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Remarks on the determination of the Landau gauge OPE for the asymmetric three gluon vertex
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We compute a compact operator product expansion~OPE! formula describing power corrections to the

perturbative expression for the asymmetric momentum subtraction–(MOM˜-)renormalized running coupling
constant up to the leading logarithm. By the use of a phenomenological hypothesis leading to the factorization
of the condensates through a perturbative vacuum insertion, the only relevant condensate in the game is^A2&.
The validity of the OPE formula is tested by searching for a good-quality coherent description of previous

lattice evaluations of the MOM˜-renormalized gluon propagator and running coupling.
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That the running coupling constant can be extracted fr
the three-gluon vertex in the Landau gauge was propo
several years ago in a seminal work@1#. This method appear
closer to a physical interpretation than Schro¨dinger function-
als @2# but, and mainly for the same reason, more system
effects should be included to produce a reliable predict
for the perturbativeaS . In particular, the first statistically
meaningful attempts to follow that method missed the imp
of power corrections@3# and failed to give an estimate for th
coupling constant comparable to others in literature~that of
Ref. @2#, for instance!. In parallel, these power corrections
the gluon propagator and to the running coupling cons
have been greatly studied in recent years@4,5#.

Although the first trials were rather inconclusive@6#, mo-
mentum power contributions have been manifestly put
evidence@7,8# for the Landau gauge three-gluon couplin
constant renormalized in both symmetric~MOM! and asym-
metric (MOM̃) momentum subtraction schemes. In Ref.@7#

the parameterLMS is estimated from the matching of MOM˜
aS lattice results to a perturbative three-loop formula c
rected by an unavoidable 1/p2 term. This naive ansatz use
in Ref. @7# seems to eliminate most of the systematic dev
tion from the three-gluon vertex estimate of the perturbat
aS and a precise prediction ofLMS emerges in full agree
ment with that of Ref.@2#. Unfortunately, the errors quoted i
this work were clearly underestimated. In fact, the predict
of LMS is so sensitive to a logarithmic dependence on
momentum scale of the coefficient of 1/p2 that it appears to
range over an interval of 40 MeV@9#.

On the other hand, in Refs.@8,9# a description in terms o
operator product expansion~OPE! for the power corrections
to the MOM three-gluonaS was successfully tried consis
tently with an analogous description for the gluon propa
tor. The OPE approach provides through Shifma
Vainshtein-Zakharov~SVZ! factorization@10# a perturbative
tool to obtain the leading logarithmic dependence of n
trivial Wilson coefficients. In particular, it can be applied
compute the coefficient ofA2 in the MOM case for the Lan-
dau gauge three-gluon coupling constant@9#. Obviously, the
expectation value ofA2 in a nonperturbative vacuum is als
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estimated via this OPE approach. A non-gauge-invariant c
densate, that, being in the Landau gauge, is invariant un
infinitesimal gauge transformations and thus connected
some way to the gauge invariant^Amin

2 & defined in@11#, is
then computed.

The same approach for MOM˜ coupling constant require
use of

T* „Ãm
a ~2p!Ãn

b~p!…5~c0!mn
ab~p!11~c1!mna8

abm8~p!:Am8
a8 ~0!:

1~c2!mna8b8
abm8n8~p!:Am8

a8 ~0!An8
b8~0!:

1~c3!mna8b8c8
abm8n8r8~p!:Am8

a8 ~0!An8
b8~0!

3Ar8
c8~0!:1•••, ~1!

where the expansion to the three-gluon local operator is n
essary because the three-point Green function in MOM˜ can
be written as

^T* „Ãm
a ~2p!Ãn

b~p!Ãr
c~0!…&NP

[^0uT* „Ãm
a ~2p!Ãn

b~p!…ugr
c&NP

5~c1!mna8
abm8^0u:Am8

a8 ~0!:ugr
c&NP

1~c3!mna8b8c8
abm8n8r8^0u:Am8

a8 ~0!An8
b8~0!Ar8

c8~0!:ugr
c&NP

1•••. ~2!

