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Transparent expression of theA2 condensate’s renormalization
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We give a more transparent understanding of the vacuum expectation value of the renormalized local
operatorA2 by relating it to the gluon propagator integrated over the momentum. The quadratically divergent
perturbative contribution is subtracted and the remainder, dominantly due to theO(1/p2) correction to the
perturbative propagator at largep2 is logarithmically divergent. This provides a transparent derivation of the
fact that thisO(1/p2) term is related to the vacuum expectation value of the localA2 operator and confirms a
previous claim based on the operator product expansion~OPE! of the gluon propagator. At leading logarithms
the agreement is quantitative, with a standard running factor, between the localA2 condensate renormalized as
described above and the one renormalized in the OPE context. This result supports the claim that the BRST
invariant Landau-gaugeA2 condensate might play an important role in describing the QCD vacuum.
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I. INTRODUCTION

In a series of lattice studies@1–4# the gluon propagator in
QCD has been computed at large momenta, and it
shown that its behavior was compatible with the perturba
expectation provided a rather large 1/p2 correction was con-
sidered. In an OPE approach this correction has been sh
@2,3# to stem from anA2 gluon condensate which does n
vanish since the calculations are performed in the Lan
gauge. It was also claimed@4# that this condensate might b
related to instantons.

The role of such a condensate in the nonperturba
properties of QCD, in particular its relation to confineme
has been studied by several groups@5,6#. Of course any
physics discussion about theA2 condensate necessitates
clear definition of what we speak about, i.e., it needs a w
defined renormalization procedure to define the renormal
local A2 operator, sinceA(0)2 is a quadratically divergen
quantity as can easily be seen in perturbation theory. A re
malization ofA2 was defined in@2,3# within the OPE context
which we now briefly summarize. It uses the notion of ‘‘no
mal order product’’ in a ‘‘perturbative vacuum’’ which i
annihilated by the fieldsA. It implies that^:A(0)2:&pert50 in
the perturbative vacuum.1 The contribution tô :A(0)2:& in
the true QCD vacuum is then of nonperturbative origin.
has only logarithmic divergences and it is multiplicative
renormalized. Of course this notion of a perturbative vacu
in which Fock expansion could be performed has not a v
transparent physical meaning, especially in a nonperturba
context such as the numerical Euclidean path integ
method.

A2 is not a gauge invariant operator but the bareA2 con-
densate is a very special object since, by definition, it i

1The symbol ‘‘:•••: ’’ represents the normal ordered product
this perturbative vacuum.
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minimum of the gauge orbit@6#. In other words, some im-
portant physics seems to lie beneath the Becchi-Rouet-S
Tyutin ~BRST! invariance ofA2 in Landau gauge. The au
thors of Ref. @5# discussed on the generalized2 composite
operatorAmAm12i (12j) c̄c, which is BRST invariant in
the manifestly Lorentz covariant gauge, and examined
survival of this invariance after renormalization. In this p
per, although in a different context, we also examine
same point: the subtle relationship between the minimum
bareA2 in the gauge orbit and any gauge-independant ph
cal phenomenology associated to the renormalized con
sate@6#, emerging for instance from the OPE analysis@1–4#.
To this aim, we will derive the renormalizedA2 vacuum
expectation value without using the normal ordering but
ing only the OPE expansion of the gluon propagator.3 It will
provide a more transparent definition, related directly to
quantity which is actually measured.

We start from the observation that the non renormaliz
^A(0)2& is related to the integral of the gluon propagat
over momentum. Hence it is expected that the nonpertu
tive contribution toA2 has to do with the nonperturbativ
contribution to the gluon propagator. The latter contains p
cisely 1/p2 contributions due to theA2 condensate at large
momenta, and also strong deviations from perturbative Q
at small momenta, see Fig. 1~taken from@1–4#!. How does
this fit together?

II. BARE, PERTURBATIVE AND NONPERTURBATIVE A2

It is possible in principle from lattice calculations to d
fine the nonperturbative gluon propagator in the Land
gauge. Lattice calculations provide the bare gluon propa

2Landau gauge is recovered in the limitj→1.
3Of course the normal ordering has been used in@2,3# to compute

the anomalous dimension ofA2 and the Wilson coefficientc2.
©2003 The American Physical Society27-1
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tor. From the gluon propagator computed with a series
different values of the lattice spacing one can in princi
compute the renormalized gluon propagator from zero m
mentum up to as large a momentum as one wishes. An
ample of such a nonperturbative propagator is shown in
1. We can choose, for example, the momentum subtrac
~MOM! renormalization scheme,4 such that

GR
(2)~p25m2!5

1

m2
. ~1!

