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Remarks on the determination of the Landau gauge OPE for the asymmetric three gluon vertex
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We compute a compact operator product expans®RE formula describing power corrections to the
perturbative expression for the asymmetric momentum subtracWM@h’brmalized running coupling
constant up to the leading logarithm. By the use of a phenomenological hypothesis leading to the factorization
of the condensates through a perturbative vacuum insertion, the only relevant condensate in the/ 43me is
The validity of the OPE formula is tested by searching for a good-quality coherent description of previous
lattice evaluations of the MOMenormalized gluon propagator and running coupling.

DOI: 10.1103/PhysRevD.64.114003 PACS nunffer12.38.Aw, 11.15.Ha, 12.38.Cy, 12.38.Gc

That the running coupling constant can be extracted fronestimated via this OPE approach. A non-gauge-invariant con-
the three-gluon vertex in the Landau gauge was proposedensate, that, being in the Landau gauge, is invariant under
several years ago in a seminal wdfR. This method appears infinitesimal gauge transformations and thus connected in
closer to a physical interpretation than Sainger function- some way to the gauge invariaph2, ) defined in[11], is
als[2] but, and mainly for the same reason, more systematithen computed.
effects should be included to produce a reliable prediction The same approach for MORbupling constant requires
for the perturbativeas. In particular, the first statistically use of
meaningful attempts to follow that method missed the impact
of power correction§3] and failed to give an estimate for the 1% (A2(— p)AP(p))=(c)22(p) 1+ (c1)2P“ (p): A%, (0):
coupling constant comparable to others in literat{that of (Aul=PALPD=(Co) i PILH (€)1 (P2 A (0)

Ref.[2], for instancg. In parallel, these power corrections to +(cz)az’;:g:(p):Aa',(O)AE:(O):

the gluon propagator and to the running coupling constant . .

have been greatly studied in recent yelars). +(Cs)abf;:;:g(p);Aa',(o)Ab:(o)
Although the first trials were rather inconclusif@, mo- e . ’

mentum power contributions have been manifestly put in XAZ’,(O);.;. ce (1)

evidence[7,8] for the Landau gauge three-gluon coupling
constant renormalized in both symmettdOM) and asym- \yhere the expansion to the three-gluon local operator is nec-

metric (MOM) momentum subtraction schemes. In R&.  ogqary because the three-point Green function in M
the parameteA s is estimated from the matching of MOM  pe written as
ag lattice results to a perturbative three-loop formula cor-

rected by an unavoida_blt_aazlterm. This naive ansatz used (T* (Ai(_p)“,&g(p)z\z(o))mp

in Ref.[7] seems to eliminate most of the systematic devia-

tion from the three—gluo_n _vertex estimate of Fhe perturbative =(0|T* (AZ(_ D)KB(D)NQ,C,)NP

ag and a precise prediction ofys emerges in full agree- ) ,

ment with that of Ref[2]. Unfortunately, the errors quoted in = (Cl)agf;,<o| ‘A2 ,(0);|g;>NP

this work were clearly underestimated. In fact, the prediction g .

of Ays is so sensitive to a quar|thm|c depgndence on the +(Cs)zgﬁ,;,fc’,<o|;Ai,(o)AS,(o)Az,(o);|gg>NP
momentum scale of the coefficient ofpf/that it appears to

range over an interval of 40 Mepd]. +oee 2

On the other hand, in Reff3,9] a description in terms of
operator product expansid®PE for the power corrections The index NP refers to the nonperturbative nature of the
to the MOM three-gluonag was successfully tried consis- vacuum state in Eq2), while T* refers to the standard time
tently with an analogous description for the gluon propagaordered product in momentum space. The following points
tor. The OPE approach provides through Shifman-should be noticedi) No other local operators with the same
Vainshtein-ZakharoySVZ2) factorization[10] a perturbative dimension ofA? are written in Eq.(1) because, unlike the
tool to obtain the leading logarithmic dependence of nonidentity or A? itself, they do not generate a non-null vacuum
trivial Wilson coefficients. In particular, it can be applied to expectation valué.(ii) Operators other than the three-gluon
compute the coefficient 0&? in the MOM case for the Lan-
dau gauge three-gluon coupling constggit Obviously, the
expectation value oA in a nonperturbative vacuum is also No Lorentz invariant tensor with an odd number of indices can

