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Transparent expression of theA? condensate’s renormalization
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We give a more transparent understanding of the vacuum expectation value of the renormalized local
operatorA? by relating it to the gluon propagator integrated over the momentum. The quadratically divergent
perturbative contribution is subtracted and the remainder, dominantly due ©(thip?) correction to the
perturbative propagator at large is logarithmically divergent. This provides a transparent derivation of the
fact that thisO(1/p?) term is related to the vacuum expectation value of the I8abperator and confirms a
previous claim based on the operator product expan€®E of the gluon propagator. At leading logarithms
the agreement is quantitative, with a standard running factor, between théfocahdensate renormalized as
described above and the one renormalized in the OPE context. This result supports the claim that the BRST
invariant Landau-gaugA? condensate might play an important role in describing the QCD vacuum.
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[. INTRODUCTION minimum of the gauge orbit6]. In other words, some im-
portant physics seems to lie beneath the Becchi-Rouet-Stora-
In a series of lattice studid¢d—4] the gluon propagator in  Tyutin (BRST) invariance ofA? in Landau gauge. The au-
QCD has been computed at large momenta, and it wathors of Ref.[5] discussed on the generaliZedomposite
shown that its behavior was compatible with the perturbativq)peratorAMAu+ Zi(l_g)gc, which is BRST invariant in
expectation provided a rather largepdcorrection was con-  the manifestly Lorentz covariant gauge, and examined the
sidered. In an OPE approach this correction has been showurvival of this invariance after renormalization. In this pa-
[2,3] to stem from anA? gluon condensate which does not per, although in a different context, we also examine the
vanish since the calculations are performed in the Landadame point: the subtle relationship between the minimum of
gauge. It was also claimed] that this condensate might be bareA? in the gauge orbit and any gauge-independant physi-
related to instantons. cal phenomenology associated to the renormalized conden-
The role of such a condensate in the nonperturbativgate[6], emerging for instance from the OPE analydis 4.
properties of QCD, in particular its relation to confinement,To this aim, we will derive the renormalize8? vacuum
has been studied by several groups6]. Of course any expectation value without using the normal ordering but us-
physics discussion about th& condensate necessitates aing only the OPE expansion of the gluon propagatomwill
clear definition of what we speak about, i.e., it needs a welprovide a more transparent definition, related directly to a
defined renormalization procedure to define the renormalizeguantity which is actually measured.
local A% operator, sinceA(0)? is a quadratically divergent  \We start from the observation that the non renormalized
guantity as can easily be seen in perturbation theory.Arenoq—A(o)2> is related to the integral of the gluon propagator
malization ofA? was defined iri2,3] within the OPE context over momentum. Hence it is expected that the nonperturba-
which we now briefly summarize. It uses the notion of “nor- tive contribution toA? has to do with the nonperturbative
mal order product” in a “perturbative vacuum” which is contribution to the gluon propagator. The latter contains pre-
annihilated by the field8. It implies that(:A(0)*:),er=0in  cisely 1p? contributions due to thé\? condensate at large
the perturbative vacuumThe contribution to{:A(0)%:) i momenta, and also strong deviations from perturbative QCD
the true QCD vacuum is then of nonperturbative origin. ltat small momenta, see Fig.(faken from[1—4]). How does
has only logarithmic divergences and it is multiplicatively this fit together?
renormalized. Of course this notion of a perturbative vacuum
in which Fock expansion could be performed has not a very, p,pe peRTURBATIVE AND NONPERTURBATIVE A
transparent physical meaning, especially in a nonperturbative
context such as the numerical Euclidean path integral It is possible in principle from lattice calculations to de-
method. fine the nonperturbative gluon propagator in the Landau
A? is not a gauge invariant operator but the bAfecon-  gauge. Lattice calculations provide the bare gluon propaga-
densate is a very special object since, by definition, it is a

2Landau gauge is recovered in the lingit>1.