This implies a renormalization of the gluon fields

AnR5Z3~m!21/2An bare, Z3~m![m2Gbare
(2) ~m2!. ~2!

The renormalization constantZ3 has to be understood as r
lated to any regularization method and any value of the
regulator provided that the latter is larger than the mome
carried by the gluons. The coupling constant is also ren
malized in a MOM scheme. Initially, the particular kinema
ics of the three-gluon vertex leading to the definition of t
coupling should be specified. In fact, the perturbative1 OPE
analysis we show in Fig. 1 is performed with the choice

the asymmetric MO˜M scheme, one of the incoming gluo
momenta being zero. Concerning the conclusions of
present paper, they shall be derived from leading-logarit
computations which are not affected by the kinematics of
renormalization point fora, then we do not specify the ki

4Notice that the chosen renormalization scheme is not relevan
our argument in this paper, but we clearly need a scheme in w
nonperturbative quantities coming from lattice simulations can
accommodated. MOM is one of the simplest. On the contrary
modified minimal subtraction (MS) scheme does not satisfy th
condition.

FIG. 1. Gluon propagator extracted from lattice calculatio
renormalized atm510 GeV and plotted between 0 and 9 GeV. T
curve corresponds to the fit written in Eq.~7!. It results that the
infrared cutoffpmin can be safely taken around 2.6–3.0 GeV.
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nematics any more on the following. The Yang-Mills theo
is thus fully renormalized and from now on we will consid
only renormalized gauge fields and propagators.

The propagator is defined in Euclidean space by

E d4xeip•x^Am R
a ~0!An R

b ~x!&

5da,bFdm,n2
pmpn

p2 GGR~p2!. ~3!

Inverting the Fourier transform,

(
a,m

^Am R
a ~0!Aa

m R~0!&5
3~Nc

221!

~2p!4 E d4pGR
(2)~p2!

5
3~Nc

221!

16p2 E p2dp2GR
(2)~p2!.

~4!

This integral is quadratically divergent in the ultraviolet. I
deed, if the gauge fields and the coupling constant have b
renormalized, the localA2 operator has not yet. Let us intro
duce an ultraviolet cutoffL and define

^„AR~m!…2&L5
3~Nc

221!

16p2 E
0

L2

p2dp2GR
(2)~p2!, ~5!

where „AR(m)…2 refers to the square of the gauge fiel
renormalized at the scalem, but whereA2 has not been
renormalized as a local product of operators. The symbol
‘‘ ^•••& ’’ represents the vacuum expectation value~VEV!.
(AR)2 is clearly an UV divergent quantity. The indexL re-
fers to the ultraviolet cutoff andm to the renormalization
point for the gauge fields and the coupling constant. T
cutoff L has nothing to do with the lattice cutoffa21. The
renormalization in Eqs.~1! and ~2! has eliminated any de
pendence in the different lattice spacings which have b
used to produce the renormalized propagator.L is introduced
simply to control the quadratic and logarithmic divergenc
we encounter here.

The dominant contribution to this integral is the perturb
tive one. To separate the perturbative contribution from
nonperturbative we will now use the results of@3#,

p2GR
(2)~p2,m2![

p2G(2)~p2!

m2G(2)~m2!

5c0S p2

m2
,a~m!D 1c2S p2

m2
,a~m!D

3
^~A2!R~m!&

4~Nc
221!

1

p2
, ~6!

whereG(2)(p2) is the bare propagator. This expansion do
not exactly separate the perturbative from the nonpertu
tive contribution because of the denominatorm2G(2)(m2)

in
h
e
e

s
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which contains a nonperturbative contribution. It is therefo
convenient to introduce a slightly different renormalizati
R8:

p2GR8
(2)

~p2,m2![
p2G(2)~p2!

m2Gpert
(2) ~m2!

5

c0Xp2

m2
,a~m!C

c0„1,a~m!…
1

c2Xp2

m2
,a~m!C

c0„1,a~m!…

3
^~A2!R~m!&

4~Nc
221!