The index NP refers to the nonperturbative nature of
vacuum state in Eq.~2!, while T* refers to the standard tim
ordered product in momentum space. The following poi
should be noticed.~i! No other local operators with the sam
dimension ofA2 are written in Eq.~1! because, unlike the
identity orA2 itself, they do not generate a non-null vacuu
expectation value.1 ~ii ! Operators other than the three-gluo

1No Lorentz invariant tensor with an odd number of indices c
©2001 The American Physical Society03-1
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FIG. 1. Diagrams contributing to the tree
level Wilson coefficient in Eq.~7! Crosses mark
the soft-gluon legs coming from the condensat
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local one for the same dimension, such as]mAn
b(0)Ar

c(0), do
not appear explicitly because they are phenomenologic
supposed not to survive, as will be argued below. The id
tity and A2 clearly do not contribute to the matrix eleme
considered in Eq.~2!.

Following standard SVZ techniques to obtain the petur
tive expansion of OPE Wilson coefficients, we compute
appropriate matrix element of Eq.~1!’s left-hand side~LHS!
to the wanted order. It is obvious that taking the perturbat
vacuum leads to

^0uT* „Ãm
a ~2p!Ãn

b~p!Ãr
c~0!…u0&5~c1!mna8

abm8G(2)̃
m8r
a8c

~0!,
~3!

wherec1 can be straightforwardly identified with the pertu
bative expansion for the Green function with an amputa
soft-gluon leg,

Gmna8
abm8~p,2p,0![22pm8gmn

' ~p! f a8
abGpert

(3) ~p2!, ~4!

which should be proportional to its Landau gauge tree-le
tensor. Beyond this purely perturbative first contribution,
situation is slightly more complicated. We consider now t
matrix element on the LHS of Eq.~2! between two externa
soft gluons and the perturbative vacuum. Then, we obtain
to the considered order in perturbation theory

^0uT* „Ãm
a ~2p!Ãn

b~p!Ãr
c~0!…ugl

l gs
s &connected

5~c3!mna8b8c8
abm8n8r8~p!^0u:Am8

a8 ~0!An8
b8~0!Ar8

c8~0!:ugr
cgl

l gs
s &.

~5!

For the matrix element on the right hand side~RHS! we have

^0u:Am8
a8 ~0!An8

b8~0!Ar8
c8~0!:ugr

cgl
l gs

s &

5Gss8
(2)̃ ss8~0!Gll8

(2)̃ l l 8~0!Grt
(2)̃ct~0!

3$Ps8l8t
s8 l 8t gm8

s8gn ‘
l8gr8

t ds8
a8d l 8

b8d t
c81O~a!%, ~6!

whereP refers to all the possible permutations of the coup
(s8s8), (l8l 8), and (tt). The Wilson coefficientc3 may
thus be computed at tree-level order as

Ps8l8t
s8 l 8t

~c3!mns8 l 8t
abs8l8t

5
^Ãl

l ~0!Ãm
a ~2p!Ãn

b~p!Ãr
c~0!Ãs

s ~0!&

G~2!̃
ss8
ss8 ~0!G~2!̃

ll8
l l 8 ~0!G~2!̃

rt
ct ~0!

.

~7!

be built without nonzero momenta.
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The ratio in Eq.~7! represents symbolically all the tree-lev
diagrams with five gluon legs where the three carrying z
momentum are cut~see Fig. 1!.

Had we directly dealt with the three-gluon local opera

:Am8
a8 (0)An8

b8(0)Ar8
c8(0):, the evaluation of the higher orde

tensors involved would require a much more tedious cal
lation. On the other hand,vacuum insertionbetween one
gluon field and the other two leads to

@^0u:Am8
a8 ~0!An8

b8~0!Ar8
c8~0!:ugr

c&NP#R,m

5
^A2&R,mG̃tr

tc ~0,m2!

