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Scaling and Universality of Critical Fluctuations in Granular Gases
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The total energy fluctuations of a low-density granular gas in the homogeneous cooling state near the
threshold of the clustering instability are studied by means of molecular dynamics simulations. The
relative dispersion of the fluctuations is shown to exhibit a power-law divergent behavior. Moreover, the
probability distribution of the fluctuations presents data collapse as the system approaches the instability,
for different values of the inelasticity. The function describing the collapse turns out to be the symmetric
of the one found in several molecular equilibrium and nonequilibrium systems.
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A granular system is an assembly of macroscopic parti-
cles dissipating their energy through inelastic collisions. In
the rapid granular flow regime, the grains move freely and
independently between collisions and the system is often
referred to as a granular gas. In this regime, the behavior of
a granular system resembles that of a molecular fluid,
although with many significant differences [1]. These dis-
crepancies have been extensively illustrated by using theo-
retical, experimental, and also particle simulation methods
[2]. In this Letter, evidence is reported of a rather surpris-
ing analogy between granular gases and molecular sys-
tems. It is shown that the statistical behavior of a freely
evolving granular system near the clustering instability has
strong similarities with that of several molecular model
systems, including equilibrium systems in the critical re-
gion. More precisely, the second moment of the relative
fluctuations of the total energy diverges with a given
critical exponent. Besides, and even more remarkably,
the energy fluctuations obey a scaling law that, when
properly expressed, is the same as the one found in some
correlated equilibrium and nonequilibrium molecular sys-
tems [3–5].

A widely used simple model for granular gases is a
system of smooth inelastic hard spheres (d � 3) or disks
(d � 2) of mass m and diameter �. The inelasticity of
collisions is characterized by a constant coefficient of
normal restitution �. As a consequence of the energy
dissipation in collisions, isolated granular gases do not
exhibit any homogeneous time-independent state. The sim-
plest state is the so-called homogeneous cooling state
(HCS) [6] with vanishing flow field and a monotonically
decreasing temperature THCS�t�, obeying the equation
@tTHCS�t� � ��HCS�THCS�THCS�t�, where �HCS�THCS� /

T1=2
HCS is the cooling rate. At a microscopic level, it has

been postulated that the time dependence of the ensemble
describing this state occurs only through the scaling of the
velocities with the thermal velocity, that is proportional to
T1=2
HCS�t�, and the corresponding normalization [7]. The

HCS is unstable against long wavelength spatial perturba-
tions [8], leading to the spontaneous formation of velocity
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vortices and density clusters. This clustering instability is
accurately predicted by a linear stability analysis of the
hydrodynamic equations, which shows that it is driven by
the transversal shear mode [8,9]. A critical length Lc is
identified, so that the system becomes unstable when its
linear size L exceeds Lc. Its value has been determined for
a low-density granular gas described by the (inelastic)
Boltzmann equation, and it is given by [10]

Lc �
�2� d���d=2�

2��d�3�=2n��d�1�

�
��

2��

�
1=2
; (1)

where n is the number of particles density, ����� �
�0�HCS=nkBTHCS, and ����� � ��THCS�=�0�THCS�, with
kB being the Boltzmann constant, � the shear viscosity of
the granular gas, and �0 its elastic limit. The explicit
expressions of �� and �� are given in [10]. In the elastic
limit � � 1, �� vanishes, and �� � 1. The accuracy of this
prediction has been verified by direct Monte Carlo simu-
lation of the Boltzmann equation [11].

Another important consequence of the inelasticity of
collisions, largely unexplored, is the presence of an intrin-
sic noise in the macroscopic description of the system.
Recently [12], it has been shown that the total energy of
a dilute granular gas in the HCS exhibits fluctuations and
time-correlation properties which are caused by the energy
dissipation in collisions and, at a mesoscopic level, by the
presence of velocity correlations. Although the correla-
tions increase as the inelasticity increases, they remain
relatively small over all the range of values of � studied
(� � 0:6). Here it is shown that the noise is amplified, and,
in fact, it diverges at the threshold of the clustering
instability.