The symbol “---:" represents the normal ordered product in 30f course the normal ordering has been use®ja] to compute
this perturbative vacuum. the anomalous dimension &f and the Wilson coefficient,.
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3.0 ‘ ‘ nematics any more on the following. The Yang-Mills theory
= is thus fully renormalized and from now on we will consider
% * Lattice Data only renormalized gauge fields and propagators.
o5 of Sk The propagator is defined in Euclidean space by
f d4xeip'x<AZ R(O)AB r(X))
«—20-°
k=3
(D’I = PPy
“a = 5a,b 5,41,,1/_ #2 GR(pz) (3)
15 - p
+ Inverting the Fourier transform,
10 - 3(N2-1)
A2 (0)ALR(0))= ——= [ d*pG@)(p?
| §<MR<>a(>> 2 PGE(p?)
0.0 2.0 4.0 6.0 8.0 10.0

2

2
P :3(Nc—1)J 02dp?GD(p?)
FIG. 1. Gluon propagator extracted from lattice calculations 1672 R '
renormalized ap. =10 GeV and plotted between 0 and 9 GeV. The (4)
curve corresponds to the fit written in E). It results that the

infrared cutoffpy,, can be safely taken around 2.6-3.0 GeV. This integral is quadratically divergent in the ultraviolet. In-

. . deed, if the gauge fields and the coupling constant have been
tor. From the gluon propagator computed with a series ofgnormalized, the locah? operator has not yet. Let us intro-
different values of the lattice spacing one can in principleq,ce an ultraviolet cutofi. and define

compute the renormalized gluon propagator from zero mo-

mentum up to as large a momentum as one wishes. An ex- 3(N2—1) (a2

ample of such a nonperturbative propagator is shown in Fig. ((AR(M))2>A=°—f p2dp’G@(p?), (5
1. We can choose, for example, the momentum subtraction 167> Jo

(MOM) renormalization schenfesuch that s )
where (Ag(w))~ refers to the square of the gauge fields

1 renormalized at the scalg, but whereA? has not been
Gg)(pZZMZ)z —— 1) renormalized as a local product of operatorfhe symbol
2 “{---)" represents the vacuum expectation valQ£EV).
(AR)? is clearly an UV divergent quantity. The index re-
This implies a renormalization of the gluon fields fers to the ultraviolet cutoff angk to the renormalization
1 _ om(2) 2 point for the gauge fields and the coupling constant. The
AR=Z3(1)” A, bares  Za(m)=pCGrad ). (2 cutoff A has nothing to do with the lattice cutadf 1. The
o renormalization in Eqs(1l) and (2) has eliminated any de-
The renormalization constaidy has to be understood as re'\})endence in the different lattice spacings which have been
lated to any regularization method and any value of the UVysed to produce the renormalized propagatois introduced
regulator provided that the latter is larger than the momentaimply to control the quadratic and logarithmic divergences
carried by the gluons. The coupling constant is also renorye encounter here.
malized in a MOM scheme. Initially, the particular kinemat-  The dominant contribution to this integral is the perturba-
ics of the three-gluon vertex leading to the definition of thetjye one. To separate the perturbative contribution from the
analysis we show in Fig. 1 is performed with the choice of
the asymmetric M® scheme, one of the incoming gluon om (@2 2 p2G@)(p?)
momenta being zero. Concerning the conclusions of the P Gr(P%p )zzeT(z)
present paper, they shall be derived from leading-logarithm H K
computations which are not affected by the kinematics of the 2
renormalization point fow, then we do not specify the ki- CO(—Z,a(,u)
o

2

p
+Ca| —,a(w)
o

. . . . A? 1
“Notice that the chosen renormalization scheme is not relevant in Xw -

our argument in this paper, but we clearly need a scheme in which 4(N§— 1) p27
nonperturbative quantities coming from lattice simulations can be

accommodated. MOM is one of the simplest. On the contrary thavhereG(®)(p?) is the bare propagator. This expansion does
modified minimal subtractionMS) scheme does not satisfy this not exactly separate the perturbative from the nonperturba-
condition. tive contribution because of the denominaj@fG®(u?)

(6)
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which contains a nonperturbative contribution. It is therefore The expansion in Eq.7) is only valid above some mo-
convenient to introduce a slightly different renormalizationmentump=p,,. Typically we have takemp,;,=2.6 GeV
R’: for our fits reported iff1—4].

