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The angular distribution of the phase space arising in two-particle emission reactions induced by
electrons and neutrinos is computed in the laboratory (Lab) system by boosting the isotropic distribution in
the center of mass (CM) system used in Monte Carlo generators. The Lab distribution has a singularity for
some angular values, coming from the Jacobian of the angular transformation between CM and Lab
systems. We recover the formula we obtained in a previous calculation for the Lab angular distribution.
This is in accordance with the Monte Carlo method used to generate two-particle events for neutrino
scattering [J. T. Sobczyk, Phys. Rev. C 86, 015504 (2012)]. Inversely, by performing the transformation to
the CM system, it can be shown that the phase-space function, which is proportional to the two-particle-
two-hole (2p-2h) hadronic tensor for a constant current operator, can be computed analytically in the frozen
nucleon approximation, if Pauli blocking is absent. The results in the CM frame confirm our previous work
done using an alternative approach in the Lab frame. The possibilities of using this method to compute the
hadronic tensor by a boost to the CM system are analyzed.
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I. INTRODUCTION

Multinucleon emission by electroweak probes is of much
interest nowadays [1–4]. Evidence of its presence in the
quasielastic (QE) peak region has been emphasized in the
analysis of recent neutrino and antineutrino scattering
experiments [5–8]. The role of theoretical calculations is
crucial for these analyses; they have first suggested the
importance of multinucleon emission in quasielastic and
inclusive neutrino-nucleus cross sections [9–12], including
in the dynamics various nuclear effects such as meson-
exchange currents (MEC) with and without Δ-isobar
excitations, final-state interactions (FSI), short-range cor-
relations (SRC), the random-phase approximation (RPA),
effective interactions, etc. These ingredients lead to dis-
crepancies between the theoretical predictions, and these
need to be clarified in order to reduce the systematic
uncertainties in neutrino data analyses [13–16].
The implementation of two-nucleon ejection in

Monte Carlo (MC) neutrino event generators requires an
algorithm to generate events of two-nucleon final states from
given values of momentum and energy transfer. The stan-
dard way to proceed, followed in [17–19], is to select two
nucleons from the Fermi sea, invoke energy-momentum
conservation and compute the four-momentum of the final
two-nucleon state (selecting two nucleon momenta in the

final state). In the CM frame one assumes that the two final
nucleonsmoveback-to-backwith the samegiven energy and
opposite momentum. The emission angles are chosen
assuming an isotropic distribution in the CM. Once the
final momenta are given, a boost is performed to the Lab
system to obtain the momenta of the two ejected nucleons in
this frame; these are then further propagated in the MC
cascade model.
We have recently studied the angular distribution in the

Lab frame corresponding to two-particle (2p) emission in
the frozen nucleon approximation [20], where the two
nucleons are initially at rest. This distribution appears in the
phase-space integration of the inclusive hadronic tensor in
the 2p-2h channel. We found that the angular distribution
has singularities coming from the Jacobian obtained by
integration of the Dirac delta function of energy conserva-
tion, where a denominator appears that can be zero for
some angles. This behavior is due to the fact that for a fixed
pair of hole momenta h1;h2, and for given momentum
transfer, q, and emission angle θ01 of the first particle, there
are two solutions for the momentum of the ejected nucleon
p0
1 that are compatible with energy conservation. For a

given value of the energy transfer ω, these two solutions
collapse into only one for the maximum allowed emission
angle. For this angle there is a minimum in the 2p-2h
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excitation energy, Eex, as a function of p0
1, and therefore the

derivative that appears in the denominator of the Jacobian is
zero: dEex=dp0

1 ¼ 0.
In [20] we showed that the divergence of the angular

distribution in the Lab system is of the type
R
1
0 fðxÞdx= ffiffiffi

x
p

.
Hence it is integrable around zero, and we gave an analytic
formula for the integral around the divergence. The interest
of the detailed study of the angular integral was to reduce
the CPU time in the calculation of the hadronic tensor for
inclusive neutrino scattering. Here a 7D integral appears
that has to be computed in a reasonable time in order to use
it to predict flux integrated neutrino cross sections, where
one additional integration is needed.
In this paper we show that the isotropic angular dis-