4~Nc
221!

T m8n8r8t
a8b8c8t ~8!

with

T m8n8r8t
a8b8c8t

5gm8n8d
a8b8gr8

t d t
c81gm8r8d

a8c8gt
n8d t

b8

1gr8n8d
c8b8gm8

t d t
a8 . ~9!

We may phenomenologically assume vacuum insertion
work for a certain renormalization momentum scale. Th
the replacement

:Am8
a8 ~0!An8

b8~0!Ar8
c8~0!:→

:A2At
t ~0!:

4~Nc
221!

T m8n8r8t
a8b8c8t ~10!

can be done for Eq.~2!, the other components of the tens
on the LHS not being required for our purposes. Furth
more, the local gluon fieldAt

t (0) is to be contracted with the
zero-momentum gluon field defined for the vertex. The sa
vacuum insertion assumption leads us to argue that, for
stance,

@^0u:]m8 An8
b8~0!Ar8

c8~0!:ugr
c&NP#R,m

→^]m8 An8
b8~0!&R,mG̃r8r

c8c
~0,m2!50. ~11!

Thus, the only nonzero surviving condensate comes from
three-gluon local operator.

It is easy to see that, using Eq.~10!, the relevant coeffi-
cient multiplying the local operator in Eq.~1! is

~c3!mna8b8c8
abm8n8r8~p!T m8n8r8t

a8b8c8t

5
1

2

^Ãl
l ~0!Ãm

a ~2p!Ãn
b~p!Ãr

c~0!Ãs
s ~0!&

G~2!̃
sm8
sa8 ~0!G~2!̃

ln8
lb8 ~0!G~2!̃

rt
ct ~0!

gm8n8d
a8b8

~12!
3-2
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where the RHS may be straightforwardly obtained from E
~7!. This last Eq.~12! gives the prescription in which Lorent
and color indices of external gluon legs are contracted in
diagrams contributing to the tree-level Wilson coefficie
~see Fig. 1!.

Thus, since Eq.~4!’s is the only Landau gauge tensor fo
the asymmetric three-gluon vertex@3#, we can write, forp2

52k2,

k4^T* „Ãm
a ~2p!Ãn

b~p!Ãr
c~0!…&NP

522ptgmn
' ~p! f t

abF c1S g,
k2

L2D G~2!̃
tr
tc ~0!

1c3S g,
k2

L2D ^0u:A2At
t ~0!:ugr

c&NP

4~Nc
221!

1

2k2G . ~13!

We know the scalar coefficientsc1 ,c3 in Eq. ~13! to be di-
mensionless by OPE power counting rules, and hence
depend only on the bare couplingg and the dimensionles
ratio of momentum to regularization scale.2 The termc1 can
be obtained from Eq.~3! and, at tree level,c3 is to be com-
puted by projecting over the Landau gauge tree-level ten
in Eq. ~4! the result from Eq.~12!,

c3,tree levelS g,
k2

L2D 5~c3!mna8b8c8
abm8n8r8~p!T m8n8r8t

a8b8c8t

3
1

26NC~NC21!k2
ptg

'mn~p! f ab
t

53g. ~14!

If we renormalize following the MOM̃prescription at mo-
mentum scalem2, and then apply the assumed vacuum ins
tion factorization, we can write

k4@^T* „Ãm
a ~2p!Ãn

b~p!Ãr
c~0!…&#R,m2

522ptgmn
' ~p! f t

abG(2)̃
tr
tc ~0,m2!F c1S k2

m2
,a~m!D

1c3S k2

m2
,a~m!D ^A2&R,m2

4~Nc
221!

