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Abstract

Fix a primep. Since their definition in the context of Localization Thgdhe ho-
motopy functorsPgy /, andCW gy, have shown to be powerful tools to understand
and describe the madstructure of a space. In this paper, we study the effect skthe
functors on a wide class of spaces which includes classjfgpaces of compact Lie
groups and their homotopical analogues. Moreover, we figas their relationship
in this context with other relevant functors in the analysishe modp homotopy,
such as Bousfield-Kan completion and Bousfield homologmadlization.

1 Introduction

Let A and X be two connected topological spaces. The study of the hqiuatgroper-
ties of X that are visible through the mapping spacep (A, X) is called theA-homotopy
theory of X and was proposed by E. Dror-Farjounlin [Far96]. In this ceipieis partic-
ularly important to describe the behaviour of the nullifioatPs.: , and the cellularization
CWyi, (see definitions in Section 2), which are functors that ptaylihomotopy the-
ory the same role as the connected covers and Postnikovspiae in classical §°-)
homotopy theory.

Letp be a prime. IfX is a space and we are interested in describingtpemary part
of X through itsA-homotopy theory for some spack there are some choices dfthat
become apparent. Probably the easiest one are the MooressSygdz /p", 1) and their
suspensions; this task was undertaken in the nineties bsidR@a-Scherer in the case of
cellularization [RS01] and Bousfield [Bou97], who did notydescribedPy; z/p,m )X
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for a wide number of spaces, but remarked the close reldtipietween these functors
and thev,,-periodic homotopy theory.

In this paper we deal with the case = BZ/p. After Miller's solution of Sullivan
conjecture/[Mil84], and subsequent work of Lannes, Dwyab£ddsky and others, a num-
ber of new powerful tools were available to researchersmgtg to study the mapping
spacemap (BZ/p, X), and overwhelming success was reached, particularly fpoi
tent spaces. In the framework we are interested in, we should emphabizevbrk of
Neisendorfer[[Nei95], where the author proves that thethm€p;,, can often recover
thep-primary homotopy ofX from that of itsn-connected cover, or [CCS07-2], about the
BZ/p-homotopy ofH-spaces.

The first motivation for our work came from two different soes: the study under-
taken by W. Dwyer in[[Dwy96] concerningZ/p-nullification of classifying spaces of
compact Lie groups whose group of components jsgroup, and its relationship with
the homology decompositions &fG; and Question 11 in Farjoun’s book ([Far96, page
175]), where he asked about the cellularity of fheompletion of BG. This seemed a
natural extension of the problems considered by the secotitbconcerningBZ/p-
homotopy of finite groups (see [Flo07], [FS07], andl[FF])jtssas natural to investigate
this structure with similar methods.

We show that under certain hypothesis, we are able to clesizethe effect of the
nullification functor P/, by means of a fibration.

Theorem[4.1.Let X be a connected space with finite fundamental group and sa¢h th

(Ppz/p(X(1))); ~ . Then there is a fibration

Ly (Xp) = Ppayp(X) = B(m(X)/Tp(m(X)))

where X, is the covering ofX’ whose fundamental group &,(m (X)), and Ly1,(X),)

denotes Bousfield homological localizationof with respect tad *(—; Z[%]).

In particular, one can compute the homotopy group®gf,,(X) in terms of those
of X if X is good enough. This result is quite general, and in factrds=e in a sin-
gle statement a phenomenon which was previously known fae fgroups,p-compact
groups and some compact Lie groups, but nopftwmcal compact or Kac-Moody groups
(Corollary[4.138); so, it can be read then as a common propériybig family of homo-
topy meaningful spaces. Moreover, finite loop spaces alssf\s¢his property (Corollary
[4.12).

Another source of examples is the theory of infinite loop sgadIcGibbon|[[McG]
shows that infinite loop spaces satisfy the hypothesis obfiérd 4.1 (see Corollafty 4.114).

We also obtain some interesting consequences of thesdsresgluding a detailed
analysis of the relationship between tB&/p-nullification andZ[1/p|-localization of
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these spaces -which is very much in the spirit/of [Dwy96, ®ech]- and the commu-
tation of nullity functors on them, a situation that was disged in[[RSQ0] in a general
framework.

The second part of the paper deals with the effect of thelaethation functoiCW gz,
on classifying spaces of compact Lie groups. We show a $gpeedichotomy theorem.

Theorem[6.9.Let G be a compact connected Lie group. If there exists a pon
cohomologically central element of orderthen theBZ/p-cellullarization of BG has in-
finitely many nonzero homotopy groups. Otherwise, it hahtimeotopy type of & (V, 1),
whereV is a finite elementary abeligmgroup.

This statement is in fact a consequence of a more generahsat which extends
Proposition 2.3 in[[ESQO7].

Theorem[6.1.Let X be a connected nilpoteit” BZ/p-null space for some > 0.
Then theBZ/p-cellullarization of X has the homotopy type of a Postnikov piece with
homotopy groups are concentrated in degre&sn , or else it has infinitely many nonzero
homotopy groups. Moreover, X is 1-connected of finite type, then the fundamental group
T (CWpaz/,(X)) is afinite elementary abeligngroup.

This result opens the way to describe with precision (up-t@mpletion) theBZ/p-
cellularization of BG for an ample class of Lie groups which includes p-toral gsoup
and their discrete approximations, the 3-sphere, exteagibelementary abelian groups
by groups of order prime tp -which generalize [FS07, Corollary 3.3]-, &SO(3). In
particular, we find examples of both cases of the dichotorgstent. It is interesting to
remark here that we use intensively the fact thét, preserves nilpotent spaces (Lemma
2.5), a fact that was conjectured In [Far96], but which to knwwledge has not been so
far exploited in the literature.

Notation: Let R be a commutative ring?., (X ) denotes Bousfield-Kap-completion
of a spaceX ([BK72])). When R = Z/p for a primep, R..(X) will be used instead of
X,. Moreover,Lr(X) denotes the R-localization of Bousfield ([Bou75]). All spaces
are assumed to have the homotopy type 6fi&l-complex.

2 The cellularization and nullification functors

Let A be a connected space. In this section we will define the functdl’, and Py,
which are the main tools we use to describe phgrimary structure of the spaces of
interest in our work. Only some patrticular features of thiesetors, that will be crucial
in our further developments, will be described while thelationship with Bousfield-Kan
completion will be studied in the next section. A thoroughamt to these constructions
can be found in [Far96].
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Definition 2.1. Let A and X be spaces. TheN is called A-null if the inclusion of con-
stant mapsY — map (A, X) is a weak equivalence.

This is equivalent to the condition thatap , (A, X') is weakly contractible whei is
connected. Dror-Farjoun defines a coaugmented and identgotetor P, : Spaces —
Spaces whereP, X is A-null for every X, and such that the coaugmentatidn— P, X
induces a weak equivalengenp (P4 X,Y) — map (X, Y) for everyA-null space”. The
corresponding definitions in the pointed context are cotepteanalogous. Note that in
the language of homotopy localizatioR, is the localization with regard to the constant
map A — x, and the notation comes from Postnikov sections, which madt S™-
nullifications. Moreover, a spacg such thatP, X ~ x is calledA-acyclic

Now we consider the cellular construction, which is somevehel of the previous
construction, although not completely (see Thedrem 2.8vel

Definition 2.2. Given pointed spaced and X, X is said A-cellular if it can be built
from A by means of pointed homotopy colimits, possibly iteratecrdbver, a map
X — Y is said to be am-equivalencef it induces a weak equivaleneeap , (A, X) —
map ,(4,Y).

The A-cellularization (orA-cellular approximation) is a canonical way of turning ev-
ery space into arl-cellular space from the point of view ef-equivalences, which gener-
alizes the classic process of cellular approximation. &legists an augmented endofunc-
tor CW 4 of the category of pointed spaces, such that for every sjate augmentation
CW X — X is anA-equivalence, and in initial among all maps— X which induce
A-equivalence. Unliké”,, this functor only makes sense in the pointed contéxt ([6ha9
7.4]), and can be characterized in several ways [Far963R.E.

The remaining of the section is devoted to describe someeptiep of these functors
that we will frequently use later. We begin with a theorem ofGkacholski that can be
considered the most powerful tool to compute cellular@abf spaces in an explicit way.
The proof can be found in [Cha96, 20.3].

Theorem 2.3.Let A and X be pointed spaces, and Ietbe the homotopy cofibre of the
evaluation\/[A’X]* A — X, where the wedge is taken over all the homotopy classes of
mapsA — X. ThenC'W X has the homotopy type of the fibre of the map-> Ps4C.

Next we will describe two preservation properties, thatl wé used extensively as
we will frequently focus our interest in simply connectedisgs and, more generally,
nilpotent spaces.

Lemma 2.4. [Bou94, 2.9] If X is 1-connected the®,(X) is alsol-connected.
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In particular, note that, according to a famous result ossedorfer[Nei95, Thm 0.1],
there is no analogous result for higher degrees of connigctiv

The second preservation property concerns to cellulaoizand it answers question
7 stated by Dror-Farjoun in his book [Far96, p.175]. It is rekadle that the analogous
problem in the category of groups was solved in [FCSO07].

Lemma 2.5. If X is a nilpotent space the@i1V4(X) is also nilpotent.

Proof. Apply [BK72, V.5.2] to the fibrationC'W,(X) — X — Pg4C in Theoreni2.B.
L]

From the definitions, one can check thatXfis A-null then CW4(X) ~ = since
x — X isanA-equivalence. In general, thecellularization functor also preserves A-
nullity for n > 1.

Lemma 2.6. Let X be a space which i&" A-null for somen > 1 thenC'W,4(X) is also
¥ A-null.

Proof. Again from Theorenl 213 we have a fibre sequefi@€,(X) — X — Pra(X).
Since the base spacedsA-null, it is alsoX™ A-null for anyn > 1. The result follows
since the nullification functoPy 4 preserves then the fibration [Far96, 3.D.3]. O

If we specialize now tod = BZ/p, which is the case of interest in this paper, and we
turn our attention to Eilenberg-MacLane spaces, it is @gng to observe that given an
arbitrary groupG, the BZ/p-nullity properties of K (G, n) for small values of: imply
the BZ/p-nullity for every value ofn, as well as some group-theoretic features;of

Lemma 2.7. Let G be an abelian discrete grougx (G, 2) is BZ/p-null if and only ifp is
invertible inG and K (G, n) is BZ/p-null for all n > 1.