We have performed molecular dynamics (MD) simula-
tions of a freely evolving system of N inelastic hard disks
(d � 2), using the steady-state method, which is based on
an exact mapping of the HCS onto a steady state. This
property follows from a change in the time scale, as dis-
cussed in detail in [13]. The steady representation of the
HCS removes the difficulties associated with the rapid
cooling of the fluid leading to numerical inaccuracies
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very soon. With this method, the trajectories can be fol-
lowed for an arbitrary time. The system considered has
been a square box of size L with periodic boundary con-
ditions. The density in all the results reported in the follow-
ing is n � 0:02��2, so the values of L and N were
consistently changed in the different simulations. The
above value of the density has been found to be low enough
as to guarantee that the average behavior of the system is
accurately described by the Boltzmann equation, even in
the unstable region of the granular gas [14]. Two different
values of the restitution coefficient have been considered,
� � 0:8 and � � 0:9, for which Eq. (1) gives Lc ’ 304�
and Lc ’ 413�, respectively. We have studied the behavior
of the total properties of the system when the critical size is
approached from below by increasing the value of L at
constant � (and n). In all the simulations, we have checked
that the system was actually in the HCS by monitoring the
local velocity and density fluctuations.

The first quantity we have investigated is the reduced
cooling rate �� as a function of the linear size of the system,
at constant �. The simulations show that it monotonically
decreases very slowly as L approaches its critical value.
The decay is imperceptible on the scale used in Fig. 1,

where ln���2 is plotted as a function of f�L 
 �Lc � L�=Lc

for � � 0:9. Here and in the following, the theoretical
prediction for Lc given by Eq. (1) has been used. To
make the above dependence on L explicit, we have also
plotted ln����2�L� � ���2�0��, where ���0� is the constant
asymptotic value of the reduced cooling rate far below the
transition point, also obtained from the simulations. The

results indicate a behavior of the form ���2�L� 
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ln(1−L/Lc)
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FIG. 1. Dependence of the scaled cooling rate ���L� on the
‘‘distance’’ to the instability point f�L 
 1� L=Lc for a system
of inelastic hard disks with � � 0:9. The solid line is a fit to the
power-law behavior discussed in the text.
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���2�0� � A�
f�L�1

, with A� ’ 0:02. Similar results were
found for � � 0:8. If this behavior persists until the insta-
bility point, it would imply that the cooling rate tends to

vanish as �f�L=A� �
1=2. Nevertheless, since in the observed

region ���L� is dominated by its asymptotic part ���0�, it is
difficult to make any definite statement on this point.

Next, let us consider the second moment of the fluctua-
tions of the total energy E,

�2
E 


hE2�t�i � hE�t�i2

hE�t�i2
; (2)

where the angular brackets denote average over the en-
semble generated by a number of trajectories [12]. The
above quantity does not depend on time in the HCS, due to
the scaling property of its distribution function. The results,
again for � � 0:9, are given in Fig. 2. For L � Lc,
N�2

E�L� is practically constant, independent of L, indicat-
ing that �E / N�1=2, as expected. In fact, its value in this
region, which we denote by N�2

E�0�, is accurately pre-
dicted by the result derived in Ref. [12] by using kinetic
theory methods. Although it is a function of �, increasing
as � decreases, it remains rather small, at least for not too
inelastic systems. On the other hand, when L approaches
its critical value, the energy fluctuations grow very fast.
This is clearly seen by studying the quantity N��2

E�L� �
�2
E�0��, which is also plotted in the same figure. It follows

that close enough to the instability point, the second mo-
ment of the total energy fluctuations is accurately de-
scribed by the critical law
−4 −3 −2 −1
ln(1−L/Lc)
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FIG. 2. Scaled second moment of the total energy fluctuations
�2
E as a function of the distance f�L to the instability point for

� � 0:9. Note that the second moment has been multiplied by
the number of particles N. The solid line is the fit to the power
law defined in the text.
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�E�L� 
 AE�f�L��1; (3)

where AE ’ 6� 10�4 is a critical amplitude. Upon writing
the above equation, we have used that near the instability
point we can approximate N 
 Nc � nL2

c. The same be-
havior is found for � � 0:8, but with the amplitude AE ’
1:5� 10�3. Therefore, the simulation results indicate a
divergent critical behavior of the fluctuations, with a criti-
cal exponent �1 and an amplitude that depends on the
value of the coefficient of restitution �. Of course, the
validity of the above relies on the assumption that the
observed behavior remains the same until the system is
asymptotically close to the instability. It must be pointed
out that close enough to Lc, the above divergence might be
arrested by nonlinearities as it happens in numerous other
systems. In fact, preliminary simulation results indicate
that this may be the case, although no definitive conclusion
can be presently established.