0556-2821/2001/641)/1140037)/$20.00 64 114003-1 ©2001 The American Physical Society



F. De SOTO AND J. RODI':GUEZ-QUINTERO PHYSICAL REVIEW D64 114003

FIG. 1. Diagrams contributing to the tree-
level Wilson coefficient in Eq(7) Crosses mark
the soft-gluon legs coming from the condensate.

local one for the same dimension, such?gAB(O)Ag(O), do The ratio in Eq.7) represents symbolically all the tree-level

not appear explicitly because they are phenomenologicallgiagrams with five gluon legs where the three carrying zero

supposed not to survive, as will be argued below. The idenmomentum are cufsee Fig. 1

tity and A? clearly do not contribute to the matrix element  Had we directly dealt with the three-gluon local operator

considered in Eq(2). 1A%, (0)A,(0)A°,(0):, the evaluation of the higher order
Following standard SVZ techniques to obtain the peturbagepsors involved would require a much more tedious calcu-

tive expansion of OPE Wilson coefficients, we compute thgation. On the other handyacuum insertionbetween one

appropriate matrix element of E¢l)’s left-hand sidgLHS) gluon field and the other two leads to
to the wanted order. It is obvious that taking the perturbative

vacuum leads to , / '
[(0]:A%,(0)A2,(0)A?,(0):g%)nplr

(O[T* (A2~ P)AYP)AL(0)]0) = (c1) e, G2 £(0), (AR, B0 e,
® O ANZ-1) et ®
C

wherec, can be straightforwardly identified with the pertur-
bative expansion for the Green function with an amputatedvith
soft-gluon leg,
’ Tal’?;/’(:l’:: g,u’V’ 5a,b/gT’ 5fl + g#’p’ 6a,c,gzl 5'?,
2% (p,—p,0)=—2p* g, (D ILGEYPY), (4 nr o
+gp’V’5c b g;/é? . (9)
which should be proportional to its Landau gauge tree-level
tensor. Beyond this purely perturbative first contribution, thewe may phenomenologically assume vacuum insertion to
situation is slightly more complicated. We consider now thework for a certain renormalization momentum scale. Thus,
matrix element on the LHS of E§2) between two external the replacement
soft gluons and the perturbative vacuum. Then, we obtain up

to the considered order in perturbation theory ) o , AZAL(0): e
1A% (0)A),(0)A,(0): — —T7% 0 (10
~ ~ ~ ® v 4 2 p'v'p't
(O T* (A5~ P)YA(P)AS(0)| 6195 connectea 4Nz~ 1)
:(C3)i?;:;:§,’(p)<0|ZAi,/(O)AS:(O)AEI/(O):|gggl>\gfr>- can be done for Eq2), the other components of the tensor

on the LHS not being required for our purposes. Further-
(5 more, the local gluon fiel&!(0) is to be contracted with the
zero-momentum gluon field defined for the vertex. The same
vacuum insertion assumption leads us to argue that, for in-
stance,

For the matrix element on the right hand si@&HS) we have
(0:A2,(0)A2,(0)A°,(0):]g%0)05)
[0]:9,,A% (0)AS,(0):|g%)npR .

(AL ()R, BLe(04?=0. (1

= 65723,55/ (O)Gg\)’ll ,(O)GEJZT)Ct(O)

(PN 00N an, 6% 8 & +O(e)),  (6)

"

. . Thus, the only nonzero surviving condensate comes from the
whereP refers to all the possible permutations of the COUpIe%hree-gluon local operator

(a's"), (\'1"), and (rt). The Wilson coefficientc; may

It is easy to see that, using E@.0), the relevant coeffi-
thus be computed at tree-level order as y g EQO

cient multiplying the local operator in Eq1) is
(AL0)AL(—p)AY(P)AS(0)A3(0))