Proof. We only need to show that if{(G,2) is BZ/p-null thenp is invertible in G
and K (G,n) is BZ/p-null for all n > 1. SinceK(G,1) ~ QK(G,2) is BZ/p-null,
Hom(Z/p,G) = [BZ/p, BG|. = 0. ThereforeZ has no elements of ordgr Then, mul-
tiplication by p gives rise to a short exact sequerices G % G — G/pG — 0. Now
consider the induced fibratioli (G, 1) — K(G/pG,1) — K (G, 2). Since bothK (G, 1)
and K (G, 2) are BZ/p-null, by [Far96, 3.D.3], we see th#&t(G/pG) is alsoBZ/p-null.
ThereforeG /pG has no elements of order so it must be trivial. That i&' 5 G is an
isomorphism ang is invertible inG.

A standard transfer argument (see €.g. [Bro82, Prop I11])8hows thati*(BZ/p; G)
is trivial. In particularmap ,(BZ/p, K(G,n)) is weakly contractible foralh > 1. O

We finish this preliminary section by describing a contexwihich we can obtain
information about the homology and homotopy groups of thielegization.
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Lemma 2.8.If Ris a ring of coefficients andl*(A; R) = 0, thend*(CW4(X); R) = 0.
If X is nilpotentandk C Q thenm;(CWa(X))® R =0fori > 0.

Proof. Under the hypothesis of the theorem(R, n) is A-local forn > 0, then the space
map ,(CW4(X), K(R,n)) is weakly contractible. By Lemnia 2.5, we can apply [BK72,
V.3.1]. O

3 BZ/p-homotopy andp-completion

We devote this section to the description of the behaviouheffunctorsC'V, and P,
with respect to the-completion functor of Bousfield and Kan. In particularpif X —
X, is thep-completion, we want to characterize when the mapg,(n) and P4(n) are
modp equivalences. This will be fundamental in our approach &R /p-nullification
and BZ/p-cellularization of classifying spaces, which will be unaéen in the last two
sections and is the main goal of our note.

A first approximation to these kind of questions appears @wtbrk of Miller in the
solution of the Sullivan Conjecture, which implies immedig a statement abo@Z /p-
nullity.

Theorem 3.1.[Mil84] Thm 1.5] LetiV be a connected space with*(1V; Z[%]) = 0 and
let X be a nilpotent space. Then X — X\ is alV-equivalence.

Corollary 3.2. If X is a nilpotent space, thg-completion: X — X is a BZ/p-
equivalence.

Observe that ifX is 1-connected, we cap-complete our target space, if necessary,
before computing”'WWpz,, X . This statement, and the fact that tB&/p-cellularization
is constructed using copies B /p as pieces, may lead to think th@tV 5z, X is always
ap-complete space. Next lemma shows that this is true in cecses but, as we will see
in Exampld 3.4, not always.

Lemma 3.3. If X is a nilpotent space, the@' W, (X) is p-complete if and only if
H.(CWpz,,(X);); Q) = 0.

Proof. SinceBZ/p is bothQ-acyclic andF,-acyclic forq # p, CWpz,,(X) is so ([Far96,
D.2.5] or Lemma& 2.8), and then the rationalization armbmpletions oUWz, (X ) are
trivial. By Lemmal2.5,CWpgz,,(X) is also a nilpotent space, so it admits a Sullivan
arithmetic square decomposition. The result follows. O

Example 3.4. Consider the spac& = K(Z/p>,2). X is BZ/p-cellular by [CCSO07-2,
Lemma 3.3], but it is nop-complete sinceX" ~ K(Z,3) and INJ*(XPA;@) # 0. 1In
fact, thep-completion;: K(Z/p>,2) — K(Z;,3) induces aBZ/p-cellular equivalence,
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thenCWBZ/p(XpA) ~ X. On the other hand, taking for example= 2 and X = B3,
the classifying space of the symmetric group in three Igttéris not nilpotent, and the
cellularization is not complete. See [F$S07, Example 2.6¢ftails.

We proceed now to a systematic study of the induced@¥az/,(n) : CWpz,(X) —
CWBZ/p(XQ). We want to show under which conditions it becomes a meduivalence.
The first step is a reduction concerning the fundamentalmrtar which we need the
following definition.

Definition 3.5. We say that an elemente 7 (X) lifts to X if there exists a homotopy
lift
X

B((x)) — B(m (X)).
Proposition 3.6. Let X be a connected space. There is a fibration
CWBz/p(X) X >Z

with 7, (Z) = 7 (X)/S, whereS is the normal subgroup generated by the elements of
orderp which lift to X.

Proof. The fibration in the proposition is the one constructed bydbbéski (see Theorem
[2.3) whereZ = Pypz/,(Cx). The subgrougd is constructed in [CCS07-2, Prop. 2.1] in
away thatF — X is a BZ/p-cellular equivalence, wherg is the homotopy pullback

EFE——X

|

BS —2 B(m(X)).

By constructionr; (E) = S is generated by elements of ordgewhich lift to E. Then
the Chacholski’s cofibr€', (see Theorerh 2.3) is-connected and;zz/,(CE) is too
by Lemma2.4. Sincd/ — X is a BZ/p-equivalence, from the following diagram of
fibrations

CWBZ/pE —= CWBZ/pX
E X

| J

PZBZ/p(CE) — PEBZ/p(C)-

where(C' is Chacholski’s cofibre foX', we see that the fundamental group/®fsz,,(C)
ism(X)/S. O
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Corollary 3.7. Let X be a connected space such thatX) is generated by elements of
order p which lift to X'. There is a bijectionBZ/p, CWgz,,(X)] = [BZ/p, X] between
unpointed homotopy classes of maps.

Proof. SinceCWpgz,,(X) — X is a BZ/p-homotopy equivalence, there is a bijection
[BZ/p, CWpgz,,(X)]« =2 [BZ/p, X]. between pointed homotopy classes of maps. The
following diagram

[BZ/p, CWpz,p(X)]s — [BZ/p, X

l |

[BZ/p, CWgz,,(X)| —— [BZ/p, X|

shows that the quotient map is also a bijection since thecedimorphism on fundamen-
tal groupsm; (CWgz/,(X)) — m1(X) is an epimorphism by Proposition 8.6. O

We can get information about the fundamental group of thelegization since being
B7Z/p-cellular imposes some restrictions on the fundamentalguod the space.

Lemma 3.8. If X is a BZ/p-cellular space, its fundamental group is generated by ele-
ments of ordep which lift to X. Moreover, ifX is a finite typel-connected space,then
71 (CWazp(X)) is a finitely generated abelian generated by elements ofrgraehich

lift to CWaz/,(X).

Proof. Let S be the normal subgroup af (X) generated by elements of orgewhich
lift to X. Consider the pullback diagram

E —>1(
BS —2 By (X).

By [CCS07-2, Prop 2.1], the map — X is a BZ/p-cellular equivalence. Sinc&
is BZ/p-cellular, there exists a maf: £ — CWpg,(£) such thati o f ~ id where
i: CWgzp(E) — E. In fact, this implies thap: £ — Pspz/,(Cg) is nullhomotopic,
p ~ poiof ~xof ~x thereforeC'Wpy,(E) ~ E x Ppz,(2CE). But this implies that
E'is BZ/p-cellular sinceCWpgz,,(E) is BZ/p-acyclic, and therfy ~ X. In particular,
m(X)=S5.

To prove the second statement, it remains to proveh@tWzz,,(X)) is a finitely
generated abelian group. Sin&eis 1-connected, then the Chacholski’s cofildrg is 1-
connected and;zz,/,(Cx) is too by Lemma 2]4. Then, we see that Prpz/,(Cx)) =
Hy(Pspz,(Cx); Z) is a quotient offf, (C'x; Z), which in turn is a quotient of the finitely
generated groupls(X;Z). O
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Next we need a technical lemma which describes the somenthatiate relationship
between completion and nullification and that is a key retsuitnderstand under which
conditionsP4(n): Pa(X) — Pa(X,') is a modp equivalence (Corollary 3.11).

Lemma 3.9. Let A be a connected space, and &t such thatP,(X/') and P,(X)
are p-good spaces. Assume th@f(X ), and P,(X)'); are A-null spaces. Then thg-
completion map)x : X — X/ induces a mog equivalenceP,(n): Pa(X) — Pa(X,)).

Proof. Let e: P4(X)') — (Pa(X)), be the unique map up to homotopy such that the
right square of the following diagram commutes:

nx A id
X X/

o b2 b

Pa(X) 2 (X0 — Py(X

Note thate exists becaus€,(X)/ is A-null by hypothesis. The left square commutes
by naturality, So(¢x);) o nx =~ € o Pa(nx) o tx. But also,(vx)) o nx =~ np,(x) © tx
by naturality of the completion. Because of the universalpprty of the nullification
functor,e o Py(1x) =~ np,(x)- SinceP(X) is p-good,n};A(X) is an isomorphism in mod
p cohomology. In particulag* is a monomorphism ang,(nx)* is an epimorphism.

Now consider the following commutative diagram:

X A id (nx )

p

\LLXZ/; J/(LX J/(LX/\

PA(X)—>PA —>]PA X/\

Thatis(tx,), o (nx), =~ Pa(n), ocoixy. Butwe also haverxy ), o (nx), =~ (npayxp))o
txp. By hypothesisP, (X)), is A-null, then the universal property of the nullification
functor implies thatP4(1x ), o € =~ np,q X))- SinceP4(X,)) is p-good, (1p, XA)) is an
isomorphism and hende(7x);)* is @ monomorphism. Therefor,(nx)* is so, and
we are done. O

Remark 3.10. If X has finite fundamental group, then bath(X,') and P,(X) are
p-good spaces since they also have finite fundamental groups.

Corollary 3.11. If X is a 1-connected space and is such thatf, (A; Z[%]) = 0 then
Pa(n): Pa(X) — P4(X])) is a modp equivalence.

Proof. If X is 1-connected thenY, is also1-connected and both spaces argood.
Moreover theBZ/p-nullification of a 1-connected space is aldeconnected. Miller’s
theorem([Mil84, Thm 1.5] implies that the spacsg(X ), and P4 (X)) are A-null. The
hypothesis of Lemmla_ 3.9 are then satisfied. 0
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We can also describe a general situation in which the nwtific of a modp equiva-
lence is so.

Corollary 3.12. Let A be a space such tha’h(A;Z[%]) =0.If f: X - Y isamod
p equivalence betweehconnected spaces thety(f): P4(X) — Pa(Y) is a modp
equivalence.

