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Abstract – The steady states of two vibrated granular gases separated by an adiabatic piston are
investigated. The system exhibits a non-equilibrium phase transition with a spontaneous symmetry
breaking. Even if the gases at both sides of the piston have the same number of particles and
are mechanically identical, their steady volumes and temperatures can be rather different. The
transition can be explained by a simple kinetic theory model expressing mechanical equilibrium
and the energy balance occurring in the system. The model predictions are in good agreement
with molecular dynamics simulation results. The macroscopic description of the steady states is
discussed, as well as some physical implications of the symmetry breaking.
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The adiabatic piston is a prototypical construction to
investigate the relaxation of a system and the relevance
of fluctuations and successive dynamic time scales as
the system evolves. It consists of a gas-filled container
divided into two compartments by a freely moving adia-
batic piston [1]. When the initial states of the gases in
the two compartments are different, the relaxation can be
rather complex even when the whole system is isolated
and the final state is the equilibrium one [2–7]. Of course,
the behavior of the system is much less understood when
it cannot relax to an equilibrium state due to some exter-
nal constrains. In this case, even the answer to apparently
simple questions is not known. For instance, is there any
thermodynamic-like parameter characterizing the macro-
scopic equilibration between the two subsystems? If there
is a final steady state, does it depend and in which way
on the properties of the piston?
Granular media are a key type of systems to address the

above and many other issues related with fundamental
concepts in far-from-equilibrium systems. Due to the
inelasticity of collisions, granular fluids are intrinsic non-
equilibrium systems since no steady state is possible
in an isolated system. On the other hand, the energy
dissipation in collisions offers the possibility of new energy
balances and, consequently, steady states showing many
peculiarities as compared with time-independent states of
molecular, elastic systems are observed [8,9].
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In the case of granular gases, the dynamics is dominated
by (inelastic) binary collisions. Therefore, it is not surpris-
ing that the techniques developed in kinetic theory and
statistical mechanics for ordinary molecular fluids have
been extended with success to them [10,11]. An advan-
tage of granular gases over molecular fluids is that the
grains are macroscopic and, therefore many of their char-
acteristic features are directly observable in experiments.
Of course, this does not presume the range of validity of
a macroscopic theory, that still requires the appropriate
length and time scales.
The aim of the work being reported here is to study

the steady state of two vibrated granular gases separated
by an adiabatic piston. There are some previous studies
of adiabatic pistons involving inelasticity effects. In some
of them, the whole system is isolated, and the granular
gases collide elastically with the piston. The system as a
whole is cooling, and the two granular gases are considered
initially in the same macroscopic homogenous state. It has
been shown that this system exhibits a phase transition
with a spontaneous symmetry breaking [12,13]. In other
studies, infinite baths of elastic gases colliding inelastically
with the piston have been considered. It is assumed
that the baths are not affected by the piston, so that a
steady state is reached after some transient [14,15]. Of
course, all the above studies deal with highly idealized
situations hard to approximate in real experiments. In
particular, the homogeneous cooling state is of too short
a duration to be observed. To overcome this limitation,
in the present work, energy is continuously supplied to
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Fig. 1: Sketch of the system considered in this work. All the
external walls are vibrating in a sawtooth way with velocity vb.

the gases in both compartments by vibrating the walls.
Actually, the construction described below tries to mimic
the experimental setup used in ref. [16], although the
results reported there cannot be related to the theoretical
analysis here, due to the rather different range of densities
in both cases: very dilute here and very dense in [16]. In
addition, no friction is considered in the present analysis.
Very recently, the velocity and position fluctuations of
a piston on top of a vibrated granular gas in presence
of gravity have also been investigated, and a rather
complex and not well understood behavior has been
found [17,18].
We consider a cylindrical container of length Lx divided

into two compartments by a movable piston constrained
to remain perpendicular to the axis of the system, taken
as x-axis. The system is sketched in fig. 1. The two
compartments contain N1 and N2 smooth inelastic hard
spheres (d= 3) or disks (d= 2), respectively. A subscript
i= 1, 2 will be used to identify properties on each side
of the piston. The particles within each subsystem are
equal and their mass and diameters will be denoted by mi
and σi, i= 1, 2, respectively. Collisions between particles
are characterized by velocity-independent coefficients of
normal restitution αi, 0<αi � 1. On the other hand,
collisions between particles and the piston, as well as
collisions of particles with the walls of the container
are taken as elastic. The piston moves without friction
with the walls and it is modeled as having mass M and
negligible width. Energy is continuously supplied to the
system through the external walls. All them vibrate with
a sawtooth velocity profile and an amplitude much smaller
than the mean free path of the particles in their vicinity.
That means that to describe collisions, the walls can
be considered as fixed and with a constant velocity vb
perpendicular to them, and addressed towards the interior
of the system [19].
The focus here will be on the steady-state position
xP eventually reached by the piston as a function of
the parameters defining the system. This is equivalent to
study the way in which the fixed total volume is divided
into the two subsystems by the movable piston. In the