1

2k2G , ~15!

where, after renormalization, the Wilson coefficients depe
on the ratio of the momentum and the renormalization sc
and ona(m)5gR

2(m)/(4p), i.e., the coupling constant con

sistently renormalized in MOM˜.
In the MOM̃ scheme, the renormalized Green functio

take formally, at the renormalization scale, the same tr
level value but in terms of the renormalized coupling co

2The dependence on the regularization momentum scale (a21 in
lattice regularization ore21m in dimensional, for instance! has been
omitted up to now to simplify the notation.
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5m2G(2)(m2) to renormalize appropriately the two-poin
Green function, whereG(2) is the scalar factor of the bar
two-point Green function defined in Ref.@3#. The three-
gluon Green function is then renormalized by dividing
@ZMOM(m)#3/2. One gets

gR~k2!5k4
GR

(3)~k2,m2!

GR
(2)~0,m2!

@k2GR
(2)~k2,m2!#21/2. ~16!

The renormalized scalar factor for the three-gluon Gre
function with an amputated soft gluon,GR

(3)/GR
(2) , can be

projected out from Eq.~15!, as is done forc3 in Eq. ~14!,
while for GR

(2)(k2,m2) we can write

k2GR
(2)~k2,m2!5c0S k2

m2
,a~m!D

1c2S k2

m2
,a~m!D ^A2&R,m2

4~Nc
221!

1

2k2
,

~17!

where the scalar coefficientsc0 andc2 can be derived from
those in Eq.~1! and computed similarly toc1 and c3, as
explained in Ref.@9#. Thus, after replacing in Eq.~16! we
will finally get

gR~k2!5c1S k2

m2
,a~m!D Fc0S k2

m2
,a~m!D G21/2

3F11S c3„k
2/m2,a~m!…

c1„k
2/m2,a~m!…

2
1

2

c2~k2/m2,a~m!!

c0~k2/m2,a~m!!
D ^A2&R,m2

4~Nc
221!

1

2k2G . ~18!

The purpose is now to compute to leading logarithms
subleading Wilson coefficients in Eq.~15!, as was done in
Ref. @9#. To this end, it will be useful to consider the follow
ing operator expansion:

2

9k2
ptg

'mn~p! f ab
t @T* „Ãm

a ~2p!Ãn
b~p!Ãr

c~0!…#R,m2

5
c3„k

2/m2,a~m!…

2k6
@ :A2At

t ~0!:Ãr
c~0!#R,m1•••;

~19!

where the ellipsis refers to terms with powers of 1/k other
than 6. If the vacuum expectation in the nonperturbat
vacuum is considered for the RHS of Eq.~19!, the result
under the vacuum insertion hypothesis is known to be di
onal in color and Lorentz spaces. Then we contract on b
sides of Eq.~19! with grtdct and take the following matrix
element~see Ref.@12#!:
3-3
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2

9k2
prg'mn~p! f abĉ 0uT* „Ãm

a ~2p!Ãn
b~p!Ãr

c~0!…ugs
s gl

l &R,m2

5
c3„k

2/m2,a~m!…

2k6
^0u:A2Ac

r~0!:ugr
cgs

s gl
l &R,m21•••,

~20!

where we take external gluons in a perturbative vacuum
carrying soft momenta. From Eq.~20! we get

2
2

9
k4

prg'mn~p! f abĉ 0uT* „Ãm
a ~2p!Ãn

b~p!Ãr
c~0!…ugs

s gl
l &

^0u:A2Ac
r~0!:ugr

cgs
s gl

l &

5Z3~m2!ZA3
21

~m2!c3S k2

m2
,a~m!D

5Z3
21/2~m2!Z̄21c3S k2

m2
,a~m!D , ~21!

where, always in MOM̃prescription,ÃR5Z3
21/2Ã andZA3 is

defined such that

@ :A2Ac
r~0!:Ãr

c~0!#R,m2

5ZA3
21

~m2!Z3
21/2~m2!:A2Ac

r~0!:Ãr
c~0!, ~22!