Proof. If fisamodp equivalence, theyfi; is an equivalence. Then the following diagram
commutes

Pa(X) 2 Pa(v)

ool lp

X e Pa )

By Corollary[3.11, the two vertical arrows are mpaquivalences and the bottom hori-
zontal map is an equivalence. Thea(f) is a modp equivalence. O

Remark 3.13. Note that Corollarie§ 3.11 ad 3112 hold whén= BZ/p. In fact, in
Corollary[3.12, one can relax the assumptionslaronnectivity by checking that both
spacesX andY satisfy the assumptions of Leminal3.9.

Now we follow the parallelism giving a condition for the aogbus equivalence be-
tween cellularizations to hold. According to Propositiof,3he hypothesis of lifting
elements in the fundamental group is not a real restriction.

Proposition 3.14. Let X be a space whose fundamental groypX) is finite and gener-
ated by elements of orderwhich lift to X. Assume that there is a bijecti¢BZ/p, X| =
[BZ/p, X,)], then the map induced by thhecompletion

CWBz/p(ﬁ) . CWBz/p(X) — CWBZ/p(XI/;\)
is a modp equivalence.

Proof. Sincer;(X) is finite, X is p-good [BK72, VII.5.1]. There is an epimorphism
m(X) = m(X)) and, by assumptionBZ/p, X| = [BZ/p, X}]. In order to compute
the cellularization, we first analyze Chacholski’s coftbre

VBZ/p 2 X C
lid l’? ly
VBZ/p 2 X} — D.

Sincer; (X) is finite and generated by elements of orderhich lift to X, the mapg,;
andh, induce epimorphisms on the fundamental group and¢handD are 1-connected
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spaces. Moreover is a modp equivalence. Now, the cellularization fits in the following
diagram of fibrations:
CWgzp(X) X Pspz/5(C)

J/CWBZ/]J(n) U] J/PZBZ/p(g)
CWBz/p(X;\) —_— X;\ e PEBZ/p(D)a

wherePs;pz,,(C') and Py gz, (D) arel-connected. All the spaces in the previous diagram
arep-good. Therefore, to show thatiWgz,,(n) is a modp equivalence, it is enough to
prove thatPszz/,(g) is so. This follows from the previous Corolldry 3112 sinds a mod
p-equivalence. O

Remark 3.15. We note in Example 34 th&tiVz,,(X,') does not need to ecomplete
and a condition for this to be true was stated in Lemima 3.3 Hatisfies the hypothesis
of Proposition 3.14, we see from the proof thdl/zz,,( X)) is p-complete ifPxpz,/, (D)

is so. This last space isconnected and, using an arithmetic Sullivan square argtime
we see that this is the caseXf) — Pupz/,(D))) is a rational equivalence. Examples of
this situation are provided by classifying spaces of finitaugs, sincé BG/))q ~ * and
PEBZ/p(D)Q ~ PgBZ/p(C)Q is homotopic to the-completion of the classifying space of
a finite group by/[FSQ7, Proposition 5.5] and [FF, Theorenj.4.3

Remark 3.16. The hypothesis of Proposition 3]14 are satisfied {fX) is a finitep-group
generated by elements of orgewhich lift to X (see[DZ87, Proof of 3.1]).

Remark 3.17. Let P be ap-toral group. ThenP is an extension of a finitp-group«
by a torus(S*)". Assume thatr is generated by elements of ordgewhich lift to BP.
The arguments of [DZ87, proof of 3.1] applied to the fibratiénS')" — BP — B
show that[BZ/p, BP] = [BZ/p, BP}]. Then BP) is a p-compact toral group, and
CWazp(n): CWag,(BP) — CWpggy,(BP)') is @ modp equivalence.

By [DW94, Proposition 6.9], there exists a discrek¢oral group P, that is, an
extension of a finitep-group = by a finite sum of Prifer group&Z/p>)", such that
BP,, — BP} is a modp equivalence. Moreove[BZ/p, BP.] = [BZ/p,(BP.),] by
[DW94, Remark 6.12], so we should study, uptoompletion, theBZ/p-cellullarization
of discretep-toral groups. See Example 6116.

4  BZ/p-nullification of classifying spaces

In this section, we are concerned wiB /p-nullification. The original motivating ex-
ample for our study were classifying spaces of compact Leags, for which Dwyer
computed in|[[Dwy9g] the value oPz;/, BG for the case in whichr,(G) is a (finite)
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p-group. For this sake, he used an induction principle basdti® centralizer decompo-
sition of BG, a method that also solve the problem when we takecampact groupX
instead ofG. However, the hypothesis over the fundamental group iséssand cannot
be removed from his proof, so we need to follow a completefigent path to solve the
general case. In fact, our new strategy was useful to dese¥ip,, X for a bigger family
of spaces, which in particular need not to be classifyingepa

Recall that, ifS is a set of primes, th§-radical subgrouf’s(G) of a finite groupG
is the smallest normal subgroup &fwhich contains all the5-torsion. This is the last
ingredient we need to state the main result of this section.

Theorem 4.1.Let X be a connected space with finite fundamental group and sath th
Ppz/,(X (1)) ~ x. Then there is a fibration

Lyiy(Xp) = Payp(X) = B(m (X)/T,(m (X))

where X, is the covering ofX' whose fundamental group &,(m (X)), and Ly1,(X),)

denotes the homological localization &f, in the ringZ[%].

Theoreni 4.1l will be a consequence of the following result.

Theorem 4.2. Let X be a connected space with finite fundamental group genetated
p-torsion elements which lift t& and such thatPgz/,(X (1)) ~ *. Then there is an
equivalence’pz,(X) — Lz (X), whereLg 1, (X).

Now in order to prove Theorefn 4.2 we follow the strategy of seeond author in
[Elo07] when dealing with classifying spaces of finite grepglthough now there is ra-
tional information that is absent in the finite case. Befti@yever, we will be deal with
some issues concerning to the fundamental group wfich will be crucial in the proof.

Lemma 4.3. Let G be a finite group and' a set of primes that divide the order 6f If
G = TsG, thenG is S~t-perfect. In particular, ifX is a space with finite fundamental
group such thatr; X = Ts(m (X)), thenLyg-1)(X) is simply-connected.

Proof. The first statement follows from the fact that, singas generated by-torsion,
G is an abelian finites-torsion subgroup, and theéf{S—!] ® G = 0.

For the second statement, observe thatas S—'-perfect, thenX is aZ[S~']-good
space, and th&[S~']-completion of X is 1-connected, by [BK72, VII.3.2]. But for a
connected’[]-good spaceX,, the Z[;]-completion is anii.(—; Z[,])-localization (see
[BK72, page 205]). O

In particular, if X is a connected space such that its fundamental group is &inde
equal to itsZ /p-radical, thenlz ,,) X is a simply-connected space.
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Lemma 4.4. Let X be a connected space apé prime. Then the coaugmentatigh—
Lz y X is anF-equivalence and &-equivalence whergis a prime such thatg, p) =
1. If Ly X is 1-connected thety ;) X is Fp-acyclic.

Proof. By universal coefficient theorem (e.g. sée [Spa66, 5.2.1B¢ coaugmentation
X — Lz X is aG-equivalence for any[ ]-moduleG. The last statement follows
form [Dwy96, Lemma 6.2]. O

Lemma 4.5.LetZ be aBZ/p-null space andX be a connected space such thatX) is
a finite group generated hytorsion elements which lift t&. Then for anyf: X — Z,
the composit&’ — Z — Bm(Z) is nullhomotopic.

Proof. Let f: X — Z be any map. We must check that( f) is the trivial morphism. It
is enough to show that the map between unpointed homotopygedess’, X| — [S?, 7]
is trivial.

Let z € m(X) be a generatorz) = Z/p" C m(X), we need to show that the
compositeBZ/p" — Bm(X) — Bmi(Z) is nullhomotopic for any generatat

By hypothesis, there is a lift

— 7

e

BZ/p" — Bm(X) —— Bm(Z).

But sinceZ is BZ/p-null and Ppz,,(BZ/p") ~ x, it follows that the top composite
BZ/p" — X — Z is nullhomotopic, and thereforg (f)(z) = 0. O

The hypothesis in Theorem 4.1 concerning the pointed mapgpace from the uni-
versal cover ofX is also satisfied by connected coversXof

Lemma 4.6. Let X be a connected space.

1. Assume thak is 1-connected. Thefpz/, (X)) ~ * iff map (X, Z) ~ « for any
connected3Z/p-null p-complete spacg.

2. Assume tha¥X has a finite fundamental group. L& be a connected cover of
X. If Z is a connectedBZ/p-null and p-complete space, then the equivalence
map , (Y, Z) ~ x impliesmap , (X, Z) ~ %

Proof. 1. Note thatifZ is a connecte®Z/p-null p-complete spacé&, there are weak
homotopy equivalences

map*(PBZ/p(X)I/,\, Z) ~map ,(Ppz/p(X), Z) ~map (X, Z)
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If Ppz/y(X);, =~ *, thenmap (X, Z) ~ * for any connectedZ/p-null p-complete
spaceZ. On the other hand, assume thaip , (X, Z) ~ « for any connecte®Z/p-
null p-complete space. Since Ppz,,(X), is a p-complete BZ/p-null space by
Corollary[3.2,map , (Ppz/,(X),, Ppz/p(X))) =~ *, thereforePpz,, (X)) ~ .

p

. Consider afibratiol™ — X — BG whereG is a finite group. Zabrodsky’s Lemma

(see [Mil84, 9.5]) tells us that there is an equivalence ahfeaml mapping spaces
map ,(X,Z) ~ map,(BG,Z) sincemap ,(Y,Z) ~ *. Finally, this mapping
space is contractible since we have weak homotopy equivedemp ,(BG, 7Z) ~
map ,(BG)), Z) and Pgz,((BG),)) ~ * by [Flo07, 3.14].

L]

Now we are ready to undertake the proof of Theorem 4.2.

Proof of Theorerh 412By hypothesisy; (X) has no quotients whose order is primepto
which amounts to say that (.X) is equal to itZ/p-radical T, (7 (X)).

First of all, notice thatlz,/, X is BZ/p-null by Lemma’4.B and [Dwy96, Lemma

6.2]. In order to show thaPpz,,(X) — Ly, (X) is a weak equivalence, sindeyy ;) X
is BZ/p-null, we must show that for eve®yZ /p-null spacey” the natural coaugmentation
X — Lyzp/p X gives a weak equivaleneeap , (Lzp /)X, Y) ~ map (X, Y).