To analyze in more detail the structure of the energy
fluctuations, we make the unjustified assumption that the

probability distribution function (PDF) PL�f�E� of the rela-

tive energy fluctuations f�E 
 �E�t� � hE�t�i�=hE�t�i in the
vicinity of the clustering instability verifies the scaling
relation

PL�f�E� � 1

�E

~f
� f�E
�E

�
; (4)

where ~f is a scaling function. It is moreover assumed that
all the dependence of ~f on � and L occurs through �E.
Consider then the function
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FIG. 3. Probability density function of the relative total energy
fluctuations �EPL��f�E� for a system of inelastic hard disks
with � � 0:8. The symbols are from MD simulations and the
solid line is Eq. (6).
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�EPL�f�E� � ~f
� f�E
�E

�
: (5)

All the L and � dependence has been eliminated on the
right-hand side of the above expression when considered as

a function of f�E=�E. Thus as long as the assumed scaling
holds near the clustering instability, the data for systems
with different sizes should tend to collapse onto each other
as L approaches Lc. Moreover, the collapse must occur on
a function that does not depend on �. To check this strong
prediction, we have computed the PDF of the fluctuations
in the MD simulations. For each trajectory of a system, the

range of values of f�E has been partitioned into nonover-
lapping bins and the frequency distribution has been built
up using all the trajectories corresponding to the same
values of L and �. The resulting normalized distributions
are plotted in Figs. 3 and 4, for � � 0:8 and � � 0:9,
respectively. In each case, results for different system sizes
are given. Notice that, for reasons that are explained later,

what has been actually plotted is �EPL��f�E�. The data are
seen to fall quite closely on top of each other, as implied by
the scaling law (5), over more than 3 orders of magnitude,
specially when attention is restricted to the results for the
two largest systems. Moreover, the fluctuations are highly
non-Gaussian and asymmetric around the mean value. This
is a manifestation of the presence of a correlation length of
the order of the size of the system, so that it cannot be
divided into statistical independent mesoscopic regions
and, therefore, there is no reason to expect the fluctuations
of global quantities to be Gaussian.

The shape of PDF’s in Figs. 3 and 4 looks quite similar
to the functional form found in other equilibrium and
nonequilibrium systems [3,4]. To make this statement
more precise, we have considered the approximated form
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FIG. 4. The same as in Fig. 3, but for � � 0:9.
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of the PDF for the fluctuations of the total magnetization in
the two-dimensional XY model in the harmonic approxi-
mation, for temperatures well below the Kosterlitz-
Thouless transition [4],

��y� �K�ex�ex�a; x� b�y� s�; a��=2: (6)

The high y region of this function is approximately
Gaussian, while it presents an exponential tail for large
negative values. A quite large number of nonequilibrium
systems exhibiting self-organized criticality has been
found to show data collapse with a PDF very similar to
��y� [4]. Quite remarkably, the same kind of behavior had
been previously observed in experiments with confined
turbulent flows [15]. In the present context, in principle,

it should be ��y� � �EPL�y� with y � f�E, but in order to
get a good agrement with the MD results, we have to

change f�E by �f�E in the identification of y. The values
of the three parameters in Eq. (6) follow from the normal-
ization, the zero mean, and unit variance conditions, with
the results K � 2:14, b � 0:938, and s � 0:374.
Therefore, Eq. (6) has no fitting parameters. The function
��y� has been also plotted in Figs. 3 and 4, and a surpris-
ingly good agreement with the simulation data is found.
The change in the sign of the fluctuations, i.e., the fact that
the energy fluctuations in a granular gas are described by a
function that is the symmetric with respect to the origin of
that for ordinary systems, may be due to the dissipative
character of granular systems. In the HCS the gas is con-
tinuously dissipating energy, while in molecular systems
energy must be continuously supplied in order to keep
them in a nonequilibrium steady state. Let us mention
that large fluctuations around the threshold of a symmetry
breaking instability have also been observed recently in
granular systems driven by a thermal sidewall at zero
gravity [16]. To our knowledge, whether these fluctuations
can be scaled in a similar way to the one described here has
not been investigated yet.

The natural question prompted by the results reported in
this work is whether the agreement of the fluctuation
spectra of such a variety of systems is telling us something
about the intrinsic behavior of a quite general class of
systems. If this is the case, how this class can be charac-
terized a priori, and the divergent behavior (3) and the
specific scaling form (6), or another one very close to it,
can be derived on the ground of general arguments are
open questions. Specifically in the context of granular
systems, how can the above results be obtained starting
from a microscopic description of the system? Are they
captured by a fluctuating hydrodynamics theory? Is there
an underlying hyperscaling in the sense discussed in [5]?
09800
Finally, it must be stressed that we have restricted our-
selves here to two-dimensional low-density granular gases.
Although it seems that the same kind of results can be
expected at higher densities and also for three-dimensional
systems (perhaps with a different critical exponent), this is
something to be verified. These points are presently under
study and some results will be reported elsewhere.
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