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Abstract. – This paper presents an experimental and theoretical study of the dynamics of a
conducting ball in a poorly conducting liquid subjected to an electric field. When the applied
voltage is constant the ball bounces regularly on the lower electrode. If an AC voltage is
superimposed, with a period equal to the unperturbed time between impacts, the ball undergoes
a period-doubling bifurcation when increasing the amplitude of the AC signal. The non-linear
map which describes the dynamics of the ball is closely related to the standard map and to the
classical problem of a bouncing ball on a moving table.

Introduction. – The problem of a bouncing ball on a moving table is a classical problem of
dynamics. It has played an important role as a model for non-linear systems [1]. Also it has
been of interest since Fermi proposed a simplified model for the acceleration of cosmic rays by
random oscillating magnetic fields [2].

The system we study was already considered by Haus and Melcher [3], as a system which
clearly demonstrated the effect of charge relaxation time. A conducting sphere is made to
bounce between parallel plate electrodes immersed in a slightly conducting fluid. The applica-
tion of high voltage charges the sphere when being in contact with the lower electrode. Above
a certain voltage, at which the Coulomb force balances the weight, the sphere rises, but its
charge leaks away, due to the finite charge relaxation time, and it returns to the electrode. The
time of flight is a non-linear function of the applied voltage.

When applying a fixed DC voltage the sphere bounces regularly, with a very well-defined time
between impacts. When an AC voltage is superimposed, the dynamics becomes more complex
and there appears all the phenomenology associated to bifurcations in non-linear systems. In
particular, when the frequency of the AC field is close to the natural frequency of bouncing
there is a period-doubling bifurcation: that is, for a certain value of the AC amplitude, the
sphere starts to bounce alternatively with two different times between impacts.

Theoretical model. – The equation of motion of a ball of radius R and density ρs immersed
in a liquid of density ρl is

me
dv

dt
= Fe + Fg + Fd , (1)

where me = (ρs + 0.5ρl)4πR
3/3 is an effective ball mass [4], including the inertia of the liquid

around the ball, v is the velocity in vertical direction and Fe, Fg and Fd are, respectively, the
electric force, the gravity force and the drag. Let us consider each force separately.
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Fig. 1. – The three functions involved in the calculation of the electric force.

The electric force on a conducting particle exerted by an external electric field in the presence
of an electrode was treated by Felici [5], who showed how to compute the force in the general
case. He considered two cases in detail, that of a particle at the same potential as the electrode,
and that of a particle that after the contact with the electrode remains isolated. In our case we
need the general expression of the electric force on a sphere as a function of the distance to the
electrode for any given charge. This force can be expressed

Fe = 4πεlR
2E2

0F0(z/R) + qE0F1(z/R) +
q2

4πεlR2
F2(z/R) , (2)

where εl is the liquid permittivity, R the radius of the sphere, E0 the external electric field, q
the charge of the ball and z the distance from the center of the sphere to the electrode. F0, F1

and F2 are non-dimensional functions of z/R only. The first term represents a dipole-dipole
interaction, the second one the force due to the imposed electric field, and the third one is the
force between the charge and its image. The three functions are very well approximated for
z/R > 4 by

F0 = −
3R4

8z4
, F1 = 1 +

R3

2z3
, F2 = −

R2

4z2
; (3)

the deviation from this behavior for z/R < 4 is due to the finite size of the sphere, that requires
a distribution of dipole and charge to solve the problem. Figure 1 shows the three functions
for z/R < 4.