So letY be aBZ/p-null space. Assume first that is simply-connected. By Miller’s

Theoren 3.1y is alsoBZ/p-null. According to Bousfield-Kan fracture lemmas ([BK72,
V.6]), we must prove that, for every primg there is a weak homotopy equivalence
map , (Lzp/p)(X),Y)) =~ map,(X,Y;"), andmap Lz (X), Yo) =~ map (X, Yo).
By Lemmasd 4.4 and 4.6, this is a consequence of the assungftthe theorem, so we
finish the situation in which” is simply connected.

Now letY be aBZ/p-null space and” its universal cover. The coaugmentati§in—;

Lz ,y X induces a diagram of fibrations over the component of thetaohsnap

map , (Lzp /) (X), }7) — = s map (X, }7)

1 i

map , (Lzji/p (X),Y ) (g ——— map (X, Y) (o

| lﬁ

map *(LZ[I/I’} <X>7 Bﬂ-l (Y))C ——map *<X7 Bﬂ-l (Y))C

wheremap , (Lz/y(X),Y )y andmap (X, YY), are those components such tha-
duce the constant map when composing With» B (Y).

The top horizontal map is an equivalence because of thequewrgument sinc¥ is

a simply connecte®?Z/p-null space. For any connected spatand a discrete groufd,
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map , (A, BH) is a homotopically discrete space, and thexp , (Lzp /) (X), Bri(Y)).
andmap (X, Bm;(Y)). are contractible. Thus, the bottom horizontal arrow in tfe d
gram is also a weak equivalence.

To finish the proof we need to show that there are weak homoggpyvalences
map , (Lzjip(X),Y ) =~ map,(Lzns(X),Y) andmap (X, Y) g ~ map,(X,Y).
The first equivalence follows now from the fact that, ,,(X) is simply connected by
Lemmd 4.8, while the second follows from Lemmal4.5. O

Proof of Theorerh 4]1Theoreni 4.2 applied to the universal cover’6fimplies that the
map in [Dwy96, 1.6],Ppz,,(X (1)) — LZ[%}(X(D), is an equivalence.

Let X, be the covering space of with fundamental groud),(m (X)). There is a
fibration X, — X — B(m(X)/T,(m(X))). Since the base space of this fibration
B(m(X)/T,(m(X))) is BZ/p-null, the nullification functor preserves the fibration by
[Far96, 3.D.3] and there is another fibration

Przjp(Xp) = Ppryp(X) = B(mi(X)/T,(m1(X)))-

To prove the theorem we shall show that the natural Map, (X,) — Lz1)(X,), which
exists becaus®Z/p is HZ[%]-acycIic and therLZ[%](Xp) is BZ/p-null, isa homotopy
equivalence. Note also thak,)(1) ~ X (1). ThereforeX, also satisfies the hypothesis
of the theorem.

From now on we assume that(.X ) has no quotients whose order is primetavhich
amounts to say that, (X) is equal to itsZ /p-radical T, (7 (X)).

Consider the fibrationX (1) — X — Bm(X) and its fibrewise nullfication (see

[Far96, 1.F]) which gives a diagram of fibrations

X (1) X — Br(X)

ool ]

PBZ/p(X<]->) e X e B?Tl(X)

where¢ is an equivalence afteéBZ/p-nullification. Then, by[[Dwy96, 1.6§ is aZ[;]-
equivalence. Note that it is enough to show that the Mgg,(X) — Ly, (X) is an

equivalence since there is a chain

PBZ/p(X) = PBZ/p(X) - LZ[%](*)Z) & LZ[%]<X)'

Moreover,m;(X) = m(X) because the fibréz;,,(X (1)) is 1-connected, then the
universal cover ofX is Pgz,,(X) andm (X) = T,(m(X)). For each generatar
71(X), the obstructions to lift the map((z)) ~ BZ/p® — Bm(X) to X lie in the
twisted cohomology groupE**!(BZ/p"; m;( Pgz/,(X (1)))) for i > 1, and these groups
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are trivial since the homotopy groups(Pgsz/,(X(1))) = m(LZ[%](X(D)) are Z[})]-
modules. That is)X is a connected space with finite fundamental group genetated
p-torsion whose generators lift t§.

In order to apply Theorem 4.2, it remains to check thatp , (X (1), Z) ~ x for
any connected3Z/p-null p-complete spac¢. Recall thatX (1) ~ Pgz/,(X(1)). Then
map , (Ppz/p(X(1)), Z) ~ map ,(X(1),Z) ~ * where the last equivalence follows by

hypothesis. O

Remark 4.7. The proof of Theorerm 411 also holds if we replace the anagtase prime

p for a set of primesS and imposing that the hypothesis on pointed mapping spaees a
satisfied for any prime in the setS. In that case we have to replabg[%} by Lyjs—1, and
Pgz,, by Py whereW = Vs BZ/p.

4.1 Examples

We want to explore the implications of these results on digeg spaces of Lie groups,
which was the original motivation for our work. For this sake need the following
Lemma, which was proved by Dwyer [Dwy96, Theorem 1.2] usingirauction. We
include here a shorter proof, based on the homology decdtigrosf BG via p-toral
subgroups. The key point here is that this decompositiardexed over an mogacyclic
category, and this opens the way for computityg,,, for a more general class pfgood
spaces (see Corollary 4]11).

Lemma 4.8. Let Z be a connecte®Z/p-null and p-complete space. Lét: C — Top
be a functor such that for each object C, F(c) is connected an®sz,,(F(c);) is mod
p acyclic. If[C|7 ~ x, thenmap , (hocolime F'(c), Z) ~ *.

Proof. The statement follows from a sequence of equivalences:
map (hocglim F(c),Z) ~ hoéim map (F(c), Z) ~ ho(l?im map (Ppz,,(F(c),), Z).

Under the hypothesis of the lemma, this last mapping spabhern®topy equivalent to
map (|C|, Z) ~ Z if |G|} ~ x. ]

Corollary 4.9. Let p be a prime. IfG is a compact Lie group an& is a connected
p-completeBZ/p-null space, themap ,(BG,), X) is weakly contractible.

Proof. The proof is divided into two steps. In the first one we assuha & is a p-
toral group, and then we use the existence of mdobmology decompositions abG
with respect to certain families gftoral subgroups of;, see [JMO90], to undertake the
general case.
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Consider firstwhey = T' = (S')". Inthis caseBT ~ K(Z),2)" ~ (B(Z/p™)");.
As X is ap-complete space, we have the weak homotopy equivalenpe (BT}, X) ~
map ,(B(Z/p>)", X). This mapping space is contractible becatigg™ = lim Z /p" de-
fined by inclusions/p™ C Z/p™*!, and sinc&Z/p" is ap-group,BZ/p" is BZ/p-acyclic
andmap ,(BZ/p", X)) ~ %, and we can apply Lemnia 4.8. Now,Gf = P is ap-toral
group given by a group extensidit — P—»m, Dwyer and Wilkerson show th&G ad-
mits ap-discrete approximation [DW94, Prop 6.9]. There is a seqaei finitep-groups
Py C P, C ...suchthatBP ~ hocolim BP,. Again, by Lemmd_4]8, we obtain that
map ,(BP, X) ~ .

Let us go now through the general case. Our goal will be togtbat the inclusion
of constant maps induces an equivaleice~ map (BG;), X). By work of Jackowski-
McClure-Oliver ([JMQO90, Thm 4]), the spadeG is modp equivalent tchocolimg, F),
whereO,G is the orbit category of stubbomstoral subgroups ofy and F' is a functor
whose values have the homotopy type of classifying spacgsibbormp-toral subgroups
of G. Since the statement holds feitoral groups, by Lemmia 4.8 it is enough to observe
thatO,G is F,-acyclic, see [JMOSO0, Prop 6.1], and we are done. O

Now we are ready to prove the desired result, which was puslydknown for finite
groups ([FloQ7, Theorem 3.5]).

Theorem 4.10.Let G be a compact Lie group andits group of components. Lét, be
the subgroup o whose group of componentsis(r). Then theBZ/p-nullification of
BG fits in the following covering fibration:

LZ[l/p}BGp — PBz/pBG — B(W/Tpﬂ')

Proof. We have to check that the assumptions on Thedreim 4.1 aréieshtihenX =
BG@G. Since the universal cover &fG is BG is again the classifying space of a compact
Lie group, by Corollary 4)9 the hypothesis of Theofen 4.2satésfied. O

The proof of Corollary 4.9 applies to other type of spaceslidmits moc homol-
ogy decompositions, for examplecompact groups (see [CLNO7]). The theorypebcal
compact groups introduced by Broto, Levi and Oliver.in [BLAphcludes both the the-
ory of p-compact groups [DW94] angtlocal finite groups/[BLOO3]. Roughly speaking,
ap-local compact is a tripléS, F, £) where S is a discretep-toral group andf and £
are categories which model conjugacy relations among sulpgrofS. The classifying
space of @-local compact group isC|7, and one of the main featuresgfocal compact
groups is that this space admits metiomology decompositions in terms of classifying
spaces op-compact toral subgroups over mgpdacyclic orbit categories (see [BLOO7,
Proposition 4.6] and [BLOQ7, Corollary 5.6]).
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Proposition 4.11.Letp be a prime, andS, ¥, £) a p-local compact group. Then there is
an equivalencé.z /) (|£17) ~ Paz/,(1£])).

Proof. First of all, m; (|£])) is a finite p-group by [BLOQ7, Proposition 4.4], therefore
T,(m(1£]))) = m1(]£])). Then, we only need to check the hypothesis in Thedrein 4.2.
That is,map , (X (1), Z) ~ * for any connecte®Z/p-null p-complete spacg.

The same argument used in the proof of Corollary 4.9 using prfuminology decom-
positions can be applied and it shows thatp . (|£])), Z) ~ * for any connectedZ/p-
null p-complete space. But it is not known in general if the universal cover|) (1) is
the classifying space ofjalocal compact group. Instead, we will check that the prdof o
Corollary[4.9 applies by showing thgt|/ (1) admits a description, up te-completion,
as a homotopy colimit oBZ/p-acyclic spaces over a mgdacyclic category.

Let P < S be an object ind(F,) (see [BLOOY, Proposition 4.6]) and |étr-¢ be
the pullback of|£[)(1) — [£[) along BP — BS. Then, by naturality there is a map
hocolimg(s,) Ep<s — |£])) (1) which fits in a diagram of fibrations by Puppe’s theorem
(e.g. [Far96, Appendix]),

|S15(1) €[5 By (|£]5)

I I “

hocolimy(g,) Ep<s — hocolimy(g,) B(P) — Bm(|£ 7).