1

p2
, ~7!

where (A2)R(m) represents theA2 operator renormalized a
a local operator at the scalem. Here the denominator is onl
the perturbative contribution to the Green function when
the first term in Eq.~7! is purely perturbative: it runs pertur
batively with a perturbative MOM renormalization conditio
at p25m2. Let us define for simplicity the constant

z0[
1

c0„1,a~m!…
5

G(2)~m2!

Gpert
(2) ~m2!

511OS 1

m2D . ~8!

We know from @3# that the first term in Eq. ~7!,
z0c0„p

2/m2,a(m)…, represents the three loop perturbati
contribution. The second,z0c2„p

2/m2,a(m)…, appears as the
leading logarithm Wilson coefficient of the first nonperturb
tive correction„O(1/p2)…, which we attributed@3# to the
vacuum expectation value of the renormalized local oper
^(A2)R(m)&.

Let us now introduce some notations:

~A2!R~m!5ZA2
21

~m!:Abare
2 :

5@ZA2~m!Z3
21~m!#21:„AR~m!…2:, ~9!

where the symbol :•••: represents the normal ordered pro
uct in the perturbative vacuum.5 We define Ẑ(m)
[Z3

21(m)ZA2(m), the anomalous dimension for these ren
malization constants given by

gA2„a~m!…[
d

d ln m2
ln ZA2~m!52

35NC

12

a~m!

4p
1•••,

ĝ~a~m!![
d

d ln m2
ln Ẑ~m!52ĝ0

a~m!

4p
1•••

52
3NC

4

a~m!

4p
1•••. ~10!

Our main goal in this paper is to understand better the c
nection between̂(A2)R(m)& defined in@3# and the„AR(m)…2

object considered here.

5The :•••: symbols have been erroneously omitted in@3#.
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The expansion in Eq.~7! is only valid above some mo
mentump>pmin . Typically we have takenpmin52.6 GeV
for our fits reported in@1–4#.

From Eqs.~5!, ~7! we decompose

^„AR~m!…2&L5^„AR~m!…2&L
pert1^„AR~m!…2&L

OPE

1^„AR~m!…2&L
IR ~11!

where

^„AR~m!…2&L
pert5

3~Nc
221!z0

16p2 E
pmin

2

L2

dp2c0S p2

m2
,a~m!D ,

~12!

^„AR~m!…2&L
OPE5

3~Nc
221!z0

16p2 E
pmin

2

L2 dp2

p2
c2S p2

m2
,a~m!D

3
^~A2!R~m!&

4~Nc
221!

, ~13!

^„AR~m!…2&L
IR5

3~Nc
221!

16p2 E
0

pmin
2

p2dp2GR8
(2)

~p2!.

~14!

A few comments are in order here.^„AR(m)…2&L
pert corre-

sponds indeed to the perturbative computation of the vacu
expectation value ofA2, i.e., to the connected diagrams wi
no external legs and with oneA2 inserted. However, the
coupling constant and the gluon fields in the diagrams h
been consistently renormalized at the scalem. To leading
order Eq.~12! leads to

^„AR~m!…2&L
pert →

L→`

3~Nc
221!

16p2
L2H S lnS L

LQCD
D

lnS m

LQCD
D D

g0 /b0

3F 11OS 1

lnS L

LQCD
D D G1OS pmin

2

L2 D J ,

~15!

which diverges more than quadratically. Note that the dep
dence inpmin

2 is subdominant.
In Eq. ~13! the left-hand side has been defined from t

decomposition of the integral~5! according to Eq.~7!. The
right-hand side containŝ(A2)R(m)& already discussed. Th
latter is just a number which factorizes out of the integral
Eq. ~13!. We thus see that̂„AR(m)…2&L

OPE and ^„A2
…R(m)&

are proportional.
7-3
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Our next task is to compute the proportionality coefficie
and to comparê „AR(m)…2&L

OPE with the other subleading
term, ^„AR(m)…2&L

IR . From @3# and Eq.~8! we know thatz0

511O(1/m2). In our calculation of the integral in Eq.~13!,
being performed to the leading logarithm, we will tak
z0c25c2 in the following. From~23! in @3#,

c2S p2

m2
,a~m!D 512pa~p!S a~p!

a~m! D
2ĝ0 /b0

. ~16!

Let us also recall

Z3~m!}„a~m!…g0 /b0, ^~A2!R~m!&}„a~m!…2gA2 /b0

~17!

with

b0511, g0513/2, gA25
35

4
, ĝ05gA22g05

9

4
.