From Egs.(5), (7) we decompose

@) ZG(Z)( pZ)
ZG J(p% )=T 2 2\ pert 2\ OPE
Gpen 1°) ((AR(1))) A= ((AR(p)) )X+ ((Ar(1))) 2
p p? +((AR(u)?)F (11)
Co Faa(ﬂ) Cy E,a(m
T eo@a(w) | collalw) where

L ((ADR(w)) 1 3(N;— 1)z p?

4(N2 1) p?’ @) <(AR(M))2>"A‘”‘=? 2 dp CO(sza’(M) :
where A?)g(w) represents thé? operator renormalized as (12
a local operator at the scale Here the denominator is only
the perturbative contribution to the Green function whence 5 OPE 3(N2—1)z, (a2dp? | p?
the first term in Eq(7) is purely perturbative: it runs pertur-  ((Ar(1))%)x :TI , 5 Ca| 5 a(p)
batively with a perturbative MOM renormalization condition m Pmin P M
at p?= 2. Let us define for simplicity the constant <(A2)R(M)>

—— (13
L _8%d L, ®) N1
Z = -4 .
T coLalp) Gial 1) u? AN 1)
Ne—1 2

We know from [3] that the first term in Eq.(7), ((AR(M))2>IAR:c—2fpm'”p2d PG (p?).
2oCo(p?/ w2, a(w)), represents the three loop perturbative 16m 0
contribution. The secondyc,(p?/ u? a(u)), appears as the (14)

leading logarithm Wilson coefficient of the first nonperturba-
tive correction(O(1/p?)), which we attributed 3] to the A few comments are in order heré(Ag(u))?)Re" corre-
vacuum expectation value of the renormalized local operatosponds indeed to the perturbative computation of the vacuum

((A?)R(w)). expectation value oA?, i.e., to the connected diagrams with
Let us now introduce some notations: no external legs and with onA? inserted. However, the
) coupling constant and the gluon fields in the diagrams have
(A R( 1) =Zp2 (1) Aare been consistently renormalized at the scaleTo leading
_ _1 5 order Eq.(12) leads to
=[Zp2()Z5 ()] (AR())?:, €)
where the symbol-:- -: represents the normal ordered prod- In( A 7olBo
uct in the perturbative vacuuim.We define Z(u) 2ypert 3(N2-1) Aoco
EZ:,Tl(,u)ZAz(,u), the anomalous dimension for these renor- ((Ar(w)IX A 1672 — A P
malization constants given by | (A
QCD
35Nc a(u)
yaz(a(p))= ——INZpa(p) == —5= ——+ -+, 2
12 4w ;
din o «| 1+ 0 +0 Pmin ,
In A A®
- d - ~ o) A
Ya(p)= 2INZ(p)==vog—+-- oeP
din M (15)
3N a(p) o |
=T T4 . T which diverges more than quadratically. Note that the depen-
=~ . T (10) hich d h d lly. Note that the d

dence inp?,, is subdominant.
Our main goal in this paper is to understand better the con- In Eq. (13) the left-hand side has been defined from the
nection betwee(A?)g(u)) defined in[3] and the(Ag())?  decomposition of the integrdb) according to Eq(7). The
object considered here. right-hand side containgA%)r(u)) already discussed. The
latter is just a number which factorizes out of the integral in
Eq. (13). We thus see that(Ag(x))?)SPE and ((A?)g(w))
5The :- - -: symbols have been erroneously omitted 3 are proportional.
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Our next task is to compute the proportionality coefficient

and to comparg (Ag(x))?)SFE with the other subleading

term, ((Ar(x))?)'. From[3] and Eq.(8) we know thatz,
=1+0(1/u?). In our calculation of the integral in E¢13),

being performed to the leading logarithm, we will take

ZyC,=C, in the following. From(23) in [3],

2

—,a(u)
p

=127 a(p) ( w

~%0!Bo
a(,u))

Cy (16)