Since the middle vertical arrow is a mpeequivalence, it follows that the left vertical
arrow is also a mog-equivalence. Moreove(BP)Q is the classifying space of g
compact toral group, so it follows from the fibratidiy<s — BP — Bm(|£])) that
(Ep<s); is also the classifying space ofsacompact toral group, and therefoR/p-
acyclic. Then the proof of Corollafy 4.9 applies. O

A finite loop space is a tripleX, BX, e¢) wheree: X — QBX is a weak equivalence
andH*(X; Z) is finite. Note that ifX is a finite loop space, theB.X (1)) is the classifying
space of connecteg-compact group sincé/*(Q2BX (1);F,) is finite dimensional (see
[DW94]).

Corollary 4.12. Let X be a finite loop space. Then there is a fibration
LZ[l/p}BXp — PBz/pBX — B(W/Tpﬂ')
wherer = 7y(X) and BX,, is the covering o whose fundamental group 3 (m(X)).

Proof. Since BX (1) is the classifying space of gcompact group, Propositidn 4]11
shows thatPpz,,(BX (1)), ~ *. Therefore we can apply Theoréml4.1. O

We finish with a somewhat two different examples.
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Corollary 4.13. Let p be a prime. LetK’ be a K&-Moody group with a finite group of
components. Then there is a fibration

LypyBK, — Pez)p BK — B(m(BK)/T,(m(BK))
whereK), is the subgroup of{’ whose group of componentsfig(r, (BK)

Proof. First of all, the universal cover dB K is BK, whereK is the connected compo-
nent of the unit ink. It is shown in Nitu Kitchloo thesis (see [BK02]) th&K is homo-
topy equivalent to a colimit over a contractible categorglagsifying spaces of compact
Lie groups. Then Corollarly 4.9 and its proof apply to show thap ,(BK, Z) ~ x for
any connectedZ/p-null p-complete spacg. O

A different kind of example arises from the theory of infinit®p spaces and it is a
consequence of Theoreinn [McG].

Corollary 4.14. Let X be a connected infinite loop space with finite fundamentalgro
Then there is a fibration

Ly (Xp) = Ppzyp(X) = B(m(X)/Tp(m(X)))

whereX, is the covering ofX whose fundamental group 15,(m; (X)).

5 Relation of nullification functors with other idempo-
tent functors

In this section we compare the effect of nullificatiéta;, on spaces which satisfy the
hypothesis of Theorem 4.1 with the effect of some complstmmiocalizations on it. We
analyse both functors that are supposed to killjthersion, like Lz, or Z[1/p].., and
functors that usually preserve it, agj; ,,; andp-completion do.

Lemma 5.1. Let X be a connected space with finite fundamental greugndq different
primes. Ther{ X/}) is contractible.

Proof. If X is 1-connected the case Bf-completion is described in [BK72, VI1.5.1]. If
X is not simply-connected, consider the fibrati&i) (1) — X' — B (X)) and its
fibrewiseq-completion,

(X)(1))y =Y — Bmy(X).

Since the fibre is d-connected»-complete space completed @it is contractible,
thenY ~ B (X]). Butthen(X)")) ~ Y/ ~ Bm (X)), which is contractible since
Bri (X)) is the classifying space of a finitegroup. O
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We start by showing some direct direct consequences of €heédrl.

Proposition 5.2. Let X be a space which satisfies the hypothesis of Thebrem 4.1. Then
1 (Ppzp(X)) = m(X)/T,(m (X)) and (Ppz/,(X));, =~ . Moreover Pgz,(X])) ~
Lz11(X;)) =~ (X]))q is 1-connected.

Proof. SinceLZ[%](Xp) is 1-connected by Lemmia_4.3, it is clear from the fibration in
TheorenC41 thatr (Ppz,(X)) = m(X)/T,(m (X)). The spacel,(X;) is modp
acyclic by [Dwy96, Lemma 6.2] and the order of(X)/T,(m (X)) is prime top, it
follows that(Ppz/, (X)), is weakly contractible.

The second statement follows from applying Theofenh 4.X fo Observe that if\
satisfies the hypothesis of the theorem, th&halso does. Moreover;; (X)) is a finite
p-group, thenPgz,(X,") ~ LZ[%](XPA). It remains to prove that they are equivalent to
(X,))o- Since they areé-connected we can apply Sullivan’s arithmetic square.

We have proved thatPsz,, (X)), is weakly contractible. Moreover, if # p then
(Ppz/p(X)))s ~ (X))} which is weakly contractible by Lemriab.1. Thepz,, (X)) ~
Ppz/p(Xp)e ~ (X7)e- O

We start by showing thaBZ /p-nullification andp-completion behave like opposite
functors in this context.

Remark 5.3. If we complete in one prime and BZ/p-nullify with regard to a different
primep, thenX is BZ/p-null and the coaugmentatiod — Ppz/, X is an equivalence
afterg-completion if X satisfies the hypothesis of Leminal3.9.

Remark 5.4. Note that in general a connected spaceould beZ[1/p]-bad if X is not
1-connected, and then it is not possible in general to reptaogpletion by localization

in the previous results. If we know in advance tiats Z[1/p]-good (this happens, for
example, if its fundamental group#§1/p|-perfect) then we can do the replacement, and
moreoverZ[l/ploX ~ Ly, X. See for examplel([Far96, 1.E]) for more information
about the relation betwedr-localization andR-completion.

Proposition 5.5. Let X be a space which satisfies the hypothesis of Thelorém 4.1 ehd su
thatm, (X) = T, (m (X)). Then there are homotopy equivalences

PrrypLupjgX = Lapyp1/gX =~ Lz p Pz X

Proof. Since(X) = T,(m (X)), Ly1(X) =~ Ppz(X) is 1-connected. Then, by
LZ[%]<PBZ/(](X)>' O

We finish by establishing the commutativity of the functdts;,, and Pgz/,. The
problem of commutation of localization functors was extegly studied in[[RSQO].
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Proposition 5.6. Let X be a connected spageandq two different primes. Assume thit
satisfies the hypothesis of Theoifer 4.1 for both pripreasd g. Then there are homotopy
equivalences

PBZ/pPBZ/qX = PBZ/p\/BZ/qX = PBZ/qPBZ/pX-

Proof. It is enough to show the first equivalence since the other aléolow by sym-
metry.

Consider the set of prime&s= {p, ¢}. By pulling back the universal fibration, there is
afibrationXg — X — B(m(X)/(Ts(m(X))), wherem (Xg) = Ts(m(X)). Since the
order ofm(X)/Ts(m (X)) is prime to bothp andg, the spacd3 (7 (X)/(Ts(m(X))) is
both BZ /p-null and BZ/q-null (in particular it is alsaBZ /p Vv BZ/q-null) the composite
of functorsPgyz, o Pgz/, and Pgy,y 2/, Preserve the fibration [Far96, 3.D.3], and there
is a diagram of fibrations

Ppzp(Ppz/o(Xs)) — Prz/p(Ppz/q(X)) — B(mi(X)/(Ts(m(X)))

! ! Jo

Ppzpvpz/4(Xs) — Prapypz/o(X) — B(m1(X)/(Ts(m(X))).

where the first two vertical maps exist because if a spaée BZ/p vV BZ/q-null, and
then it is alsoBZ/p-null and BZ/q-null. Then we can assume that the groypX) =
Ts(m1 (X)), which we simply denote by in the sequel, is generated pyandq torsion.

By [RSOQ0, Prop 1.1], we need to show tha; /,(Psz/q(X)) is BZ/q-null and con-
versely Pgz/,(Ppz/p(X)) is BZ/p-null. In our situation, by symmetry, it is enough to
check one of the two conditions.

Let us see first thaPp;,,(Ppz/q(X)) is 1-connected. We can apply the fibrewise
BZ/p-nullification to the fibration in Theorem 4.1,

LZ[%](Xq) E— PBZ/q(Xq) —— B(n/Ty(r))

J | |

Pz yp(Lyyy(X) I% B(r/Ty()),

where L;1,(X,) is 1-connected andsz,(P) ~ Ppzy(Psz/q(X,)):” then P has fun-
damental groupr/ T, () which is generated by torsion. If P satisfies the hypothesis of

Theoreni 4.11 for the primgthen Ppyz,,(P) ~ Ly 1,(P) is 1-connected. We need to check

that for any connected spa¢ewhich is p-complete and3Z/p-null, map ,(P(1), Z) is
weakly contractible. Note tha®(1) ~ Ppzyp(Ly11(X,)), and then

map,(Przp(Logsy (X)), Z) = map. Ly (X,), Z) =~ map,(Pzy(X,), 7) =

~ map,(Xy, Z),



22 Natalia Castellana and Ramoén Flores

where the last equivalence follows becalBgz,,(X,)); ~ (X,), andZ is p-complete.
Finally Lemmd 4.5 tells us that this last mapping space isklyezontractible.

We denote byy” the spacePsz,,(Psz/q(X)), and we finally should check that it is
BZ/q-null. Since it is al-connected space, we can use Sullivan’s arithmetic squiate a
check that the mapping spacesp ,(BZ/q,Yy) andmap ,(BZ/q,Y,") are weakly con-
tractible for any prime-.

If r # ¢, map ,(BZ/q,Y,") ~ * becausd BZ/q), ~ *. Also, since(BZ/q)q =~ *,
map ,(BZ/q,Yy) ~ *. We are left to the case= ¢, andY," = (Ppz/,(Ppz/q(X)))y

(Ppz/q(X))} ~ + by Proposition 5.2. So we are done.

LR

For example, given a compact Lie group(7 satisfies the hypothesis of Theorem| 4.1
for any primep.

Remark 5.7. The same proof remains valid if we apply in succession oved finite
number of BZ/p-nullification functors for different primes assumitigsatisifes the hy-
pothesis of Theorem 4.1 for each prime. On the other hargllikdly that that the nullifi-
cation of X with regard to the wedge of the classifying spacealbprimes is homotopy
equivalent to the rational localization &f. See([Flo07, Section 3.2] for details.

6 BZ/p-cellularization of classifying spaces

In this section we will give a Serre-type general dichotohgarem (Theorein 6.1), which

is very much in the spirit of [ES07]. Then, we will use thiststaent to describe several
examples concerning thBZ /p-cellularization of some families of classifying spaces of
remarkable groups, such agoral groups, finite groups with g-subgroup ofp’-index,

BS3 or BSO(3) (at the prime2). Our considerations are also based in the results of the
previous sections relating cellularization, nullificatiand completion.