while Z̄[ZA3Z3
23/2 is a useful notation for the constan

renormalizing the matrix element for the three-gluon lo
operator where the external soft gluons are explicitly cut
we recover the divergent factorẐ[ZA2Z3

21 introduced in
Ref. @9# for the matrix element of the two-gluon local oper
tor coming from proper vertex corrections,Z̄ can be decom-
posed as

Z̄~m2![Ẑ~m2!Zk~m2!, ~23!

whereẐ takes the divergent part coming from the diagra
for the matrix element on the~RHS! of Eq. ~20! which can
be factorized@diagrams~a,b! of Fig. 2# as in Eq.~8!, andZk
should be computed from those that cannot@diagrams~c,d!
of Fig. 2#. Then, taking the logarithmic derivatives with re
spect tom on both sides of Eq.~21!, we get the following
renormalization group differential equation:

H 22ḡ@a~m!#2g@a~m!#1
]

] ln m

1b@a~m!#
]

]aJ c3S k2

m2
,a~m!D 50, ~24!

with the formal solution~see Ref.@12#!

c3S k2

m2
,a~m!D 5c3„1,a~k!…S a~k!

a~m! D
2(2ḡ01g0)/2b0

,

~25!
11400
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where

ḡ@a~m!#5
d

d ln m2
ln Z̄~m2!52ḡ0

a~m!

4p
1•••,

g@a~m!#5
d

d ln m2
ln Z3~m2!

52Fg0

a~m!

4p
1g1S a~m!

4p D 2

1g2S a~m!

4p D 3

1•••G ,
b@a~m!#5

d

d ln m
a~m!

52S b0

2p
a2~m!1

b1

4p2
a3~m!

1
b2

~4p!3
a4~m!1••• D . ~26!

The boundary condition of Eq.~24! is given by our
MOM̃-like prescription for the renormalization of the con
densate byZA3: the condensate is renormalized such that
Wilson coefficient takes the tree-level form at the renorm
ization point. Thus the prefactorc3„1,a(k)… has to be
matched at tree level to Eq.~14!, and the only solution to the
leading logarithm is

FIG. 2. All the possible leg permutations from diagrams in t

figure contribute to the renormalization constantZ̄ defined in the
text. ~a!- and ~b!-like diagrams, which do not break the assume

to-work factorization hypothesis, are renormalized byẐ previously
computed in@9#. ~c! and ~d! factorization breaking diagrams giv
Zk . The local operators are drawn as gray bullets; the two joined
a dashed line represent the ones contracted to giveA2 in Eqs.~19!–
~22! through replacement in Eq.~10!
3-4
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c3„1,a~k!…53@gR~k!#3F11OS 1

log~k/LQCD! D G . ~27!

Identifying the non-power-corrected term of Eq.~18! with
the purely perturbative coupling constant,c1„k

2/m2,a(m)… is
known to be

c1S k2

m2
,a~m!D 5gR,pert~k2!Fc0S k2

m2
,a~m!D G 1/2

. ~28!

Thus, we take from Ref.@9# the following leading order re-
sults:

c0S k2

m2
,a~m!D 5S a~k!

a~m! D
g0 /b0

c2S k2

m2
,a~m!D 53gR

2~k2!S a~k!

a~m! D
2ĝ0 /b0

, ~29!

where, as usual,ĝ0 is defined by

d

dlnm2
lnẐ~m2!52ĝ0

a~m!

4p
1•••. ~30!

Equation ~18! can then be applied to obtaina MOM̃

5gR
2/(4p) which, after the appropriate Wick rotation, tak

the following form in Euclidean space:

aMOM̃~k2!5apert~k2!H 11
T~m!

k2 F lnS k

L D G (ĝ01g0)/b021

3S 2F lnS k

L D
ln~m/L!

G k0 /b0

21D J ~31!

with

T~m!5
6p2

b0

^A2&R,m

NC
2 21

F lnS m

L D G2(ĝ01g0)/b0

, ~32!