In contact with the electrode the ball takes a charge [5] q0 = 4πεlR
2(π2/6)E0. This charge

leaks away as the ball rises due to the conductivity of the liquid. At any time t after the impact
the charge is

q(t) = q0e
−t/τ , (4)

where τ = εl/σ (σ, liquid conductivity) is the electric relaxation time.
The gravity force is the weight of the ball mg minus the buoyancy mlg, where ml is the

mass of the corresponding volume of liquid. Finally the drag force is due to the viscosity ν of
the liquid. The expression of this force depends on the Reynolds number associated with the
ball motion Re = vR/ν. In our experiments (see below) for a typical jump is v ∼ 0.01 m/s and
Re ∼ 0.6 < 1. Therefore the Reynolds number is low enough for the Stokes law to apply and
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Fig. 2. – Non-dimensional time of flight vs. the parameter G = (Ec/E0)2. The parameter r is defined
in the text.

we can write Fd = 6πρlνRv. A further simplification can be made if we estimate the time of
acceleration. A comparison of the inertial term me dv/dt with the drag force in our experiments
provides a time scale for the inertial term: ti ∼ me/(6πρlνR) ∼ 0.04 s. As a typical jump takes
1 to 2 seconds, the inertial term is negligible and the equation of motion (1) reduces to

6πρlνRv = Fe − (m−ml)g . (5)

As a first approximation consider Fe = q(t)E0 = q0E0e
−t/τ . Then the equation is readily

integrated and from it a relation between the time of flight ∆t0 and the applied field is obtained:

1− e−∆t0/τ =
(m−ml)g

q0E0

∆t0
τ

. (6)

The non-dimensional parameter G = ((m − ml)g)/(q0E0) = (E2
c )/(E2

0 ) represents the ratio
between the gravity force and the electric force. G has to be less than one in order to have
motion, and therefore Ec =

√
3(m−ml)g/(2π3εlR2) represents the minimum field needed to

lift the ball. Figure 2 shows the time of flight vs. G calculated from eq. (6).
We have also solved eq. (5) numerically using the general form of the electric-force equa-

tion (2). Another non-dimensional parameter appears in this case, r = 6πρνR2/(m −ml)gτ ,
related to the fact that the force depends on the radius of the sphere. Figure 2 shows the results
for the time of flight vs. G for three different values of r. In our experiments r is of order 0.005
and it is clear from the figure that the case of a constant field is a very good approximation.
However, the minimum field needed to lift the ball is increased if eq. (2) is considered: when
the ball is in contact with the electrode Fe = 0.832q0E0 instead of q0E0. In any case, if the
ball jumps are longer than 2 or 3 ball radii, the electric force can be taken as qE0 without any
significant error and we are going to use this approximation in the rest of the paper.

If an AC voltage is superimposed we have E(t) = E0(1 + ε sinωt) and q0 = 2π3εlR
2E0(1 +

ε sinωt0)/3, where t0 is the time of the previous impact. The equation of motion of the ball is
now, in non-dimensional form,

r
dχ

ds
=

(1 + ε sin(Ωs0))(1 + ε sin(Ωs))

G
e−(s−s0) − 1 , (7)
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Fig. 3. – Numerical bifurcation diagram for G = 0.56 and Ω = 4.8.

where s = t/τ, χ = z/R and Ω = ωτ. This equation can be integrated to obtain an implicit
equation for the non-linear map:

sn = F (sn−1, ε, G,Ω) (8)

for the time sn of the n impact. The bifurcation diagram is obtained iterating the map and
representing sn+1 − sn as a function of ε. In order to avoid the transients, n is taken greater
than a certain value, so the obtained values do not depend on the initial s0. Figure 3 shows the
bifurcation diagram of this non-linear map for G = 0.56 and Ω = 4.8, the frequency associated
to the period of the unperturbed motion. The bifurcation occurs at ε = 0.145. The value of the
bifurcation point changes, increasing when G decreases. For instance, the bifurcation occurs
at ε = 0.13 for G = 0.6 and ε = 0.165 for G = 0.5.

An interesting limit of eq. (8) is G→ 0. The electric force at the electrode is so strong that
we are in the limit of impulsive motion. The most interesting frequencies are those close to 0,
because ∆t0 →∞. In this case the map takes the form

sn = sn−1 +
1

G
+

2ε

G
sin(Ωsn−1) +

ε2

G
sin2(Ωsn−1) . (9)

For G ≤ 0.01 the bifurcation diagram obtained with this formula predicts the bifurcation points
and branches correctly.