following analysis, the rather drastic approximation that
the granular gas inside each of the compartments can be
treated as homogeneous will be made. The expectation
is that this simplification does not affect the qualitative
behavior of the system, although it certainly will modify
the accuracy of the quantitative predictions. Moreover,
attention will be restricted to those situations in which
both gases are very dilute, so that their equations of
state have the form pi = niTi, where pi is the pressure,
ni the number density, and Ti the granular temperature
of the gas in compartment i. As usual, the latter is defined
from the second moment of the velocity distribution
with the Boltzmann constant formally set equal to unity.
It is

n1 ≡ N1

SPxP
, n2 ≡ N2

SP (Lx−xP ) , (1)

where SP is the area (d= 3) or length (d= 2) of the piston
and, therefore, also the section of the container. In the
steady state, mechanical equilibrium of the piston requires
that p1 = p2 = p, i.e.

n1T1 = n2T2. (2)

Although the stationarity of xP does not imply by itself
the same for the temperatures or the pressure, only
stationary steady states of the whole system will be
addressed in the following. Then energy balance for the
gases in each of the two compartments reads

d

2
NiζiTi−QPiSP −QWiSWi = 0. (3)

The first term of the left-hand side of this equation is
the Haff law, describing the homogeneous cooling of the
gas as a consequence of the inelasticity of collisions [20].
It involves the cooling rate ζi for which an accurate
expression is [21,22]

ζi =
pζ∗(αi)
η0i(Ti)

, (4)

where

ζ∗(α) =
(2+ d)(1−α2)

4d

[
1+
3c∗(α)
32

]
, (5)

c∗(α) =
32(1−α)(1− 2α2)

9+24d+(8d− 41)α+30α2(1−α) , (6)

and η0i(T ) is the shear viscosity of a dilute molecular gas
of hard spheres or disks,

η0i(T ) =
d+2

8
Γ

(
d

2

)
π−

d−1
2 (miT )

1/2
σ
−(d−1)
i . (7)

The second term in eq. (3) is the power going into
compartment i through the piston due to its velocity
fluctuations. This is the way in which the gases at both
sides of the piston interchange energy. To describe it, it is
convenient to introduce a temperature parameter TP for
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the piston defined from the second moment of its velocity
fluctuations, namely

M〈V 2x 〉 ≡ TP , (8)

with the angular brackets denoting statistical average. For
mi/M � 1, i= 1, 2, and assuming that TP /Ti is of the
order of unity, it is [13,23]

QPi ≈−2
(
2mi
π

)1/2
Ti−TP
M

niT
1/2
i . (9)

Finally, the last term in eq. (3) is the power injected
into the subsystem i by the vibrating walls in contact
with it. For the specific kind of vibration considered
here [23],

QWi = pvb. (10)

Moreover, SWi is the total section (area or length) of the
vibrating walls in contact with the gas in compartment i.
This quantity is a function of xP . The steady energy
balance for the piston reads

QP1+QP2 = 0. (11)

Let us introduce dimensionless temperature parameters by

θi ≡ Ti

mv2b
, θP ≡ TP

mv2b
, (12)

where

m≡ m1m2

m1+m2
, (13)

and also σ≡ (σ1+σ2)/2. In terms of the above quantities,
eqs. (3) and (11) become

aiθi+
bi

2Nid
(θi− θP )− ciθ1/2i = 0, (14)

ρ (θ1− θP )+ (θ2− θP ) = 0, (15)

i= 1, 2. In the above equations,

ai ≡ πd/2ζ∗(αi)√
2(d+2)Γ(d/2)

(σi
σ

)d−1( m
mi

)1/2
, (16)

bi ≡ (mmi)
1/2SP

Mσd−1
, (17)

ci ≡
√
πSWi

4
√
2dσd−1Ni

, (18)

and

ρ≡
(
m1n1

m2n2

)1/2
. (19)

Equations (14) and (15) together with eq. (2) rewritten as

ρ2
m2

m1
θ1 = θ2, (20)

define a closed set of equations for the quantities xP , θ1,
θ2, and θP . It is worth to remind that ci depends on xP
through SWi. More specifically, it is