~18!

From Eq.~13! and the leading logarithm relation

dp2/p25dlog~p2!.2
4p

b0

da

a2
~19!

we find

^„AR~m!…2&L
OPE5

3~Nc
221!

16p2

~12p!

„a~m!…2ĝ0 /b0

3
^~A2!R~m!&

4~Nc
221!

4p

b0
E

a(L)

a(pmin)

daa212(ĝ0 /b0)

5^~A2!R~m!&

3F S a~L!

a~m! D
2ĝ0 /b0

2S a~pmin!

a~m! D 2ĝ0 /b0G .

~20!

It is interesting to notice that the coefficientb0 /ĝ0 stemming
from the integration overa is exactly compensated by th
prefactors outside the integral, the origin of which does
appear at first sight to be related to the anomalous dimen
of A2. Had we taken any other anomalous dimension inst
of ĝ0, say someg8, we would have ended with a consta
9/(4g8) in front of the RHS of Eq.~20!.

In the largeL limit, a(pmin)@a(L) whence, sinceĝ0 is
positive, the main result of this paper comes from

^„AR~m!…2&L
OPE .

L→`
^~A2!R~m!&S a~L!

a~m! D
2ĝ0 /b0

. ~21!

To leading logarithms and keepingm fixed,
07402
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^„AR~m!…2&L
OPE}a~L!2ĝ0 /b0 →

L→`

`. ~22!

On the other hand, from Eq.~14!

^„AR~m!…2&L
IR5const. ~23!

since it does not depend onL. It results that̂ „AR(m)…2&L
OPE

is dominant over̂ „AR(m)…2&L
IR in the decomposition~11!.

This dominance will lead to the coming interpretation~next
section! of the decomposition~11!, which is indeed the main
result of this note. Of course, we perform our analysis in
Landau gauge because of its conceptual@6# and numerical
~lattice Green functions@3#! particular interest. However, th
survival after renormalization of BRST invariance in cova
ant gauges for the generalized composite operator claime
Ref. @5# seems to point out that an analogous analysis, w
similar results, for these gauges might be performed. Ho
ever, this is hard to do because of the renormalization mix
of both local operatorsA2 andc̄c ~the renormalization of the
generalized composite operator not being diagonal excep
very particular cases@5#!.

As an interesting special case, ifm5L

^„AR~L!…2&L
OPE →

L→`
^~A2!R~L!&}„a~L!…2gA2 /b0. ~24!

III. CONCLUSION AND DISCUSSION

Our conclusion is summarized in

^~A2!R~m!&.^„AR~m!…2&L
OPES a~L!

a~m! D
ĝ0 /b0

.@^„AR~m!…2&L2^„AR~m!…2&L
pert#S a~L!

a~m! D
ĝ0 /b0

.

~25!

Since notations are not conventional let us recall that t
^•••&L’s in the RHS represent the gluon propagator in
grated over momentum up to an UV cutoff,L, see Eqs.~5!
and ~12!. The gluon fields and coupling constants are ren
malized in all the terms appearing in these equations. T
we learn that the further renormalization of the local opera
A2 proceeds by substracting to the plain vacuum expecta
value ofA2 the same object computed in perturbation. Th
logarithmically divergent difference is then renormalized
the powers ofa in the RHS of Eq.~25!. Not unexpectedly,
we retrieve in essence the initial expression of the renorm
ization of theA2 operator through normal ordering~i.e., sub-
traction of the perturbative VEV!, followed by the multipli-
cative, logarithmic renormalizationZA2. But apart from a
nontrivial consistency check, involving in particular the d
tailed expression of the Wilson coefficient, we obtain an e
pression which is more transparent, since it only involve
measurable quantity, the integral over the renormaliz
propagator.

Equation~25! presents a separation between perturba
and nonperturbative contributions to the integrated propa
7-4
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tor, i.e., toA2. Of course, such a separation depends on
renormalization scheme, and on the order in perturba
theory in which the Green functions are computed. It is a
well known that summing to infinity the perturbative seri
may generate renormalons which behave like nonpertu
tive condensates. To avoid any such problem we stick t
finite order in the perturbative series. Furthermore, if
quantitative separation between perturbative and nonpe
bative contributions depends on these prescriptions,
results summarized in Eq.~25! do not depend on them
provided that we usethe samescheme and order when com
puting both sides of Eq.~25!. Of course the anomalous d
mensions to leading logarithms do not either depend
them.