tribution in the CM frame, as the one used in Monte Carlo
generators [21], corresponds exactly to the angular distri-
bution obtained by us in the Lab system after integration of
the Dirac delta function of energy. Although this corre-
spondence seems to be evident, in practice it is not so
obvious because in Monte Carlo generators no integration
of a delta function of energy is explicitly performed, or at
least no Jacobian is present in the algorithm to select the
emission angle [17]. That means that the phase-space
angular distribution in the Monte Carlo codes is known
except for a normalization factor. Besides it was not evident
earlier why the divergence in the angular distribution
appears in the Lab system from a constant distribution
in the CM and how it can be handled by the Monte Carlo
procedure.
Furthermore, we also show that upon performing the

phase-space integral in the CM system one finds that the
result is analytic if there is no Pauli blocking, and we give a
simple formula for it in the frozen nucleon approximation.
This integration method in the CM frame provides an
alternative way to compute the hadronic tensor in neutrino
and electron scattering.
The interest of the present study is directly linked to the

reliability of the frozen nucleon approximation to get
sensible results for intermediate to high momentum and
energy transfers. This was already applied to a preliminary
evaluation of the hadronic tensor in the case of the seagull
current. Moreover the frozen nucleon approximation is the
leading term if the current is expanded in powers of (h1, h2)
around (0, 0). An integral over the emission angle remains
to be performed. Under the assumption that the dependence
of the elementary hadronic tensor on the emission angle is
soft, one could factorize it out of the integral, evaluating it
for some average angle, say ðθMax þ θMinÞ=2, times the
phase-space integral. In fact, the strong dependence of the
electroweak matrix elements comes from the ðq;ωÞ
dependence of the electroweak form factor and not from
the angular dependence for fixed ðq;ωÞ. The validity of
these assumptions will be verified in a coming paper where
the angular dependence of the elementary hadronic tensor
will be studied.

In Sec. II we present a detailed study of the general
formalism with explicit evaluation of the phase space and
discussions on how to perform explicitly the boost between
the two reference frames, Lab and CM. We introduce all of
the variables required to analyze the 2p-2h problem and
make contact with the frozen nucleon approximation where
the calculations can be done in a straightforward way.
Importantly, we show that these ideas can be incorporated
into fully relativistic 2p-2h analyses of neutrino reactions.
In Sec. III we summarize our basic findings and point out
the main issues to be considered in future work, i.e., in any
approach that attempts to take into account two-nucleon
ejection effects in lepton scattering reactions.

II. FORMALISM

A. Lab frame

The starting point is the 2p-2h hadronic tensor for
neutrino and electron scattering in the Lab system, given
in the Fermi gas by

Wμν
2p−2h ¼

V
ð2πÞ9

Z
d3p0

1d
3h1d3h2

m4
N

E1E2E0
1E

0
2

× rμνðp0
1;p

0
2;h1;h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ

× Θðp0
1; p

0
2; h1; h2Þ; ð1Þ

where Qμ ¼ ðω;qÞ is the four-momentum transfer, mN is
the nucleon mass, and V is the volume of the system. The
four-momenta of the final particles and holes are P0

i ¼
ðE0

i;p
0
iÞ and Hi ¼ ðEi;hiÞ, respectively. Momentum con-

servation implies p0
2 ¼ h1 þ h2 þ q − p0

1. The initial
Fermi gas ground state and Pauli blocking imply that
hi < kF, and p0

i > kF. These conditions are included in the
Θ function, defined as the product of step functions