6.1 The dichotomy theorem

The main result of this section is:

Theorem 6.1. Let X be a connected nilpoter” BZ/p-null space for somer > 0.
Then theBZ/p-cellullarization of X has the homotopy type of a Postnikov piece with
homotopy groups are concentrated in degre&sn , or else it has infinitely many nonzero
homotopy groups. Moreover, X is 1-connected of finite type, then the fundamental group
71 (CWpz/p(X)) is afinite elementary abeligmgroup.

The rest of the subsection is devoted to the proof of ThebrdinEven if the statement
is similar to the one in [FS07, Proposition 2.3], the autlt@al with the situation in which
the space is torsion, and this is not the case6t whereG is a compact connected
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Lie group. The strategy used in [FS07] for classifying sgacgfinite groups can be
summarized as follows.

Proposition 6.2. Let X be a torsion Postnikov piece whose fundamental group isrgene
ated by elements of orderwhich lift to X. Assume there exists a prime# p such that
X is torsion and it has infinitely many non-trivial homotopygps. TherCWpgz, (X)
also has infinitely many non-trivial homotopy groups.

Proof. Consider the fibratio@'Wgz,,(X) = X — Pspz/,(C) from Theoreni 2J3. Note
that Py, 57,,(C) is 1-connected sinc€’ is so. To prove the statement, we will show that
Pspz/,(C) has infinitely many non-trivial homotopy groups. We applyli8an’s arith-
metic square td*;zz,/,(C') to obtain a pullback diagram

Popzp(C) —— (1,4, X)) X (Pepzyp(C));

| |

= ([Lzgp XM X (PeBz/p(C))})a-

which allow us to constructamap X' — Pspz,(C) suchthat) o s ~ id. That iss is
a section of thg-completion. Then for, > 2 we have thatr, (X7') is a direct summand
of ﬂ-n(PEBZ/p(C))- ]

For example, by Levi's work in [Lev95], the previous theorapplies whenX is the
classifying space of a finite group.

Now we need to state some general results concerning tolthiadeation of X BZ/p-
null spaces, that deal with the consequences of imposingtha;; (X ) is a Postnikov
piece for a certain spac€. Note that this is the “forbidden” case in Theorem/ 6.1.

Lemma 6.3. Let P[n| be a connecte®@ BZ/p-null Postnikov piece withh > 3 thenp is
invertible inm,,(P[n]).

Proof. Note that if P[n] is X BZ/p-null thenQP[n] is BZ/p-null, and alsd2"~! P[n] is
so. Since the connected component of the constantinP[n] is an Eilenberg-MacLane
spaceK (m,(P[n]), 1), we see thak((m,(P[n]), 1) is alsoBZ/p-null.

Similarly, the connected componeftof Q"~2P[n] is BZ/p-null. There is a fibra-
tion K (m,(P[n]),2) — E — K(m,_1(P[n]),1). Since the pointed mapping spaces
map ,(BZ/p, K(m,_1(P[n]),1)). andmap ,(BZ/p, E) are weakly contractible, we ob-
tain from the previous fibration thatap (BZ/p, K (m,(P[n]),2)) is also weakly con-
tractible. That iK' (,,(P[n]), 2) is BZ/p-null. The conclusion now follows from Lemma
2.1. O

Proposition 6.4.Let X be a connected nilpoteltBZ /p-null space such thﬁ[%]oo(X) ~

*. ThenX has the homotopy type offa(G, 1) or it has infinitely many nonzero homotopy
groups.
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Proof. Assume thaf ~ P[n] is a finite Postnikov piece. First we show thaf 2. Since
Z[5](X) is weakly contractible (see LemmaP.8), thet[n]) ® Z[ ] = 0 for alli > 0
([BK72, V.4.1]). Butifn > 3, pis invertible inm, (P[n]) by the previous Proposition 6.3,
thenm, (P[n]) = 0. We can apply this argument as longrag 3.

From now on we assume = 2. Next we prove thatry(P[2]) has nop-torsion.
There is a fibrationk (m»(P[2]),2) — P[2] — K(m(P[2]),1), which induces a cov-
ering K (m(P[2]),0) — K(m(P[2]),2) — P[2]. If m(P[2]) hadp-torsion, then a non-
trivial homomorphisnZ/p — m(P[2]) would induce a nontrivial mag: XBZ/p —

K (m9(PJ[2]),2) which is nullhomotopic when composed wifki(m,(P[2]),2) — P[2]
sinceP|[2] is X BZ/p-null (see Lemma 2]6). Then we obtain a contradiction sjho®ust
be nullhomotopic. Sary(P[2]) has nop-torsion, and this is again a contradiction since
m(P2]) @ Z[5] = 0. O

We now state our dichotomy theorem for nilpot&8Z /p-null spaces.

Theorem 6.5.Let X be a connected nilpoteltBZ/p-null space. Then thBZ /p-cellulla-
rization of X has the homotopy type off&(G, 1) or it has infinitely many nontrivial ho-
motopy groups. Moreover, KX is 1-connected of finite type, then(CWgz/,(X)) is a
finite elementary abeliap-group.

Proof. By Lemma2.5CWpg;,,(X) is also nilpotent. Moreover, by LemrhaR.8 we have
an equivalenc%[}—l)]oo(CWBZ/p(X)) ~ %, and then we can apply Propositibn]6.4 to
CWpzp(X). O

Proof of Theorerh 611Assume that: > 2, we can assume tha&f is BZ/p-cellular and
¥."BZ/p-null. By [Bou94, Theorem 7.2], there is a principal fibratio

K(P,n) = X — Pgai(X)

where P is ap-torsion grup. Sincd{ (P, n) is BZ/p-cellular ((CCS07-2, Lemma 3.3])
and X too by assumption, theRs.-1(X) is also BZ/p-cellular by [Cha96, Theorem
4.7]. By induction we reduce to the case in which= 1, which is proved in Theorem
6.5. O

The next question we need to refer concerning Thearem 6.hésthe cellularization
of a classifying space is again a classifying space, notssac#y of a discrete group. This
is important to understand the first part of the previousaticmy.

Proposition 6.6. Let X be a space. I€Wpgy,,(X) ~ BH for some compact Lie group
H, then it must be a finitge-group generated by orderelements.
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Proof. Since the pointed homotopy colimit of acyclics is acyclic &my cohomology
theory ([Far96, 2.D.2.5)), itis clear that*(BH; Q) = H*(CWpgz,,X;Q) = 0. On the
other hand, it is well-known that the rational conomologydf are the invariants of the
rational cohomology of the classifying space of the maxitoeds7T under the action of
the Weyl groupV. In fact H*(BH; Q) = 0 if and only if H is a finite group. Finally, the
functor CW is idempotent, s&8H must beBZ/p-cellular. Thus, we can apply [FIoD7,
Prop 4.14 ] to finish the proof. 0

Remark 6.7. The arguments in Proposition 6.6 also work(itVpz/,(X) ~ (BH))
where H is a compact Lie group. Itis clear then thidt(BH; Z)) ® Q = 0. But again
this is only possible iff is discrete. IfH is in particular finite, conditions are known (see
[ESQ7, Corollary 3.3]) under which3 H ) is BZ/p-cellular. See Example 6.114 below.

Remark 6.8. When X is an H-space satisfying the hypothesis of Theofen 6.1, Castel-
lana, Crespo and Scherer proved [in [CCS07-2] thatBig p-cellularization of X is
always a Postnikov piece. Examples of such spaces are giwéhspaces whose mad
cohomology is finitely generated as an algebra over the Bideigebra (see [CCSO07-1]).

6.2 Examples

In this subsection we concentrate in the description of3ig p-cellularization of clas-
sifying spaces of compact Lie groups, generalizing to th&inaous case work of the
second author in the finite casée ([FI007] and [ES07]). In theys of the homotopy type
of classifying spaces of Lie groups, a very useful strategp iisolate the information at
every prime.

Theorenl 6.1 implies automatically the following dichototimgorem for classifying
spaces of compact Lie groups. We say that an element: is p-cohomologically central
if the map induced by the inclusiaBC(z) — BG is a modp homology isomorphism.
Mislin in [Mis92] shows that there is a natural bijection Wween the set of conjugacy
classes op-cohomologically central elements of orgein G with pZ(G/0O,,(G)) where
O, (G) is the largest normal’-subgroup of andpZ(G) are the elements of ordgrin
Z(@Q).

Theorem 6.9. Let G be a compact connected Lie group. If there exists aproohomo-
logically central element of ordef, then theBZ/p-cellullarization of BG has infinitely
many nonzero homotopy groups. Otherwise, it has the homoypp of ak'(V, 1), where
V is a finite elementary abeligmngroup.

Proof. SinceG is assumed to be connectdsl is simply connected. Moreover it is of
finite type, andxBZ/p-null because of Miller's solution of the Sullivan conjertibe-
causeQlBG ~ G is a finite complex. Now, we apply Theordm16.1.04W 5/,(BG)
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is an Eilenberg-MacLane spaé€(V, 1), thenmap ,(BZ/p, BG) is homotopically dis-
crete. SinceBG is simply connected,BZ/p, BG]. = [BZ/p, BG] = Rep (Z/p,G). If
map ,(BZ/p, BG) is homotopically discrete, then for eagle Rep (Z/p, G), the evalua-
tion map (BZ/p, BG) g, — BG induces ar¥,-homology equivalenc&C¢ (p(Z/p)) —
BG by [DZ87]. And this only happens if all the elements of orgdarep-cohomologically
central. O

In the continuous case, there are paradigmatic examplBs-oivhose cellularization
is again a classifying space.

Example 6.10.I1f X = BS' = K(Z,2), itis clear comparing pointed mapping spaces
thatCWgz, BS' = BZ/p sincemap ,(BZ/p, BS*) is homotopically discrete with com-
ponentsHom (Z/p, S'). Let us now consideB.S? the classifying space of thesphere.
Lemma& 3.2 reduces the computation(df sz, (BS?) to that of CWpz,,((BS?))). The
mapping space fronBZ/p into (BS3)$ has been well studied. = 2, the inclusion

of the centreBZ/2 — BS? induces a homotopy equivalenoeap (BZ/2, BZ/2) —
map (BZ/2, (BS?)5) sincemap (BZ/2, (BS?)}); ~ (BCs:(f)), (see [DMW87]), and
thereforeC'Wiy,»(BS®) ~ BZ/2. If pis odd, then(BS®)) ~ BN(T'), and this case
will be studied in Examplg6.15.

Sometimes, if we are unable to descrid®/z;,, BG, we can at least identify it with
another classifying space at a prime.