This simple result has several interesting consequen
First, it has been advocated@4# that theA2 condensate could
be dominantly due to the contribution to the path integral
semiclassical gauge field configurations such as instan
liquids. It is useful to consider this hypothesis through
background field picture, i.e., factorizing the path integ
into an integral over semiclassical gauge field configuratio
and for each value of these an integral over quantum fl
tuations around this background configuration. It means
the Hermitian matrixAm is decomposed into

Am5Bm1Qm~B!, A25B21$B.Q%11Q2~B!, ~26!

Bm being the background, assumed to be nonperturba
andQm the quantum fluctuations assumed to be perturbat
$B•Q%1[B•Q1Q•B. In principle,Qm depends onBm and
differs from the quantum fluctuations around the triv
vacuumBm50 which is what perturbative QCD compute
The hypothesis that̂(A2)R& is due6 to these semiclassica
gauge configurations is translated into (A2)R.B2. From
Eqs.~25! and ~26!

^~A2!R&.^B2&.^A2&2^Q2~B50!& ~27!

i.e., that@Q2(B)2Q2(B50)# is subleading.7 In other words,
the dependence ofQm on Bm is subleading. The hard quan
tum fluctuations are not sensitive to the soft backgrou
field.

A most interesting consequence of our result is related
some discussions in@6#. These authors extend to QCD som
remarks stemming from compactU(1). They attribute a spe
cial role to theA2 condensate, even if a gauge depend
quantity, by arguing thatA2 in the Landau gauge is the min
mum of A2 on the gauge orbit. One difficulty in this argu
ment is the following: Fixing the Landau gauge amounts
minimizing the^Abare

2 & while the condensate refers to som

6This discussion is qualitative and we do not know how to defi
rigorously the corresponding scalem. We therefore prefer to omi
writing m here.

7If B is a classical solution of the field equations, the term linea
Q will vanish.B should be close to such a solution and we theref
neglect$B•Q%1 .
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renormalized quantity free of the quadratic and logarithm
divergences. In compactU(1) life is simpler:

^Abare
2 &5^Apert

2 &1^Anonpert
2 &, ~28!

the perturbative theory is trivial and the nonperturbative c
tribution is due, roughtly speaking, to the topology. A pha
transition when the coupling constant varies allows us
measure directly the non perturbative contribution. We re
to @6# for more details. Our result Eq.~25!, exhibits in QCD,
up to subleading contributions, a linear decomposition si
lar to Eq.~28!, although such a similarity is not at all obviou
at first sight. The next question could be whether in so
sense thêA2&OPEcomputed in the Landau gauge is the min
mum of some quantity on the gauge orbit.

Last but not least, let us simply say that the result in E
~25! provides a fairly simple understanding of what theA2

condensate is.It confirms that indeed the O(1/p2) correction
to perturbative QCD at large momenta has to do with the2

condensate.Indeed, if one starts with some doubt about t
relation of the RHS of Eq.~13! with an A2 condensate, jus
considering it as an unidentified 1/p2 contribution, we
end-up with the conclusion that it yields a nonperturbat
contribution to theA2 VEV. The fact that in our derivation
this term has precisely the anomalous dimension of anA2

condensate comes form the fact thatc2 in the RHS of Eq.
~13! has been computed under the assumption that it is du
an A2 condensate, an assumption which has been show
fit fairly well the lattice data. Had we used another sca
dependence forc2 we would have ended with a wrong sca
dependence for the resulting nonperturbative contribution
the A2 VEV. We would have also ended with a consta
different from 1 in front of the RHS of Eq.~25!; see the
discussion following Eq.~20!. In fact, the necessity of this
factor 1 in front of the RHS of Eq.~25! could be thought to
introduce, at least up to one loop, a bound forA2 and gluon
anomalous dimensions andb function. A very recent work
@7#, which has appeared while this note was under consi
ation, confirms such a bound up to all the orders in p
Yang-Mills theory in the Landau gauge within the algebra
renormalization. Thus the picture is fully consistent. On t
other hand, this result strongly supports the existence
some underlying Slavnov-Taylor identity at the origin
such a bound and opens the possibility to extend the res
of this paper, in particular Eq.~25!, beyond the leading loga
rithm approximation. How to do it, within the MOM renor
malization scheme, is a work in progress.
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