Θðp0
1; p

0
2; h1; h2Þ ¼ θðp0

2 − kFÞθðp0
1 − kFÞ

× θðkF − h1ÞθðkF − h2Þ: ð2Þ

The function rμνðp0
1;p

0
2;h1;h2Þ is the hadronic tensor for

the elementary transition of a nucleon pair with the given
initial and final momenta, summed over spin and iso-
spin [20].
We choose the q direction to be along the z axis. Then

the above integral is reduced to 7 dimensions. First there is
a global rotational symmetry over one of the azimuthal
angles. We choose ϕ0

1 ¼ 0 and multiply by a factor 2π.
Furthermore, the energy delta function enables an analytic
integration over p0

1. This 7D integral has to be performed
numerically [22,23]. Under some approximations [24–27]
the number of dimensions can be further reduced, but this
cannot be done in the fully relativistic calculation.
In a previous paper [20] we compared different methods

to evaluate the above integral numerically. In particular
we studied the special case of the phase-space function

I. RUIZ SIMO PHYSICAL REVIEW D 90, 053010 (2014)

053010-2



Fðq;ωÞ, obtained by using a constant elementary tensor
rμν ¼ 1 (independent of the kinematics), defined, except
for a factor V=ð2πÞ9, as

Fðq;ωÞ≡
Z

d3p0
1d

3h1d3h2
m4

N

E1E2E0
1E

0
2

× δðE0
1 þ E0

2 − E1 − E2 − ωÞΘðp0
1; p

0
2; h1; h2Þ

ð3Þ

with p0
2 ¼ h1 þ h2 þ q − p0

1.
For fixed hole momenta, the energy of the two final

particles is

E0 ¼ E0
1 þ E0

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
1
2 þm2

N

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 − p0

1Þ2 þm2
N

q
; ð4Þ

where

p0 ¼ h1 þ h2 þ q ð5Þ

is the final momentum of the pair. For fixed emission angle
θ01, we integrate over p0

1 changing to the variable E0. By
differentiation we arrive at the following Jacobian [note that
the Jacobian of [12] agrees with Eq. (6)]

���� dp0
1

dE0

���� ¼
����p0

1

E0
1

−
p0
2 · p̂

0
1

E0
2

����−1 ð6Þ

with p̂0
1 ≡ p0

1=p
0
1. Now integration of the Dirac delta

function of energy gives E0 ¼ E1 þ E2 þ ω and the
phase-space function becomes

Fðq;ωÞ ¼ 2π

Z
d3h1d3h2dθ01 sin θ

0
1

m4
N

E1E2

×
X
α¼�

p0
1
2

j p0
1

E0
1

− p0
2
·p̂0

1

E0
2

j
Θðp0

1; p
0
2; h1; h2Þ

E0
1E

0
2

����
p0
1
¼p0

1
ðαÞ

;

ð7Þ

where the sum inside the integral runs over the two
solutions p0

1
ð�Þ of the energy conservation equation which

is quadratic in p0
1. The explicit expressions of the two

solutions are given in [20].
In this paper we are interested in the angular dependence

of the integrand. We define the angular distribution
function for fixed values of ðq;ω;h1;h2Þ as

Φðθ01Þ ¼ sin θ01

Z
p0
1
2dp0

1δðE1 þ E2 þ ω − E0
1 − E0

2Þ

× Θðp0
1; p

0
2; h1; h2Þ

m4
N

E1E2E0
1E

0
2

¼
X
α¼�

m4
N sin θ01p

0
1
2Θðp0

1; p
0
2; h1; h2Þ

E1E2E0
1E

0
2j p

0
1

E0
1

− p0
2
·p̂0

1

E0
2

j

����
p0
1
¼p0

1
ðαÞ

≡ Φþðθ01Þ þ Φ−ðθ01Þ; ð8Þ

where Φ�ðθ01Þ correspond to the two terms of the sum.
Once more p0

2 ¼ h1 þ h2 þ q − p0
1. The function Φðθ01Þ

thus measures the distribution of final nucleons as a
function of the angle θ01. Note that this function is computed
analytically in the Lab system, given as a sum over the two
solutions of the energy conservation condition. Thus there
are really two distributions corresponding to the two
possible energies of final particles for a given emission
angle. The angular distribution is referred to the first
particle. The second one is determined by energy-momen-
tum conservation.
In [20] it was shown that the angular distribution in

Eq. (8) has divergences for some angles where the
denominator coming from the Jacobian is zero.
Examples were given in the frozen nucleon approximation.
It was also shown that the divergence is integrable, and an
analytic formula was given for the integral over θ01 around
the divergence. The integral in the remaining intervals was
performed numerically.