Let us also recall

(A?)r(p)yo (e p))” va2/Bo
17

Za(p) (e p))¥o'Po,
with

35 . 9
Bo=11, ~,=13/2, YA g Yo=Y Yo -

(18)
From Eq.(13) and the leading logarithm relation
47 d
dp?/p=dlog(p?) =~ 5~ — (19
0 «o
we find
3(NZ-1)  (12m)
(AR =" —
167%  (a(p)) 70’

daa—1"(v0/Bo)

2 (Pmin
((ADR(w) 4_wf (P

4(N2-1) BoJawn)
:<(A2)R(,U«)>

a(A)| 700 [ a(ppp)| 700
X(aw)) B aw)) }

(20

It is interesting to notice that the coefficie§/ v, stemming
from the integration over is exactly compensated by the
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(AP () 7080 — oo, (22
A—oo
On the other hand, from E¢14)
((Ar(1))?)'R=const. (23

since it does not depend ah. It results that (Ag(u))?)STE

is dominant over((Ag(x))?)'® in the decompositior(11).
This dominance will lead to the coming interpretatigrext
section of the decompositionill), which is indeed the main
result of this note. Of course, we perform our analysis in the
Landau gauge because of its concepf@land numerical
(lattice Green functionf3]) particular interest. However, the
survival after renormalization of BRST invariance in covari-
ant gauges for the generalized composite operator claimed in
Ref.[5] seems to point out that an analogous analysis, with
similar results, for these gauges might be performed. How-
ever, this is hard to do because of the renormalization mixing

of both local operator&? andcc (the renormalization of the
generalized composite operator not being diagonal except for
very particular casefb]).

As an interesting special case,f= A

((AR(M))P)FFE — ((A2)R(A))x(a(A)) ™ 74Fo, (24)

— 0

I1l. CONCLUSION AND DISCUSSION

Our conclusion is summarized in

a(A)) %060

<(A2)R(M)>2<(AR(M))2>2PE(m

a(A) v0/ho
=[((AR(1)?) A= ((Ar() DR (W) '

(25

Since notations are not conventional let us recall that the
(---Ya's in the RHS represent the gluon propagator inte-
grated over momentum up to an UV cutoff, see Eqs(5)
and(12). The gluon fields and coupling constants are renor-
malized in all the terms appearing in these equations. Thus
we learn that the further renormalization of the local operator
A? proceeds by substracting to the plain vacuum expectation
value of A% the same object computed in perturbation. This

prefactors outside the integral, the origin of which does no

appear at first sight to be related to the anomalous dimensi e powers ofx in the RHS of Eq.(25). Not unexpectedly.
5 . S (25). g
of A%. Had we taken any other anomalous dimension insteaq retrieve in essence the initial expression of the renormal-

of o, say somey’, we would have ended with a constant jzation of theA2 operator through normal orderirfge., sub-
9/(4y") in front of the RHS of Eq(20). i traction of the perturbative VEV followed by the multipli-

In the largeA limit, a(pmin)>a(A) whence, sinceyy is  cative, logarithmic renormalizatioZ 2. But apart from a
positive, the main result of this paper comes from nontrivial consistency check, involving in particular the de-
tailed expression of the Wilson coefficient, we obtain an ex-
pression which is more transparent, since it only involves a
measurable quantity, the integral over the renormalized
propagator.

Equation(25) presents a separation between perturbative
and nonperturbative contributions to the integrated propaga-

ﬁogarithmically divergent difference is then renormalized by

() 1

<<AR<M>>2>§'°EA2 (A2)g())

(a(A))—Ayo/Bo

To leading logarithms and keeping fixed,
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tor, i.e., toA2. Of course, such a separation depends on theenormalized quantity free of the quadratic and logarithmic
renormalization scheme, and on the order in perturbatiolivergences. In compatt(1) life is simpler:

theory in which the Green functions are computed. It is also

well known that summing to infinity the perturbative series

may generate renormalor)s which behave like nonpgrturba— <A§ar9:<A§ert>+<Aﬁonper>' (28)
tive condensates. To avoid any such problem we stick to a

finite order in the perturbative series. Furthermore, if the

quantitative separation between perturbative and nonpertufpe perturbative theory is trivial and the nonperturbative con-