^A2&R,m being now the Euclidean condensate; and

k05ḡ02ĝ0 , ~33!

as immediately follows from Eq.~23! if k0 is defined from

d

d ln m2
ln Ẑk~m2!52k0

a~m!

4p
1•••. ~34!

The perturbative coefficients for the flavorless case,

b0511, b1551, g05
13

2
, ~35!
11400
are universal, while for the coefficients in the MOM˜ scheme,
b2 was computed in@3#, andg1 andg2 in @13#:

b2.4824, g15
29

8
, g25960. ~36!

In a recent paper@9# we computedĝ0 from diagrams identi-
cal to these in Figs. 2~a! and 2~b!; k0, defined in Eq.~33! can
be computed from diagrams~c! and ~d! in Fig. 2 to give

ĝ05
3NC

4
, k052

9NC

136
. ~37!

We proceeded to evaluate the diagrams fork0 in total anal-
ogy with the calculation of those forĝ0. For instance, we
made the diagrams infrared safe by considering a momen
flow incoming to the local operator. The details of the pr
cedure can be found in Ref.@9#. It should be noticed tha
k0!ĝ0 and that, in practice,k0 /b0.0 works as a good
approximation to simplify Eq.~31!. In other words, the
scheme given by vacuum insertion factorization reveals it
to be coherent:leading logarithm corrections violating the
factorization induce a very small running with the renorma
ization scale for the factorized tree-level Wilson coefficien.

Nevertheless, it is important to prove the assumption
work in order to obtain a good estimate of the Wilson co
ficient for the asymmetric three-gluon Green function.
examine this question, we have performed the same c
bined fits shown in Ref.@9# for two- and three-point Green
functions, at three loops for leading Wilson coefficients,
match lattice data taken from Refs.@3,13#. The Euclidean
OPE formula for the two-point Green function is, from Re
@9#,

ZLatt
MOM~k2,a!5ZLatt

MOM~m2,a!c0S k2

m2
,a~m!D

3F11R~m!S ln
k

L D (g01ĝ0)/b021 1

k2G ,

~38!

where

ZLatt
MOM~k2,a!

ZLatt
MOM~m2,a!

5k2GR
(2)~k2,m2!1O~a2! ~39!

and

R~m!5
6p2

b0~Nc
221!

S ln
m

L D 2 g01ĝ0/b0

^A2&R,m . ~40!

The coefficientc0„k
2/m2,a(m)… is taken now to be expande

at three loops in terms of the MOM˜ schemea(k); i.e., it will
satisfy the same differential equation asg(a) in Eq. ~26!
with a boundary condition that is apparent from Eq.~29!. In
the following, all the scale-dependent quantities will
shown atm510 GeV. Furthermore, we have checked th
3-5
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FIG. 3. ~a! Quality of the fit as a function of the exponentr 512(ĝ01g0)/b0 in Eq. ~31!. The dot stands for the value ofr computed
in this paper. In~b! is shown the fit of our lattice data foraMOM̃ at three loops with the calculated anomalous dimension.
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indeed neither the ratio of gluon condensate estimates
LMS depends on this last momentum scale. The quality of
fits as a function of the free exponent of ln(k/L) in Eq. ~31!
has been explored and the results are shown in Fig. 3~a!. We
can conclude from these results that the approach given
vacuum insertion factorization provides a good estimate
this exponent.

The results for two particular values of the exponentr in
Fig. 3~a! are of interest for the sake of comparison. The c
r 521 corresponds to the formula proposed in Ref.@7# to be
matched to the lattice data: a perturbative three-loop form
1 a termc/p2, c being a constant. On the other hand, h
we neglected the leading logarithm contributionsĝ05g0
50, the exponent would ber 51. It can be seen from Fig. 3
that both values ofr generate rather less good fits to t
lattice data.