B. Boost from the CM frame

In Monte Carlo event generators the angular distribution
is obtained from an isotropic distribution in the CM frame,
and then transformed back to the Lab system. Here we
show that our distribution is recovered except for a
normalization constant that we determine.
First we fix the kinematics of ðq;ω;h1;h2Þ. To simplify

our formalism, we consider the particular case of the frozen
nucleon approximation, i.e., h1 ¼ h2 ¼ 0. The general case
can be done similarly. The frozen nucleon approximation
has the advantage that the total final momentum is equal to
p0 ¼ q and hence the CM frame moves in the z direction
(“upwards”). Therefore, the x; y components are invariant
under the boost from the CM to the Lab frames. In [20] it
was shown that the frozen nucleon approximation gives an
accurate representation of the total phase-space function, so
one expects the angular distribution in the frozen nucleon
approximation to be representative of the general case.
Doubly primed variables refer to the CM system. The

total final momentum is

p00 ¼ p00
1 þ p00

2 ¼ 0; ð9Þ

and the total final energy E00 is determined by invariance of
the squared four-momentum
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E00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 − p02

q
; ð10Þ

where ðE0;p0Þ ¼ ð2mN þ ω;qÞ are the final energy and
momentum in the Lab frame.
In the CM frame the two final nucleons are assumed to

go back-to-back with the same momentum and with the
same energy

E00
1 ¼ E00

2 ¼
E00

2
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 − p02

q
: ð11Þ

The condition E00
1 > mN restricts the allowed ðω; qÞ region

where the two-nucleon emission is possible.
Let θ001 be the emission angle corresponding to the first

particle. To obtain the nucleon momentum in the Lab
system we perform a boost of the four vector ðP00

1Þμ ¼
ðE00

1;p
00
1Þ back to the Lab frame, that is moving downward

along the z axis with dimensionless velocity v, where this is
the velocity of the CM system with respect to the Lab
system, given by

v ¼ p0

E0 : ð12Þ

The boost transformation of the ð0; zÞ four-vector compo-
nents is given by a 2 × 2 Lorentz matrix equation

�
E0
1

p0
1z

�
¼ γ

�
1v

v1

��
E00
1

p00
1z

�
; ð13Þ

where γ ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. From here we get

E0
1 ¼ γðE00

1 þ vp00
1 cos θ

00
1Þ ð14Þ

p0
1 cos θ

0
1 ¼ γðvE00

1 þ p00
1 cos θ

00
1Þ: ð15Þ

Therefore the momentum and angle in the Lab system are

p0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðE00

1 þ vp00
1 cos θ

00
1Þ2 −m2

N

q
ð16Þ

cos θ01 ¼
γðvE00

1 þ p00
1 cos θ

00
1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2ðE00
1 þ vp00

1 cos θ
00
1Þ2 −m2

N

p : ð17Þ

In Fig. 1 we show the Lab emission angle as a function of
the CM angle for momentum and energy transfers: q ¼
3 GeV=c and ω ¼ 2 GeV. We choose in this case a high
value of the momentum transfer to avoid effects linked to
Pauli blocking. The ω value is close to the QE peak,
ωQE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

N

p
−mN , and below it. As the CM angle

runs from 0 to 180 degrees, for this kinematics the Lab
angle starts growing, reaches a maximum and then
decreases. Therefore, for a given emission angle in the
Lab system, θ01, there correspond two angles in the CM, that
we denote ðθ001Þþ and ðθ001Þ−. They differ in the value of the

Lab momentum p0
1, that is plotted in the lower panel of

Fig. 1. Hence there are two different values of p0
1 for a given

Lab angle. These two p0
1 values obviously correspond to

the two solutions, ðp0
1Þ� of energy conservation, appearing

in the sum of the phase-space function in Eqs. (7), (8). The
momentum of the second nucleon, p0

2, could be obtained by
changing cos θ001 by ð− cos θ001Þ in Eq. (16). Therefore the
range of values it takes is the same as p0

1.