bative contributions depends on these prescriptions, thgipution is due, roughtly speaking, to the topology. A phase

results summarized in Eq25 do not depend on them anqition when the coupling constant varies allows us to
provided that we usthe samescheme and order when com- eaqre directly the non perturbative contribution. We refer

puting both sides of Eq(25). Of course the anomalous di- 4 [g] for more details. Our result E¢25), exhibits in QCD,
mensions to leading logarithms do not either depend ony, 15 supleading contributions, a linear decomposition simi-

them. lar to Eq.(28), although such a similarity is not at all obvious

_This simple result has several interesting consequencegy frst sight. The next question could be whether in some
First, it has been advocat¢d] that theA? condensate could sense théA2)OPEcomputed in the Landau gauge is the mini-

be dominantly due to the contribution to the path integral of,im of some quantity on the gauge orbit.

semiclassical gauge field configurations such as instantons | 4t put not least. let us simply say that the result in Eq.

liquids. It is useful to consider this hypothesis through a(25) provides a fairly simple understanding of what th2
background field picture, i.e., factorizing the path integra'condensate ist confirms that indeed the @/p?) correction
into an integral over semiclassica'l gauge field configurationstO perturbative QCD at large momenta has to do with tHe A
and'for each valug of these an |ntegral over quantum 1EIUC(:ondensatelndeed, if one starts with some doubt about the
tuations Qrpund th|§ bagkground conflgl_Jratlon. It means thartelation of the RHS of Eq(13) with an A2 condensate, just
the Hermitian matrixA,, is decomposed into considering it as an unidentified pf/ contribution, we
end-up with the conclusion that it yields a nonperturbative
A,=B,+Q,(B), A*’=B?+{B.Q},+Q*B), (26)  contribution to theA? VEV. The fact that in our derivation
this term has precisely the anomalous dimension ofAan
. . condensate comes form the fact tltatin the RHS of Eq.
B, being the background, assumed to be nonperturbativey 3) has heen computed under the assumption that it is due to
andQ,, the quantum quctua_tlons assumed to be perturbative, , 52 condensate, an assumption which has been shown to
{B-Q},=B-Q+Q-B. In principle,Q,, depends o, and it tairly well the lattice data. Had we used another scale
differs from the quantum fluctuations around the trivial dependence fat, we would have ended with a wrong scale
vacuumB,, =0 which IS what perturbative QCD computes. genendence for the resulting nonperturbative contribution to
The hypothesis thaf(A%)g) is du€ to these semiclassical e A2 VEV. We would have also ended with a constant
gauge configurations is translated int8*r=B. From itterent from 1 in front of the RHS of Eq(25); see the
Egs.(25) and (26) discussion following Eq(20). In fact, the necessity of this
factor 1 in front of the RHS of Eq(25) could be thought to
((A%)g)=(B?)=(A%)—(Q?*B=0)) (27)  introduce, at least up to one loop, a bound Adrand gluon
anomalous dimensions argl function. A very recent work
i.e., thaf Q*(B) —Q*(B=0)] is subleadind.In other words, ~ [7], which has appeared while this note was under consider-
the dependence @, on B, is subleading. The hard quan- ation, confirms such a bound up to all the orders in pure
tum fluctuations are not sensitive to the soft baCkgrOUnd{ang-Mi”S theory in the Landau gauge within the a|gebraic
field. renormalization. Thus the picture is fully consistent. On the
A most interesting consequence of our result is related t@ther hand, this result strongly supports the existence of
some discussions i6]. These authors extend to QCD some some underlying Slavnov-Taylor identity at the origin of
remarks stemming from compad{(1). They attribute a spe- such a bound and opens the possibility to extend the results
cial role to theA? condensate, even if a gauge dependenbf this paper, in particular Eq25), beyond the leading loga-
quantity, by arguing tha? in the Landau gauge is the mini- rithm approximation. How to do it, within the MOM renor-
mum of A% on the gauge orbit. One difficulty in this argu- malization scheme, is a work in progress.
ment is the following: Fixing the Landau gauge amounts to
minimizing the (A2, while the condensate refers to some
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