Fig. 4. – Experimental set-up.
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Fig. 5. – Oscilloscope record of the ball impacts. a) Before the bifurcation point. b) After bifurcation.

In the limit G → 0 our problem resembles other classical ones. The dynamics does not
depend on the nature of the driven force, but on the coupling between a bounce and the next
one. Similar maps are well documented [1], [2], [6], [7] and have been extensively studied. On
varying ε and Ω a variety of chaotic behavior is expected.

Experiments. – The experimental cell is made of plexiglas and its dimensions are 70 ×
70 × 55 mm. Two parallel aluminum electrodes, circular in shape with diameter 62 mm, are
placed inside the cell and the gap between them is 40 mm. A metallic ring, 60 mm radius and
2 mm width, rests on the bottom electrode concentric with it, in order to compensate the small
divergence of the field at the center of the electrodes. In the absence of this ring the ball drifts
sideways at each jump, and finally, after a few jumps, abandons the electrode.

Fig. 6. Fig. 7.

Fig. 6. – Applied voltage vs. time between impacts. The solid line is the best fit of the theoretical
prediction to the experimental data.

Fig. 7. – Experimental bifurcation diagram.
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The upper electrode is connected to a high-voltage amplifier. The bottom one is connected,
either to a storage oscilloscope or, through an amplifier and an acquisition board, to a computer
(see fig. 4).

The ball is handmade from aluminum sheet. Its radius is about 3 mm and its weight
about 100 mg. The cell is filled up with corn oil, density 990 kg/m3, viscosity 50×10−6

m2/s, conductivity 3 to 5×10−11 S/m and relative dielectric constant 3.1. These values imply
a relaxation time τ = εl/σ ∼ 0.5 to 0.9 s.

D C v o l t a g e. – When a DC voltage is applied, the ball bounces with a very well-defined
time of flight. At each impact against the bottom electrode the ball gets charged and a current
pulse is registered by the oscilloscope (see fig. 5) or the acquisition board. We storage the time
between impacts in the computer for further analysis.

Figure 6 plots the time of flight vs. the applied voltage. The solid line is the best fit to
the experimental data of the theoretical equation (6). From this fit we obtain τ = 0.5 s and
Vc = 11 kV, Vc is the minimum voltage at which the electric force overcomes the gravity and
the ball starts to move.

D C p l u s A C v o l t a g e. – When an AC voltage is superimposed, V (t) = V0(1 + ε sinωt),
all the complexities of non-linear dynamics are present. We have looked for, and focused on, a
period-doubling bifurcation. This occurs when the period of the AC voltage coincides with the
time of flight of the ball for the applied voltage. If the applied DC voltage is V0 = 17 kV, the
period is 0.84 s and the bifurcation takes place at ε = 0.14. This means that for ε < 0.14 the
ball bounces regularly, with a constant time of flight, whereas for ε > 0.14 the ball alternates
a larger jump with a smaller one. In the diagram ∆t vs. ε this is reflected in the branching
at the bifurcation point (see fig. 7). The experimental value of G is 0.6 ± 0.1, therefore the
numerical map (fig. 3) compares favorably with the experimental one. The bifurcation is clearly
demonstrated in the oscilloscope records (fig. 5).

Theoretically, for G = 0.56 a second period doubling occurs for ε > 0.19; the experimental
accuracy cannot resolve for this second bifurcation but it is almost apparent in the figure.

Conclusion. – A conducting ball in a low-conducting liquid bounces regularly on the bottom
electrode when a DC voltage is applied. This system serves as a model for non-linear motion.
Adding an AC voltage of the same frequency as that of the unperturbed system produces a
period-doubling bifurcation. This is closely related to the classical problem of a bouncing ball
on a moving table.
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