C. Transformation of the angular distribution

We assume that the angular distribution in the CM frame
is independent of the emission angle, except for Pauli
blocking restrictions,

n00ðθ001Þ ¼ CΘðp0
1; p

0
2; 0; 0Þ; ð18Þ

FIG. 1 (color online). Lab magnitudes as a function of CM
magnitudes. The momentum and energy transfer are q ¼
3 GeV=c and ω ¼ 2 GeV. Top panel: cos θ01 versus cos θ001 .
Middle panel: θ01 versus θ001 . Bottom panel: p0

1 versus θ001 .
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where C is a constant that is determined below. The step
function ensures Pauli blocking. The angular distribution in
the Lab system, n0ðθ01Þ, is obtained by imposing conserva-
tion of the number of particles emitted within two corre-
sponding solid angles dΩ0

1 and dΩ00
1 , in the Lab and the CM

systems

n0ðθ01ÞdΩ0
1 ¼ n00ðθ001ÞdΩ00

1: ð19Þ

Since the boost conserves the azimuthal angle dϕ00
1 ¼ dϕ0

1,
we get the well-known transformation expression:

n0ðθ01Þ ¼
CΘðp0

1; p
0
2; 0; 0Þ

j d cos θ01d cos θ00
1

j
: ð20Þ

The derivative in the Jacobian is computed by differ-
entiation of Eq. (17) with respect to cos θ001 , and can be
written in the form

d cos θ01
d cos θ001

¼ γp00
1

p0
1 − vE0

1 cos θ
0
1

ðp0
1Þ2

ð21Þ

Writing γ in the form

γ ¼ E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 − p02p ¼ E0

2E00
1

ð22Þ

we arrive at the following formula for the angular distri-
bution in the Lab frame

n0ðθ01Þ ¼
2E00

1

E0p00
1

ðp0
1Þ2

jp0
1 − vE0

1 cos θ
0
1j
CΘðp0

1; p
0
2; 0; 0Þ: ð23Þ

Note that this distribution is not unique, because, as shown
in Fig. 1, there may be two different CM angles, and two
different values of p0

1 corresponding to the same Lab angle
θ01. Therefore there are two possible angular distributions,
and the total distribution is given by the sum of the two,

n0ðθ01Þ ¼ n0þðθ01Þ þ n0−ðθ01Þ; ð24Þ

where each partial distribution n0�ðθ01Þ corresponds to
Eq. (23) using the ðp0

1Þ� values, respectively.

D. Equivalence of Lab distributions

The next step is to compare the functions n0�ðθ01Þ sin θ01
with the angular distribution Φ�ðθ01Þ computed for nucle-
ons at rest, h1 ¼ h2 ¼ 0, given by Eq. (8)