Example 6.11.Let BO(2) be the classifying space of the orthogonal grovg). There
is @ mod2 equivalenceB Dy~ — BO(2) where Dy = colim,, Don. Moreover B Dy

is BZ/2-cellular by [FIo07, Example 5.1]. Sincg (BO(2)) = 7Z/2 is generated by an
element of orde? which lifts to BO(2), we are in the situation of Remdrk 3]17. This will
be used in particular in Propositibn 6117.

We devote the remaining of the section to study some familidse groups which
show different and interesting features in this context.b&gin with extensions of ele-
mentary abeliap-groups by a finite group of order primegowhich provide an example
in which Proposition_3.14 does not hold. Compare with [ESUVg start with a situation
which deals with fibrations.

Proposition 6.12.Let ' — E — B be a fibration ofp-good connected spaces such that
F'is BZ/p-cellular, B is BZ/p-null and, B, is ¥ BZ/p-null. Assume thatBZ/p, E] —
[BZ/p, E]'] is exhaustive and, (F') — m(E)) is an epimorphism. Thei@©' Wz, (E))),)

is the homotopy fiber of) — B

Proof. First of all, note that sinc& is BZ/p-null, thenF — E is a BZ/p-equivalence,
and thusl” ~ CWgg,(E). To compute the cellularization & we proceed by applying
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Chacholski’s strategy (Theordm P.3, see also [Cha96j@e¢i for the slightly general
formulation we use here). Consider the following diagrarhafizontal cofibrations,

F——F——C

L)

F—%E)——D

where D is 1-connected since is an epimorphism on fundamental groups. Siftés
p-good, g induces an homotopy equivalencg ~ D, and thereforeC” is also1-
connected.

Zabrodsky’s Lemma (seé [Dwy96, Prop 3.4]) applied to theafion ¥ — £ —
B and the composite mag — C — Pypz/,(C) implies that there is a map —
Pspz/,(C') which fits in a diagram of fibrations:

F E B

Lo

CWBz/p(E) —F— PZBZ/pC-

where the first vertical map is a homotopy equivalerCe/s;,,(£) ~ F. The long
exact sequence for homotopy groups shows that the lastaeatrow is also a homotopy
equivalence. Now consider the diagram of fibre sequences

F E PEBZ/;DC ~ B
CWBZ/p<EZ/;\> EI/7\ PEBZ/pD-

The spaces>pz,,(C) ~ B and Pypz/,(C)) arep-good spaces (note thét.pz/,(C)')
is 1-connected by Lemnia 2.4) and Miller’s theorem apply to shoat £x.57,,(C));) is
YBZ/p-null. Also Pspz,,(C); ~ B is ¥BZ/p-null by hypothesis. Applying Lemma
[3.9 and the proof of Corollarfy 3.12, we obtain that the contpdsszz/,(C) ~ B —
Pspz/,(D) is a modp equivalence, and therefore we conclude that gfempletion
(CWpyg(E7)), is the homotopy fiber of2 — B/ is a modp equivalence byp-

p
completion of the fibratiolW'Wpz,,(E)) — E)) = Pspzyp(D). O

Corollary 6.13. Let F — E — B be a fibration of connected spaces such thais
BZ/p-cellular, B is BZ/p-null and B} ~ x. Assume thatBZ/p, E| — [BZ/p, E})| is
exhaustiver, (F') — 1 (E,)) is an epimorphism and; ( E) are finite groups for alf > 1.
ThenE) is BZ/p-cellular.

Proof. By Propositior 6.12, we know thaCWgz,(E)));, ~ E/'. We will prove that
CWaggp(E;)) is p-complete. Sincer;(£) are finite groups for all > 1, 7;(E;)) are all
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finite p-groups and2" is nilpotent ([BK72, VI1.4.3]). Therefor€' Wz, (E)) is nilpotent
by Lemma 2.5. A Sullivan’s arithmetic square argument shthasCWpz,(E) is p-
complete sinc&(CWpz/,(E)))))o = (E))g = *. O

Example 6.14.Let G be a finite group which is an extensiéh— G — W whereBH is
BZ/p-cellular and(|W|, p) = 1. ThenCWggz,,(BG) ~ BH and BG)) is BZ/p-cellular

by the previous result. Note thét does not need to be generated by elements of order
p; compare with[[FSO7, Section 4]. Other examples are pravienilpotent Postnikov
pieces whose fundamental group is of order prime nd thel-connected cover is-
torsion.

Example 6.15.Let N be an extension of a finite group of order primeptawith a torus,
that is, we have a fibratioBT — BN — BW whereT = (S')" and(|W|,p) = 1. From
this fibration we see that'Wpy,,(BN) ~ CWpy,,(BT) ~ BV whereV = (Z/p)", as
BW is BZ/p-nulland BT — BN is a BZ/p-equivalence.

Next we compute the cellularization 6BN). First, by [BKO2, Prop. 7.5], there is
a bijection[BZ/p, BN| = [BZ/p, BN,]. Consider the following diagram of horizontal
cofibrations,

BV BN C
R
BV —— BN} — D.

where D is 1-connected sinc& N, is also1-connected. Therefor&spz,,(D) is also
1-connected by Lemnia 2.4. Sineg(C) is finite, C' is p-good. Moreovery is a modp
equivalence, therefor€)' is 1-connected. Now consider the following diagram of fibra-
tions:

BV BN PrpzpC

| L]

CWay, /p(BNpA)"—> BN} — Pspz,D.

We will show thatPspz/,(9): PupzpC — PopzyyD is @ modp equivalence. Since

is a modp equivalence, and alsBrpz/, (1p) : Popzyp(D) — Popzyp(D;)) by Corollary
[3.11, we only need to prove th&t.pz,,(nc): Pepz/p(C) — Pepzsy(C)) is also a mod
p equivalence by checking that satisfies the hypothesis of Leminal3.9.
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Consider the following diagram of fibrations

TV BV BT
| |
E(T/V) BN BN

]

B(T/V) — Pypz,,(C) L— BW.

where f exists by Zabrodsky’s Lemma (see [Dwy96, Prop 3.4]) appicethe fibration
BV — BN — Pspzp(C) and the mapBN — BW. It implies that there is a map
Pspz)p(C) — BG which fits in a diagram of fibrations. The bottom fibration sisdiat
Pspz/,(C) is homotopy equivalent to the classifying space of a comipaagroup whose
fundamental group 6.

Now we check that’ satisfies the hypothesis of Lemimal3.9. Fiestand :57,,(C)
arep-good since they have finite fundamental groups ([BK72,5/1l)), Pepz/,(C)) is
1-connected and therefore it is alpegood. It remains to check thdt:zz/,(C), and
Pspz)p(Ch), are XBZ/p-null spaces. Sincéxpz/,(C) is homotopy equivalent to the
classifying space of a compact Lie groupgitsompletion is© BZ/p-null (see e.g/[BKO02,
Prop 7.5]). FinallyPs gz, (C');) is alsoX BZ/p-null sincePspz/,(C;)) is 1-connected by
Theoreni 3.11.

Summarizing(CWpz,,(BN)))); is the homotopy fiber oBN,' — BK whereK is
an extension of¥/ by 7'/V andV is the maximal elementary abeliarsubgroup in the
torusT'.

Our next example concerpstoral groups. Recall that@toral group is an extension
of a torus by a finitep-group. Ap-compact toral group is an extension op-@ompact
torus by a finitep-group, and a discretetoral group is a groug” with normal subgroup
T such thatT" is isomorphic to a finite product of copies @f/p> and P/T is a finite
p-group.

Since CWpz,(BT)') ~ CWpgg),(BT) by Lemmal3.R and’Wpz,,(BT) ~ BV
whereV is the subgroup of elements of orderthe following is also true fop-compact
toral groups.

Example 6.16.Let P be ap-toral group with group of components First of all, by
[CCSO7-2, Proposition 2.1], we can assume tha a finite p-group generated by ele-
ments of ordep which lift to BP. By Propositiori 3.4 and Remdrk3l17, there is a mod
p equivalenceCWpz,(BP) — CWpyz),(BP,'). Dwyer and Wilkerson show in [DW94]
that there exists a discretetoral groupP,, such thatBP,, — BP is a modp equiva-
lence. We are reduced then to study the cellularizationsufrdiep-toral groups.
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Following [FSO7, Section 4], we considéx, (P,,), the subgroup generated by the
elements of ordep. Since a subgroup of atoral discrete group is also jatoral dis-
crete group and the maB<,(P.,) — BP, is a BZ/p-cellular equivalence (note that
map ,(BZ/p, BP) ~ Hom(Z/p, P)), we can assume thd,, is generated by ele-
ments of ordep. For anyp-discrete toral group there is an increasing sequence
P, < --- such thatP,, = UP,. Take a countable set of generators of orgddéor P,
{g:]i = 1,...,n},; then the subgroup®,, = (g1,...,g,) satisfy thatP,, = U@, and
each(, is a finite p-group generated by elements of orgerso by [Flo07, Prop 4.14,
Prop 4.8],BQ,, is BZ/p-cellular and thereford& P, is so.

Finally the spacé3), (P ) is BZ/p-cellular, so it remains to check thB€, (P,) —
CWapyz,(BP)) is amodp equivalence. LeCzp,, andCBppA be the corresponding Chach-
oOlski’s cofibres. Zabrodsky’'s Lemma (see [Dwy96, Prop Bafjplied to the fibration
BQy(Ps) = BPy — Pyprp(Cpp,.) and the maB Py, — B(Ps /4 (Px)) shows that
there is a homotopy equivalené® gy, (Csp..) ~ B(Px /0 (Px)). In particular,Cppo
satisfies the hypothesis of Lemmal3.9. Moreo@pﬁ is 1-connected.

The mapg: Cppo — Cppy is @ modp equivalence and, by Remdrk 3/13 and Corol-
lary[3.12,Ps5z,/,(9) is @ modp equivalence. Finally, Proposition 3114 combined with the
previous results, show thétQ2, (P.,) — CWpyz,,(BP,') is a modp equivalence.

In particular, from Example 6.11 we obtain that there are tequivalence® Dy —
CWipz/2(BO(2)) — CWaze(BO(2)3), and hence a chain of homotopy equivalences
CWgz/2(BO(2))y ~ CWpgz2(BO(2))5 ~ BO(2)5.

We finish the section with a last example in which we can olesarecompletely dif-
ferent pattern, and where the cellularization is obtaineddmbining in an adequate way
some nice push-out decompositions.