SW1 = SP + γxP , SW2 = SP + γ(Lx−xP ), (21)

with γ being some geometrical factor with dimensions
of (length)

d−2
. For instance, if the system is a circular

cylinder γ = 2(πSP )
1/2, while for a two-dimensional

rectangular system it is γ = 2.
Since the problem has many parameters, let us partic-

ularize for the case in which all the particles are iden-
tical and there is the same number of them in each
compartment, i.e.N1 =N2 =N , α1 = α2 = α, σ1 = σ2 = σ,
m1 =m2 =m. Then, after some algebra, from eqs. (14),
(15), and (21), it is possible to derive a closed equation
for ρ,

(1− ρ) (ρ2−λρ+1)= 0, (22)

λ≡ 2NγLxad

2SP (Nad+ b)+ bγLx
, (23)

where a= a1 = a2 and b= b1 = b2. Note that now it is

ρ=

(
n1

n2

)1/2
=

(
Lx

xP
− 1
)1/2

. (24)

Once the density parameter ρ is known, the value of the
temperature θ1 can be obtained by combination of eq. (14)
for i= 1 and i= 2 and using eq. (15). The result is

θ1 =
π

32

[
2SP + γLx
aNσd−1d

]2
1

(1+ ρ)2
. (25)

Moreover, the temperature parameters are related by

θP = ρθ1 = (θ1θ2)
1/2
. (26)

Equation (22) has the expected symmetric solution ρ= 1,
i.e. n1 = n2, xP =Lx/2. Also, it follows from eqs. (15)
and (20) that θ1 = θ2 = θP , so that the gases in both
compartments and the piston all have the same temper-
ature parameter. This state exhibits the symmetry of
the material parameters at both sides of the piston. But
eq. (22) has also another solution corresponding to an
asymmetric state, in which the steady position of the
piston is not in the middle of the system but at a position
defined by

ρ± =
1

2
(λ±

√
λ2− 4). (27)

The two solutions ρ+ and ρ− = ρ−1+ are obtained one
from the other by interchanging the two compartments.
The existence of this asymmetric state requires that
the parameters of the system verify the condition
λ> 2. For smaller values of λ, the energy balance is
only possible in the symmetric state. Physically this
is due to the piston not being able to transfer enough
power from the larger compartment to the denser and,
therefore, more dissipative one. It follows from eq. (20)
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Fig. 2: (Colour on-line) Bifurcation diagram showing the
asymmetry of the steady position of the piston as a function
of the dimensionless control parameter λ defined in eq. (23).
The symbols are from molecular dynamics simulations and the
solid line is the theoretical prediction given by eq. (26) with
ρ= ρ+. The values of the parameters are Lx = 2Ly = 133σ and
2N = 200, i.e. nσ2 = 0.02. Different values of α have been used
as indicated in the insert. In addition, also different values of
the ratio M/m have been employed to change the value of λ
for each value of α.

that the steady temperatures of the granular gases in
the two compartments are different in the asymmetric
state.
To verify the accuracy of the above theoretical predic-

tions, molecular dynamics (MD) simulations have been
performed for a system of 2N = 200 equal inelastic hard
disks (d= 2) enclosed in a rectangular container of size
Lx×Ly. The latter corresponds to the section SP used
above. All the simulations to be reported in the following
started from a symmetric situation with the piston at rest
in the middle, xP (0) =Lx/2, and equal number of particles
in both compartments. The initial velocity distributions
were Gaussian and with the same temperature. Finally,
the values of Lx and Ly were always chosen such that the
initial number density was quite low.
As predicted by the theory developed above, for small

values of λ defined in eq. (23), the piston remains oscillat-
ing around the middle of the system. Nevertheless, when
the value of λ increases above 2, the average position of
the piston clearly moves away from the initial position
until reaching a different steady average. In this way, the
symmetry of the system is broken. In fig. 2, the steady
average position of the piston is plotted as a function of
the dimensionless control parameter λ for a system with
Lx = 2Ly = 133σ, so that the initial homogeneous density
in both compartments is n= 0.02σ−2. More precisely, the
plotted quantity is

ε≡ |2xP −Lx|
Lx

=
|1− ρ2|
ρ2+1

. (28)
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Fig. 3: (Colour on-line) The same as in fig. 2, but for a system
with Lx = 2Ly = 100σ, so that nσ

2 = 0.04.