Φ�ðθ01Þ ¼ sin θ01
m2

Nðp0
1Þ2Θðp0

1; p
0
2; 0; 0Þ

jE0
2p

0
1 − E0

1p
0
2 · p̂

0
1j

; ð25Þ

where p0
1 ¼ ðp0

1Þ�. Using

p0
2 · p̂

0
1 ¼ q cos θ01 − p0

1 ð26Þ

the denominator in Eq. (25) can be written as

E0
2p

0
1 − E0

1p
0
2 · p̂

0
1 ¼ E0p0

1 − E0
1q cos θ

0
1

¼ E0ðp0
1 − E0

1v cos θ
0
1Þ: ð27Þ

Substituting in Eq. (25) we obtain

Φ�ðθ01Þ ¼ sin θ01
m2

Nðp0
1Þ2Θðp0

1; p
0
2; 0; 0Þ

E0jp0
1 − E0

1v cos θ
0
1j

: ð28Þ

Comparing with Eq. (23), it follows that

n0�ðθ01Þ sin θ01 ¼ Φ�ðθ01Þ ð29Þ
provided that

C ¼ m2
N

2

p00
1

E00
1

: ð30Þ

In Fig. 2 we show the two angular distributions Φ�ðθ01Þ
for q ¼ 3 GeV=c and three values of ω. We can see that
both distributions are zero above a maximum allowed angle
in the Lab system. Both distributions present a divergence
(they are infinite) at that precise maximum angle, because
the derivative in the denominator of Eq. (20) is zero at that
point. This is in agreement with our previous work [20]
where we also demonstrated that the divergence is inte-
grable. The results of Fig. 2 for the total distribution agree
with the findings of [20]. In Fig. 2 we have not included
Pauli blocking in the plots of Φ�, but it is included in the
total distribution. We see that Pauli blocking only is
effective in the last case, ω ¼ 2200 MeV, killing the
divergence.

E. Integration in the CM

The method of the previous section can be reversed by
making the inverse boost from Lab to CM. This allows us to
perform the integral over θ01 in Eq. (7) using the CM
emission angle, by changing variables θ01 → θ001 . Since this
is the inverse transformation applied in the previous
sections, the Jacobian cancels the denominator in Eq. (7).
We start by fixing h1 and h2 and define the phase-space

integral over the final momenta

Gðh1;h2; q;ωÞ≡
Z

d3p0
1d

3p0
2

m2
N

E0
1E

0
2

Θðp0
1; p

0
2; h1; h2Þ

× δ4ðH1 þH2 þQ − P0
1 − P0

2Þ; ð31Þ
such that

Fðq;ωÞ ¼
Z

d3h1d3h2
m2

N

E1E2

Gðh1;h2; q;ωÞ: ð32Þ

We recall from special relativity that the integral measureR
d3p=E is Lorentz invariant because of the result,
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Z
d3p
2EðpÞ ¼

Z
d4pδðpμpμ −m2

NÞθðp0Þ: ð33Þ

Then we can write

Gðh1;h2; q;ωÞ ¼
Z

d3p00
1d

3p00
2

m2
N

E00
1E

00
2

Θðp0
1; p

0
2; h1; h2Þ

× δ4ðH00
1 þH00

2 þQ00 − P00
1 − P00

2Þ; ð34Þ

where the doubly primed variables refer to the momenta
in the CM frame. The CM is defined by p00 ¼
ðh1 þ h2 þ qÞ00 ¼ 0. The step functions, which are not
invariant, must be computed in the Lab system, i.e., the
momenta inside the integral have to be transformed back to
the Lab system to compute the argument of the step
function. Integrating over p00

2 we obtain

Gðh1;h2; q;ωÞ ¼
Z

d3p00
1δðE00 − E00

1 − E00
2Þ

×
m2

N

E00
1E

00
2

Θðp0
1; p

0
2; h1; h2Þ ð35Þ

with p00
2 ¼ −p00

1. Therefore, the CM energies satisfy the
relationship E00

1 ¼ E00
2 , and we can write

Gðh1;h2; q;ωÞ ¼
Z

d3p00
1δðE00 − 2E00

1Þ

×
m2

N

ðE00
1Þ2

Θðp0
1; p

0
2; h1; h2Þ: ð36Þ

Now we change variables p00
1 → E00

1 , and integrate over E00
1

using p00
1dp

00
1 ¼ E00

1dE
00
1 ,

Gðh1;h2; q;ωÞ ¼
m2

N

2

p00
1

E00
1

Z
dΩ00

1Θðp0
1; p

0
2; h1; h2Þ: ð37Þ

The remaining integral of the step function over the
emission angles is in general nontrivial and has to be
performed numerically. If there is no Pauli blocking, the
above integral takes its maximum value:

Gðh1;h2; q;ωÞn:p:b ¼ 4π
m2

N

2

p00
1

E00
1

: ð38Þ

What remains to be performed is the integral over h1;h2,
that in general should be evaluated numerically. However,
in the frozen nucleon approximation one assumes that the
integrand depends very mildly on h1;h2, and therefore one
can employ this fact to fix the kinematics to the frozen
nucleon value, h1 ¼ h2 ¼ 0. The phase-space integral in
this case is trivial, and takes on the value

Fðq;ωÞn:p:b ¼ 4π

�
4

3
πk3F

�
2m2

N

2

p00
1

E00
1

; ð39Þ

where the ratio p00
1=E

00
1 in the frozen nucleon approximation

is given by

p00
1

E00
1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
N

ð2mN þ ωÞ2 − q2

s
: ð40Þ

Note that in the asymptotic limit ω → ∞, a constant value
is obtained,

Fðq;∞Þ ¼ 4π

�
4

3
πk3F

�
2m2

N

2
: ð41Þ

This asymptotic limit is in agreement with the one obtained
in [20] by integration in the Lab system.
As an example, we show in Fig. 3 the phase-space

function Fðq;ωÞ for q ¼ 3 GeV=c, computed using the

FIG. 2 (color online). The two angular distributions Φ� and the
total, in the Lab system, for two-nucleon emission in the frozen
nucleon approximation. The momentum transfer is q ¼ 3 GeV=c
and three values ofω ¼ 1800, 2000 and 2200 GeVare considered.
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analytic formula without Pauli blocking, Eq. (39), and by
numerical integration in the Lab frame using the method of
[20] with Pauli blocking. Both results agree except in the
small region around the quasielastic peak, where Pauli
blocking produces the very small difference seen between
the two results; there the Pauli-blocked function Fðq;ωÞ is
slightly below the analytic result.

III. CONCLUSIONS AND PERSPECTIVES

In this work we have analyzed the angular distribution of
2p-2h final states in the relativistic Fermi gas, finding the
connections between the CM and Lab systems. Theoretical
calculations of many-particle emission in neutrino and
electron scattering usually rely on the Lab frame to be
the most appropriate to perform the calculations, since the
Fermi gas state description is simpler, mainly because Pauli
blocking necessarily has to be checked in the Lab system
where the initial nucleons are below the Fermi surface.
However the description of the 2p angular distribution is
simpler in the CM frame, where the angular dependence is
isotropic, if no Pauli blocking is assumed.
On the contrary, the phase-space integral in the Lab

system has the difficulty that the angular distribution has a

singularity at the maximum allowed angle. The integration
of this singularity in the Lab system was made in our
previous work [20]. Here we have studied the alternative
method of performing the angular integral in the CM frame,
where the angular dependence is trivial. We show that such
an integral can be solved analytically in the absence of
Pauli blocking.
Of interest for the neutrino scattering data analysis, we

have shown that the algorithms used in Monte Carlo event
generators produce 2p angular distributions that are in
agreement with the theoretical calculations in the Lab
system if the nuclear current is disregarded.
We have considered the angular distribution coming

from phase space alone. In a complete calculation one is
involved with the interaction between the two nucleons and
the lepton that introduces an additional angular dependence
which needs to be evaluated to correctly describe the
events. A proper model of 2p-2h emission requires at least
the introduction of meson-exchange currents, or nuclear
correlations [22,23]. Work along these lines is in progress.
Finally, the integration method proposed here could

also be used to compute the 2p-2h hadronic tensor in
Eq. (1) as an alternative procedure to the common Lab
frame calculations. Comparisons of the two methods would
be of interest because neither of them presents clear
numerical advantages. Although angular integration in
the CM frame allows one to avoid the divergence arising
in the Lab frame, it introduces the difficulty of having to
perform a different boost inside the integral for each pair of
holes ðh1;h2Þ.
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