Proposition 6.17. TheBZ/2-cellularization of BSO(3) fits in a fibration
(CWez2BSO(3)); — BSO(3); — (BSO(3)))-

Proof. SinceSO(3) is connected, by Lemnia 3.2 tipecompletion induces a homotopy
equivalenceW gz, BSO(3) ~ CW pz,,(BSO(3);). According to [DMW87, Cor 4.2],
BSO(3) is equivalent at the prime 2 to the pushoubf the following diagram:

BDg —>BO 2)%

b

(BYy)y —— X,

wheref; is induced by inclusion of the 2-Sylow subgroup, gfads given by the map of



Homotopy idempotent functors on classifying spaces 31

extensions
7/4 Dg Z7)]2
[ ]
SO(2) — 0(2) — Z)2.

Our strategy will be to cellularize the previous diagrang aampare the respective
pushouts. Now, recall thaB Dy is BZ/2-cellular ([Flo07, 4.14]) and moreover the 2-
completion of BX; is so ([ESOV, Thm 4.4]). On the other hand;~ is a 2-discrete
approximation ofO(2) -i.e.BDy~ — BO(2) is a mod2 equivalence-, so the previous
Example 6.16 implie®3 Dye — CWpy/2(BO(2)) is a mod2 equivalence. Moreover, by
Propositior 3.14 and Remark 3117, there is also a reguivalence’ Wy o (BO(2)) —
CWgz/2(BO(2)3). So, we can consider another pushout diagram by applyiniyitiotor
CWpgz/2 o the previous one,

BD8—>CWBz/2(BO )

i

(BYy)y ———— Y

There exists a map: Y — X induced by the augmentation map from the cellulariza-
tion which is a mo equivalence sinc€ Wz, (BO(2)5) — BO(2)5 is so.

Now we attempt to compute thie7Z /2-cellularization ofX4' by using the cofibre of the
mapk: Y — X2 In order to do this, a result of Chacholski [Cha96, Thm P@gether
with [FS07, Thm 1.1] tells us that we need to check th#£./2,Y]| — [BZ/2,Y;}] =
[BZ/2, X4] is exhaustive anl is BZ/2-cellular.Y" is BZ/2-cellular since itis a pushout
of BZ/2-cellular spaces. It remains to check thaZ /2, Y] — [BZ/2,Y3"] is exhaustive.

Let P be the category < 0 — 2 describing a pushout diagram, andtet P — Top
be the functor describing the pushout oy that is,F'(1) = (BX4)5, F(0) = BDs and
F(2) = CWgz/2(BO(2)3) with the corresponding morphisms. There is a commutative
diagram of sets

lig[BZ/Q, F]——[BZ/2,Y]

l(ﬁF)* l"*

lim[BZ/2, )] — [BZ/2,Yy]

where the vertical maps are induced Pyompletion of the target. Since the spaces
map (BZ/2, Fy') are2-complete (see [BK02, Proposition 7.5]), by [BLO03, Lemm2]4
the bottom horizontal map is a bijection. To prove thatis exhaustive, it is enough
to show that(nr). is so. But then, looking at the diagram, it reduces to cheek th
[BZ/2,CWgz2(BO(2)3)] — [BZ/2,CWgz2(BO(2)3)5] = [BZ/2, BO(2)3] is ex-
haustive (see Example 6]16) and this follows from CorolR&i:
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Let C' be the cofibre of. We know that”' is mod2 acyclic andl-connected. Now if
q is an odd prime, sinc¥ is BZ/2-cellular,Y" is modq acyclic andC}' ~ (BSO(3)3),
is contractible. FinallyCy ~ (BSO(3)4)g- Then, by a Sullivan arithmetic square argu-
ment,C' ~ (BSO(3)%)q which is, in turn,BZ/2-null. In particularC' is X BZ/2-null.
Therefore, the fibration of the theorem follows from Chdshis fibration describing the
cellularization (Theorem 2.3). O

Remark 6.18. Note that ifp is an odd prime, the®SO(3)) ~ BN(T);, whereN(T')
is the normalizer of the maximal torus, and we analyzed théeén Example 6.15.

It seems natural to ask if the problem of computitity’sz,,(BG) for any compact
Lie groupd is accessible at this point. A strategy was developed faefgroups in[[FF],
based in the description of the strongly closed subgrous, efhich are classified. Re-
cent research has remarked the role of the strongly clodsgteups of discrete-toral
groups in the homotopy theory of compact Lie groups and, rgererally,p-local com-
pact groups/[[Gon10], but to our knowledge there is no avklalassification of these
objects. On the other hand, the nontrivial rational homptpBG seems an important
obstacle to generalize the arithmetic square argumentseo$trategy. We plan to un-
dertake these issues in subsequent work, and, in partiemantriguing question which
arises in a natural way from the last example:

Question For which class of classifying spaces of compact Lie grqopspaces in
general) is the3Z/p-cellularization equivalent to the homotopy fibre of théomaliza-
tion, up top-completion?

Acknowledgements.We would like to thank Carles Broto and Jérome Scherer for
interesting conversations on this subject.

References

[BK72] Bousfield, A. K., Kan, D. M.: Homotopy limits, compleins and localizations.
Lecture Notes in Math. 304, Springer, Berlin (1972)

[BKO2] Broto, C., Kitchloo, N.: Classifying spaces of K&&eody groups. Math. 2240,
621-649 (2002)

[BLOO3] Broto, C., Levi, R., Oliver, R.: The homotopy thea¥/fusion systems. J. Amer.
Math. Soc.16, 779-856 (2003)

[BLOO7] Broto, C., Levi, R., Oliver, R.: Discrete models fitve p-local homotopy theory
of compact Lie groups angtcompact groups. Geom. Topdll, 315-427 (2007)



Homotopy idempotent functors on classifying spaces 33

[Bou75] Bousfield, A. K.: The localization of spaces withpest to homology. Topology
14, 133-150 (1975)

[Bou94] Bousfield, A. K.: Localization and periodicity in stable homotopy theory. J.
Amer. Math. Soc7, 831-873 (1994)

[Bou97] Bousfield, A. K.: Homotopical localizations of sggc Amer. J. Math119,
1321-1354 (1997)

[Bro82] Brown, K. S.: Cohomology of groups. Graduate TexisMathematics 87,
Springer, New York (1982)

[CCS07-1] Castellana, N., Crespo, J. A., Scherer, J.: Detaacting Hopf spaces. Invent.
Math. 167, 1-18 (2007)

[CCSO07-2] Castellana, N., Crespo, J. A., Scherer, J.: Rastrpieces andBZ/p-
homotopy theory. Trans. Amer. Math. S@&9, 1099-1113 (2007)

[CLNO7] Castellana, N., Levi, R., Notbohm, D.: Homology detpositions forp-
compact groups. Adv. Matl216, 491-432 (2007).

[Cha96] Chacholski, W.: On the functorsiV, and P,. Duke Math. J.84, 599-631
(1996)

[DMW87] Dwyer, W. G., Miller, H. R., Wilkerson, C. W.: The homtopic uniqueness
of BS3. In: Algebraic topology (Barcelona, 1986), Lecture NotesMiath. 1298,
Springer, Berlin, 90-105 (1987)

[DW94] Dwyer, W. G., Wilkerson, C. W.: Homotopy fixed-pointatihods for Lie groups
and finite loop spaces. Ann. of Math. (239 395-442 (1994)

[Dwy96] Dwyer, W. G.: The centralizer decomposition Bt~. In: Algebraic topology:
new trends in localization and periodicity (Sant Feliu deixgts, 1994), Progr.
Math. 136, Birkhauser, Basel, 167-184 (1996)

[DZ87] Dwyer, W., Zabrodsky, A.: Maps between classifyipgses. In: Algebraic topol-
ogy (Barcelona, 1986), Lecture Notes in Math. 1298, SprinBerlin, 106-119
(1987)

[Far96] Farjoun, E.: Cellular spaces, null spaces and hopyotocalization. Lecture
Notes in Math. 1622, Springer, Berlin (1996)

[FF] Flores, R., Foote, R. M.: The cellular structure of thassifying spaces of finite
groups. To appear in Israel J. Math.



34 Natalia Castellana and Ramoén Flores

[FGSO07] Farjoun, E., Gobel, R., Segev, Yoav.: Cellulararsvof groups. J. Pure Appl.
Algebra208 61-76 (2007).

[FIoO07] Flores, R.: Nullification and cellularization ofadsifying spaces of finite groups.
Trans. Amer. Math. So®59, 1791-1816 (2007)

[FSO7] Flores, R., Scherer, J.: Cellularization of clagseij spaces and fusion properties
of finite groups. J. Lond. Math. Soc. (2%, 41-56 (2007)

[Gonl10] Gonzalez, A.: The structure pilocal compact groups. PhD thesis (2010)

[JMO90] Jackowski, S., McClure, J. E., Oliver, R.: Self-mayf classifying spaces of
compact simple Lie groups. Bull. Amer. Math. Soc. (N.&) 65—-72 (1990)

[Lev95] Levi, R.: On finite groups and homotopy theory. Memmér. Math. Soc., 118
(1995)

[McG] McGibbon, C. A.: Infinite loop spaces and Neisendolfealization. Proc. Amer.
Math. Soc. (1)125 309-313 (1995)

[Mil84] Miller, H.: The Sullivan conjecture on maps from elsifying spaces. Ann. of
Math. (2)120, 39-87 (1984)

[Mis92] Mislin, G.: Cohomologically central elements angsion in groups. Algebraic
topology (San Feliu de Guixols, 1990), Lecture Notes iniMa609 294-300,
Springer-Berlin, 1992.

[Nei95] Neisendorfer, J. A.: Localization and connecteders of finite complexes. In:
The Cech centennial (Boston, MA, 1993), Contemp. Math. 181, AiMath. Soc.,
Providence, RI, 385-390 (1995)

[RSO0] Rodriguez, J. L., Scevenels, D.: Iterating serfdeaalization functors. In: Une
dégustation topologigue [Topological morsels]: homegttheory in the Swiss Alps
(Arolla, 1999), Contemp. Math. 265, Amer. Math. Soc., Pdevice, RI, 211-221
(2000)

[RS01] Rodriguez, J. L., Scherer, J.: Cellular approxiomast using Moore spaces. In:
Cohomological methods in homotopy theory (Bellaterra,8)98rogr. Math. 196,
Amer. Math. Soc., Basel, 357-374 (2001)

[Spa66] Spanier, E. H.: Algebraic topology. Springer-ggrINew York (1966)



	1 Introduction
	2 The cellularization and nullification functors
	3 BZ/p-homotopy and p-completion
	4 BZ/p-nullification of classifying spaces
	4.1 Examples

	5 Relation of nullification functors with other idempotent functors
	6 BZ/p-cellularization of classifying spaces
	6.1 The dichotomy theorem
	6.2 Examples