Different values of the coefficient of normal restitution
α have been considered. Moreover, for each value of α,
the values of λ has been modified by changing the ratio
M/m between the mass of the piston and the mass of the
particles. A reasonably good agreement is found between
theory and simulations, the former being given by the last
equality in eq. (27) with ρ= ρ+, as given by eq. (26).
It must be taken into account that when the system is
above but close to the bifurcation point, the position of the
piston does not oscillate around a unique steady position
but also moves back and forth between the two possible
ones, at both sides of the middle of the system. It is not an
easy task to separate both motions as required to compare
with the theory developed here, which does not consider
fluctuations between the two steady positions. Similar
results have been obtained for other values of the average
number density, as illustrated in fig. 3 for n= 0.04σ−2.
As expected, the quantitative accuracy of the theoretical
prediction decreases as the density increases, since the
model has been formulated in the low density limit. Let us
also notice that for the geometry used in our simulations,
when Lx �Ly, it is λ< 2 independently from the values
of the other parameters of the system and, therefore, the
theory predicts that there is no spontaneous symmetry
breaking. This feature has been consistently confirmed by
the simulation results.
It is interesting to verify at what extent the hypothesis

on which the theory formulated above is based are verified
and, in particular, the homogeneity of the subsystems.
To measure the temperature and number density fields
in the simulations, the system has been divided into
cells parallel to the piston of width Lx/20. The fields
have been measured once the system has reached the
steady state, and the reported profiles have been averaged
over time and also over trajectories. In fig. 4 the steady
average density and temperature profiles, n(x) and T (x),
are shown for a system with Lx = 2Ly = 100σ, α= 0.99
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Fig. 4: (Colour on-line) Dimensionless steady number density
n(x)/n, n=N/LxLy, (solid line and left axis) and temperature
θ(x)≡ T (x)/mv2b (dashed line and left axis) profiles along
the x-direction for a system with Lx = 2Ly = 100σ, α= 0.99,
and M = 150m. The vertical line indicates the theoretical
prediction for the average position of the piston.

and M = 150m. This gives λ� 2.1 and the prediction
for the steady position of the piston is xP � 0.65Lx.
It is observed that outside from a boundary layer at
both sides of the piston, the hydrodynamic fields can be
considered as uniform inside each compartment, although
having quite different values in each one. The boundary
layers are, at least partially, due to the oscillations of the
piston.
Another quantitative prediction of the model are

the values of the temperature ratios T2/T1 = θ2/θ1 and
TP /T1 = θP /θ1. The theoretical predictions are given by
eqs. (21) and (27). They are compared with the simulation
results for a system with Lx =Ly = 100σ in fig. 5. When
the system is in an asymmetric state, the temperature of
each of the compartments has been measured by omitting
the boundary layers next to the piston. Again, given the
approximations involved in the formulation of the model,
the accuracy can be considered as satisfactory.
In summary, we have found a spontaneous symmetry

breaking in two vibrated granular gases separated by
an adiabatic piston. Moreover, the energy balance
equations (3) and (11), based on simple kinetic theory
arguments, capture surprisingly well the qualitative and
quantitative features observed in the molecular dynamics
simulations.
Of course, a relevant question is to know which is, if

any, the macroscopic criterion leading to equilibration of
the granular gases in both compartments. In this sense,
a first conclusion of the analysis here is that there is
a macroscopic description of the steady states of the
system in terms of the densities of both compartments
and one temperature parameter. From them, the other
two temperature parameters and the pressure can be
determined, if needed. Also, it is possible to compare
the energy dissipation in the symmetric and asymmetric
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Fig. 5: (Colour on-line) Ratio of the granular temperatures
of the gases in both compartments T2/T1 (solid line and plus
symbols) and between the temperature parameter of the piston
and that of compartment 1, TP /T1 (dashed line and crosses)
as a function of the control parameter λ, defined in eq. (23).
The lines are the theoretical predictions derived here while the
symbols are molecular dynamics simulation results. The size of
the system is Lx = 2Ly = 100σ.

steady states. The power PD dissipated in collisions in a
steady state is

PD =
Nd

2
(ζ1T1+ ζ2T2)∝ n1T 3/21 +n2T

3/2
2

∝ θ
3/2
1

xP
+
θ
3/2
2

Lx−xP ∝
ρ2+1

(1+ ρ)2
. (29)

This function has a minimum for ρ= 1, i.e. the symmet-
ric state. This shows that the system chooses between the
allowed states the one having a maximum energy dissi-
pation in the granular gases. This information could be
relevant to formulate some extremal principle governing
the macroscopic evolution of granular fluids.
To put the results reported here in a proper context,

it is worth to remind that the coefficient of restitution
of real granular particles is not constant, but depends on
the impact velocity. A way of incorporating this depen-
dence into a theory like the one developed here is to use
the effective restitution coefficient corresponding to the
steady-state temperatures [10]. It would be interesting to
determine to what extent the inclusion of this effect would
affect the transition point as well as the stability of the
preferred state.
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