—_—
G®*°.(0)G?,,,(0)G?¢(0)

abu'v'p’ a'b’c'r
(03)Mvz’b’c’(p)7y’u’p’t

"1t abo' N 7_
Pz"}\’T(C3);LVS'|’t -

(7) 1 (AUOAL(—p)Ap)AS(0)A3(0)) St
B E (sa b’ e
G?%,(0)G?,(0)G?¢(0)

be built without nonzero momenta. (12
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where the RHS may be straightforwardly obtained from Eqstant instead of the bare one. This definB¥°M(u)
(7) This last Eq(lZ) giveS the prescription in which Lorentz :MZG(Z)(MZ) to renormalize appropria’[e|y the tWO_point
and color indices of external gluon legs are contracted in th&reen function, wher&(? is the scalar factor of the bare
diagrams contributing to the tree-level Wilson coefficienttwo-point Green function defined in Ref3]. The three-

(see Fig. 1 gluon Green function is then renormalized by dividing by
Thus, since Eq(4)’s is the only Landau gauge tensor for [ZMOM(4)132. One gets

the asymmetric three-gluon vertgg], we can write, forp?

:-kz G(3)(k2 2)
L Or(K2) =K' S [RGR( uD)] 2 (16
KT (B2~ p)AY(P)AS(0)) e Gr' (0w
K2 The renormalized scalar factor for the three-gluon Green
=—-2p7g,, (PP cl(g, )G(2>t°(0) function with an amputated soft gluoG$)/G), can be
A? projected out from Eq(15), as is done forcs in Eq. (14),
K2\ (0[:AZAL(0):|g) e 1 while for G)(k?, u?) we can write
- T * NP
+c3l 9, P 5| (13)
A 4(NZ—1) -k 2

k26§>(k2,u2>=co(k—2,a<m
We know the scalar coefficients ,c; in Eq. (13) to be di- s
mensionless by OPE power counting rules, and hence both
depend only on the bare couplimgand the dimensionless
ratio of momentum to regularization sc&l@he termc; can

be obtained from Eq(3) and, at tree levelk; is to be com- 17)
puted by projecting over the Landau gauge tree-level tensor

in EqQ. (4) the result from Eq(12),

k2 (APg,u? 1
—a(p) |————
o

+c —
2 4(N2—1) —K2

where the scalar coefficients andc, can be derived from

) those in Eq.(1) and computed similarly t@; and c3, as
c k_ = )abM/V/p (p)T? "b'c'r explained in Ref[9]. Thus, after replacing in Eq16) we
sweelwel| 9975 | = (€8 uwarbrer (RIS o will finally get
K2 K2 -1/2
X P9 " (P)fap gr(k?) = cl( a(pm) ( vo( )
—6Nc(Nc—1)k? % u?

=3g. (14) y { - ( Ca(k?/ 2 a( )

—_— 27,,2
If we renormalize following the MOMprescription at mo- Ca(k/ p% ap))
mentum scalg.?, and then apply the assumed vacuum inser-

2,2
tion factorization, we can write _E Cao(k/ ", ()
2 co(k? pu? ()

The purpose is now to compute to leading logarithms the

<A2>R11u'2 1
4(N2-1) —K?

. (19

KT (AL (—P)AP)AL(0))) ]k u2

L ab(Zte k2 subleading Wilson coefficients in E@L5), as was done in
=—2p’g,,,(P) "GP (0u%)] c1| =, a(u) Ref.[9]. To this end, it will be useful to consider the follow-
K ing operator expansion:

k2 (ADg,u? 1
+03(—2’a(ﬂ> ) (19 2 L « (Ra b/ o VKC
7 4(Ng—1) —k ozPY #(p) o[ T* (AL(— p)AY(P)AS(0))]R 2

where, after renormalization, the Wilson coefficients depend

on the ratio of the momentum and the renormalization scale, C3(k2/'“ “('“))[ {AZAL(0): AC(O)] .
and ona(u)=ga(u)/(4), i.e., the coupling constant con- —k® R

sistently renormalized in MOM

In the MOM scheme, the renormalized Green functions
take formally, at the renormalization scale, the same treewhere the ellipsis refers to terms with powers ok bther
level value but in terms of the renormalized coupling con-than 6. If the vacuum expectation in the nonperturbative

vacuum is considered for the RHS of Ed.9), the result
under the vacuum insertion hypothesis is known to be diag-
2The dependence on the regularization momentum sealé fn ~ onal in color and Lorentz spaces. Then we contract on both
lattice regularization oe 4 in dimensional, for instangéas been  sides of Eq.(19) with g°"§;; and take the following matrix
omitted up to now to simplify the notation. element(see Ref[12]):

