717–739, 2007.

[12] P. Trinidad, D. Benavides, A. Ruiz-Cortés, and S. S. A.
Jimenez. FaMa framework. In 12th International Software
Product Line Conference (SPLC 2008), vol. 2, page 359,
Limerick, Ireland, 2008. Lero TR
http://www.isa.us.es/fama.