Then, Eqs.~31!, ~32! can be used to perform fits at tw
and three loops for the leading Wilson coefficients in orde
estimate, from the asymmetric three-gluon Green funct
the gluon condensate. The results of such fits, plotted in
3~b!, are

$A^A2&R,m%alpha

$A^A2&R,m%prop

53.65~4!, LMS5283~15! MeV,

x251.95 ~41!

for the two-loop fit, and

$A^A2&R,m%alpha

$A^A2&R,m%prop

51.7~3!, LMS5260~18! MeV,

x251.18 ~42!

for the three-loop one.
The impressive improvement from two to three loops s

gests that the approach presented in this work permits a
sonable approximation to the Wilson coefficient. The ra
11400
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decreases to almosts away from 1 and both estimates o
LMS and of the gluon condensate turn out to be close to
previous estimates obtained from the symmetric three-gl
Green function in Ref.@9# ~see Table I!. The scheme in this
work and that of Ref.@9# differ only by the kinematics of the
renormalization point. Such a different renormalization f
the Green functions implies a different renormalization of t
gluon condensate. However, the discrepancy for estimate
^A2&R in the two works is expected not to be important,3 as
indeed can be seen in Table I. A comparison of these e
mates, mainly the ones obtained from the gluon propaga
strongly supports the claimed rather large contribution fr
the A2 condensate@7–9# which might be connected to with
the tachyonic gluon mass scale studied in Ref.@11#.

A negative hint regarding previous results from the sy
metric three-point Green function is nevertheless the hig
central value of the ratio in Eq. 42 (1.2 in Ref.@9#!. In
principle two possible sources of discrepancies can be
pected: either three loops is still insufficiently accurate
the estimate of the perturbative part in the MOM˜ renormal-
ization scheme, or there is a deviation from the assum
vacuum insertion~or factorization! approximation. Both ef-
fects would have a direct impact on the bigger ratio we o
tain for the asymmetric MOM̃scheme. The very good agree
ment between the gluon condensates estimated from
gluon propagator previously discussed seems to point to
torization breaking as the major contributing factor. Still, t
ratio in Eq. ~42! is only about 2s from 1, which is in our
opinion a rather encouraging result. The^A2& deduced from
the propagator is in fair agreement with previous estima
even though it is biased by the factorization hypothe
through the fit ofLMS, which combines the propagator an
aS . This good result of the propagator, as well as Fig. 3~a!,

3To estimate the discrepancy for the nonperturbative estimate
^A2&R we need to compute beyond leading logarithm correctio
which is beyond the scope of this work.
3-6
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suggest that our formula describing the power correction
aS up to the leading logarithm yields a good approximati
of the exact one.

A two-sided goal is thus achieved.
~i! The results of Ref.@9# turn out to be confirmed by the

use of a slightly different renormalization scheme.
~ii ! Vacuum insertion factorization applied to condensa

playing the role of the OPE for the asymmetric three-glu
Green function results in a compact prediction for its O
power corrections. The coefficient of the power correct
has been computed to the leading logarithm, and thus a m
important source of systematic uncertainty for the estim

TABLE I. Comparison between results obtained for the thr
loop fit in the present work and in a previous one@9#.

This work Symmetric three point

LMS 260~18! MeV 233~28! MeV

$A^A2&R,m%prop 1.39~14! GeV 1.55~17! GeV

$A^A2&R,m%alpha 2.3~6! GeV 1.9~3! GeV
ri

.

ne

s
s,

l,

l.

11400
to
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te

of LMS in Ref. @7# is eliminated. The latter is a positiv
feature because theb function is perturbatively known a

four loops in the asymmetric MOM˜ @14# and lattice evalua-
tions, on the other hand, turn out to be statistically mo
precise in this last renormalization scheme.

A last consequence of this work and those from Re
@8,9#: together they lead to the conclusion that the Gre
function methods, the three-gluon vertex in particular, p
vide us with a reliable and precise enough estimate for
running coupling constant andLMS, once power corrections
are properly taken in consideration.
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