(19
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2 _ o
ozP"9 (P fand O T* (AL~ PALPIAL(0)|g50) )R 2

_ Ca(K¥p?,a(p))

_k6 <0|A2Ag(0)|gﬁgfsrgl)\>R,,u2+ ]

(20
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where we take external gluons in a perturbative vacuum anc

carrying soft momenta. From E¢R0) we get

L PPGH (D) T ap O] T* (R%(— p)AD(P)AS(0))|g5d)
(0]:AA2(0):|g5g50))

2
9

2

=Z5(1?)Zp3 (1?)Cy E,a(u)

2

=231’2(M2)2103(%,a(ﬂ) : (21)

where, always i MOMprescription Ag=Z5 Y%A andZ,s is
defined such that

[:AA2(0):A%(0)]g .2

=Z,5 (1) Z5 " A(u?): A2AL(0):AS(0), (22)

(d)

FIG. 2. All the possible leg permutations from diagrams in the

figure contribute to the renormalization const@ntefined in the
text. (8)- and (b)-like diagrams, which do not break the assumed-
to-work factorization hypothesis, are renormalizedﬁbpreviously
computed in[9]. (c) and (d) factorization breaking diagrams give
Z,.. The local operators are drawn as gray bullets; the two joined by
a dashed line represent the ones contracted toAfhia Egs.(19)—

(22) through replacement in E¢10)

where

while Z=7,37;%? is a useful notation for the constant
renormalizing the matrix element for the three-gluon local
operator where the external soft gluons are explicitly cut. If

we recover the divergent factat=Z,.Z5 " introduced in
Ref.[9] for the matrix element of the two-gluon local opera-

tor coming from proper vertex correctior,can be decom-
posed as

Z(p?)=2Z(p>)Z(u?), (23

whereZ takes the divergent part coming from the diagrams
for the matrix element on théRHS) of Eq. (20) which can

be factorizeddiagrams(a,b of Fig. 2] as in Eq.(8), andZ,
should be computed from those that canfdiagrams(c,d)

of Fig. 2]. Then, taking the logarithmic derivatives with re-
spect top on both sides of Eq(21), we get the following
renormalization group differential equation:

[—2?[a<u>]—y[a<u>]+ g

k2
=0, (24

7 d > — alp)
V[a(u)]=d|w2|nzm2):—70 iR REL
Ha(w)l= d|nM2'”Z3(“z)
[ e [a(w))?
=Y 4o + v ype
3
ol o]

a4(/L)+-~-). (26)

J
+ﬁ[a(ﬂ)]£] cg(;,aw

with the formal solution(see Ref[12])

a(k) ) ~(2v0+ 70)/260

203(1,a(k))<m

(2
C3| — a(u)
3,“2“#

(29

The boundary condition of Eq(24) is given by our

MOM:-like prescription for the renormalization of the con-
densate by ,s: the condensate is renormalized such that the
Wilson coefficient takes the tree-level form at the renormal-
ization point. Thus the prefactoc;(1,2(k)) has to be
matched at tree level to E¢L4), and the only solution to the
leading logarithm is
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ca(La(k)=3[gr(K) % 1+ 0O (27)

1
lOQ(k/AQCD)) '

Identifying the non-power-corrected term of Ed.8) with
the purely perturbative coupling constaet(k?/ u?, a(u)) is
known to be

2 1/2

=0rperd K ){Co( (28)
u?

a(pm)

¥
Ci| — alpm)
1M20M

Thus, we take from Ref9] the following leading order re-
sults:

k2 a(k) \ 70/Fo
Co ;,a(,u) = m)
k2 K) | —o!Bo
Cz(?’“(“) =3g§<k2>(%) . (29
where, as usualy, is defined by
- o~ oa(p)
LA i O v (30

Equation (18) can then be applied to obtaim yom

=g§/(4w) which, after the appropriate Wick rotation, takes

the following form in Euclidean space:

T(w) k (Yo+ v0)!Bo—1
ayiom(K?) = aper K?) 1+k— In X
k xo!Bo
ln(X) 1 31
In(u/A) B 31
with
67> (A? >RM ,u) ~(0+ 0)/Bo

= n , 32
T(w)= Bo NE—1|"\A (32)

(A%g,, being now the Euclidean condensate; and
K0= Y0~ Yo, (33

as immediately follows from Eq23) if «q is defined from

a(p)
4

5INZ,(1?)=—xo SR (34)

dinu

The perturbative coefficients for the flavorless case,

13
51 Yo~ &5

5 (39

Bo=11, B1=

PHYSICAL REVIEW D64 114003

are universal, while for the coefficients in tmmﬂheme,
B, was computed i3], andy; andy, in [13]:

29
. ¥2=960.

) (36)

ﬁz 4824 Y11=

In a recent papei9] we computedy, from diagrams identi-
cal to these in Figs.(@) and Zb); «q, defined in Eq(33) can
be computed from diagranis) and(d) in Fig. 2 to give

~  3N¢
YozTy Ko=—

9Nc

136" (37)

We proceeded to evaluate the diagrams#grin total anal-

ogy with the calculation of those foy,. For instance, we
made the diagrams infrared safe by considering a momentum
flow incoming to the local operator. The details of the pro-
cedure can be found in Ref9]. It should be noticed that
ko<7, and that, in practicex,/B,=0 works as a good
approximation to simplify Eq.(31). In other words, the
scheme given by vacuum insertion factorization reveals itself
to be coherentleading logarithm corrections violating the
factorization induce a very small running with the renormal-
ization scale for the factorized tree-level Wilson coefficient
Nevertheless, it is important to prove the assumption to
work in order to obtain a good estimate of the Wilson coef-
ficient for the asymmetric three-gluon Green function. To
examine this question, we have performed the same com-
bined fits shown in Ref9] for two- and three-point Green
functions, at three loops for leading Wilson coefficients, to
match lattice data taken from Refi3,13]. The Euclidean
OPE formula for the two-point Green function is, from Ref.

(9],

2
—a(p)

2V (2,3 - ztﬂaaM<M2,a>co(

X 1+R(M)(|nX

k ) (vo+70) Bo—1 1 1

K2
(38)
where
MOM 2
and
6772 )~ Yot vlbo
R(“):Bo(m—g—n('”x) (Arpu- (40

The coefficiento(k?/ u?, a(w)) is taken now to be expanded

at three loops in terms of the MOBthemex(k); i.e., it will
satisfy the same differential equation g6a) in Eq. (26)
with a boundary condition that is apparent from E2P). In
the following, all the scale-dependent quantities will be
shown atu=10 GeV. Furthermore, we have checked that
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x° with the anomalous dimension a(1) in asymmetric MOM scheme

o Lattice data
----~ Three loops
0.35 —— Three loops + OPE

03

o)

0.25

02

0.15

1 L L L L L 0.1 L 1 1
-1.5 -1 0.5 0 05 1 15 2 4 6 8 10

(a) (b)

FIG. 3. (a) Quality of the fit as a function of the exponen:tcl—(Ayo+ v0)! By in Eq. (31). The dot stands for the value ofcomputed
in this paper. In(b) is shown the fit of our lattice data farygy at three loops with the calculated anomalous dimension.

indeed neither the ratio of gluon condensate estimates natecreases to almost away from 1 and both estimates of
A5 depends on this last momentum scale. The quality of the\ 75 and of the gluon condensate turn out to be close to the
fits as a function of the free exponent ofkh{) in Eq.(31)  previous estimates obtained from the symmetric three-gluon
has been explored and the results are shown in k&). /e Green function in Ref[9] (see Table)l The scheme in this
can conclude from these results that the approach given byork and that of Ref[9] differ only by the kinematics of the
vacuum insertion factorization provides a good estimate ofenormalization point. Such a different renormalization for
this exponent. the Green functions implies a different renormalization of the
The results for two particular values of the exponeit  gluon condensate. However, the discrepancy for estimates of
Fig. 3(@) are of interest for the sake of comparison. The casgA?) in the two works is expected not to be importarts
r=—1 corresponds to the formula proposed in Réfto be  indeed can be seen in Table I. A comparison of these esti-
matched to the lattice data: a perturbative three-loop formulanates, mainly the ones obtained from the gluon propagator,
+ a termc/p?, ¢ being a constant. On the other hand, hadstrongly supports the claimed rather large contribution from
we neglected the leading logarithm contributiopg=y, the A% condensat¢7—9] which might be connected to with
=0, the exponent would bie=1. It can be seen from Fig. 3 the tachyonic gluon mass scale studied in R&f].
that both values of generate rather less good fits to the A negative hint regarding previous results from the sym-
lattice data. metric three-point Green function is nevertheless the higher
Then, Egs.(31), (32 can be used to perform fits at two central value of the ratio in Eq. 42 (1.2 in R€B]). In
and three loops for the leading Wilson coefficients in order taprinciple two possible sources of discrepancies can be ex-
estimate, from the asymmetric three-gluon Green functionpected: either three loops is still insufficiently accurate for
the gluon condensate. The results of such fits, plotted in Fighe estimate of the perturbative part in the MO®hormal-
3(b), are ization scheme, or there is a deviation from the assumed
vacuum insertior{or factorization approximation. Both ef-

{V(A%)R utalpha —3.654), Aps=28%15 MeV fects would have a direct impact on the bigger ratio we ob-
(VA% dorop nooMs ’ tain for the asymmetric MOMcheme. The very good agree-
ment between the gluon condensates estimated from the
x?=1.95 (41)  gluon propagator previously discussed seems to point to fac-
] torization breaking as the major contributing factor. Still, the
for the two-loop fit, and ratio in Eq.(42) is only about 2r from 1, which is in our
~ opinion a rather encouraging result. To&?) deduced from
{V(AD)R utaipha =173), Ags=26018) MeV the propagator is in fair agreement with previous estimates,
{(V(A%)g b orop B MS ’ even though it is biased by the factorization hypothesis
through the fit ofAys, which combines the propagator and
x?=1.18 (42 as. This good result of the propagator, as well as Fi@),3

for the three-loop one.

The impressive improvement from two to three loops sug- 3To estimate the discrepancy for the nonperturbative estimates of
gests that the approach presented in this work permits a reaa?); we need to compute beyond leading logarithm corrections,
sonable approximation to the Wilson coefficient. The ratiowhich is beyond the scope of this work.

114003-6



REMARKS ON THE DETERMINATION OF THE LANDAU . .. PHYSICAL REVIEW D64 114003

TABLE |. Comparison between results obtained for the three-of A= in Ref. [7] is eliminated. The latter is a positive
loop fit in the present work and in a previous di%g: feature because thg function is perturbatively known at

four loops in the asymmetriml\ﬂm] and lattice evalua-

This work Symmetric three point ) o
tions, on the other hand, turn out to be statistically more
Aws 260(18) MeV 23328) MeV precise in this last renormalization scheme.
{(V(ADr S prop 1.3914) GeV 1.5817) GeV A last consequence of this work and those from Refs.
{\V(A%)r uYaipha 2.3(6) GeV 1.93) GeV [8,9]: together they lead to the conclusion that the Green

function methods, the three-gluon vertex in particular, pro-
vide us with a reliable and precise enough estimate for the
suggest that our formula describing the power corrections teunning coupling constant antlys, once power corrections
as up to the leading logarithm yields a good approximationare properly taken in consideration.

of the exact one.

A two-sided goal is thus achieved. We warmly acknowledge Ph. Boucaud, A. Le Yaouanc, J.
(i) The results of Refl9] turn out to be confirmed by the P- Leroy, J. I\_/Ilchell_, and O. Pe for frwtful comments and
use of a slightly different renormalization scheme. stimulating discussions held at the LPT in Orsay. The authors

(ii) Vacuum insertion factorization applied to condensategire also indebted to J. A. Caballero and M. Lozano for care-
playing the role of the OPE for the asymmetric three-gluorfully reading the manuscript. This work was supported in
Green function results in a compact prediction for its OPEpart by the European Community’s Human Potential Pro-
power corrections. The coefficient of the power correctiongram under contract HPRN-CT-2000-00145, Hadrons Lattice
has been computed to the leading logarithm, and thus a mo&CD, the Spanish FundacicCamara and Spanish DGICyT
important source of systematic uncertainty for the estimateinder contracts PB98111 and FR2000-1592-C03-02.
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