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Hartree-Bose mean-field approximation for the interacting boson mode(IBM-3)
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A Hartree-Bose mean-field approximation for the IBM-3 is presented. A Hartree-Bose transformation from
spherical to deformed bosons with charge-dependent parameters is proposed which allows bosonic pair corre-
lations and includes higher angular momentum bosons. The formalism contains previously proposed IBM-2
and IBM-3 intrinsic states as patrticular limi{sS0556-28188)50202-6

PACS numbdps): 21.60.Fw, 21.60-n, 21.60.Ev

With the advent of radioactive nuclear bedRNB) fa- formed bosons and the trial wave function is taken to have
cilities, unexplored regions of the nuclear chart will becomegood isospin. Closer inspection reveals that this trial wave
available for spectroscopic studies. New aspects of nucledunction has the additional isospin 8) symmetry which in
dynamics and novel types of collectivity and nuclear topolo-IBM-3 is equivalent to orbital (B) symmetry. [Isospin
gies are expected. Nuclei with roughly equal numbers ofSU(3) symmetry is to IBM-3 whaf-spin symmetry[16] is
protons and neutronsZ(~N) and with masses in between to IBM-2.] Moreover, it is well known that isospin symmetry
4%Ca and'%sn are of particular interest because the builduptself is increasingly broken iZ~N nuclei as the nuclear
of nuclear collectivity in this mass region occurs in the pressnass increaseld7,18. There is also tentative evidence for
ence of pairing correlations between alike nucle@orston—  rigid triaxial shapes in the region of interest and its proper
proton and neutron—neutrp@as well asbetween neutrons description would require the inclusion of three body forces
and protong1]. This offers the possibility of experimentally or higher angular momentum bosons. We therefore present
accessing nuclei that exhibit a superconducting phase arisirig this paper a generalization of the treatment of GL in which
from proton—neutron Cooper paif]. Although recent none of the above symmetrigisospin SU3) and SU2)] is
breakthrough$3,4] have made shell-model calculations pos-imposed on the trial wave function and which includes
sible for this mass region, they are still of a daunting com-bosons of angular momenta higher thér 2. For practical
plexity and alternative approximation schemes are requiredpplications we restrict ourselves hereste=0,2.
that yield a better intuitivée.g., geometricinsight. We start with the usual spherical boson creation and an-

One of the possible alternatives is the interacting bosomihilation operators;/}mf,y/m, where/ is the angular mo-
model (IBM) [5]. It has been showii6] that nuclei with mentum,m is its third component, and is the isospin pro-
protons and neutrons filling the same valence shell require ajection. Each boson carries isospin=1. We also define
extended boson model, IBM-3. In IBM-3 three types Of—:};/mq—:(_l)/im'y/—mr- In terms of these boson operators,

bosons are included: proton-protonr), neutron-neutron g system ofN bosons interacting through a general number-

(v), and proton-neutrond). The 7, », andé bosons are the  conserving two-body Hamiltonian can be written in multipo-
three members of @=1 triplet, and their inclusion is nec- |ar form as
essary to obtain an isospin-invariant formulation of the IBM.
Over the last decade the validity of the IBM-3 has been
tested and its relationship with the shell model worked out HZE 8/77%;/#2 2 K& TpTaT, ﬂ T 'ﬂ 5!
[7-11]. 7 T ryrprgr, 1727374 7172 7374
The mean-field formalism has been an important tool to @
acquire a geometric understanding of the IBM ground statghere the center dot denotes scalar product in orbital space.
and of the vibrations around the deformed equmbngm shapg, isospin space the only restrictiondg+ m,= 75+ 74 (i.e., a
[12—14. Moreover, a treatment based on mean-field tech-h i ina Hamiltonian i edd 71
nigues generally leads to a considerable reduction in th&"1arge-conserving Hamitonian 1s assum myrp, A€
complexity of the calculation, allowing the introduction of Multipole operators with total angular momentim
additional degrees of freedom if needed. Studies in the in-
trinsic framework are thus useful to assess the importance of AL
higher angular momentum bosons with, e.g4 TMrTszz/z
=37,4%,... or toinvestigate the role of extra degrees of '
freedom not included in IBM such as two-quasiparticle ex-where the coupling is only done in angular momentum. The
citations, etc. Hamiltonian(1) can be used for IBM-3, for IBM-2, or even
An intrinsic-state formalism for the IBM-3 was recently for a general isospin nonconserving Hamiltonian with three
presented by Ginocchio and LeviatdBL) [15]. In that work ~ kinds of bosons.
charge-independent deformation parameters are imposed in Deformed bosons are defined in terms of spherical ones
the Hartree-Bose transformation from spherical to axially deby means of a unitary Hartree-Bose transformation
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it is expected to lead to a deeper energy minimum. Numeri-
F;T:;n 77%17%7, J’T/mTZE ﬂ?ﬁfrgf- 3 cal results illustrating this point will be presented later on.
] - . P ] The variational parameters of the trial wave function are
and their Hermitian conjugates. The deformation parameterg,e matrix elements;”,, of the Hartree-Bose transformation,
77m in these equations verify the orthonormalization condi-agsqciated with the orbital and isospin degrees of freedom,

tions and the parameter, which determines the amount of mixing
of § bosons in the ground state.
E pER TYRT = Spp' E n?k’fnﬁfm,: 8,1 St - _The ground-state ene_rgy_is ob_tained by taking the expec-
/m p tation value of the Hamiltoniafl) in the state(5):
Note the explicit dependence on the isospin compomenit _2 ¢
the transformationy, allowing different structures for the E(n,a)= 2 € 1(a,7)
different condensed bosons v, and 6. The indexp labels
different possible deformed bosons. We chopse0 for the
P P + 2 Ve fola,m1m57374),  (9)

fundamental deformed bosons ape 1,2, ... for thediffer- T1:72:73:74
ent excited bosons. For instance, in an($scheme differ-
ent values op=0,1,2,3 label the groungg, y, and scissors where
bands, respectively. Since in this work we only treat the
ground-state condensgd _boson, the H_artree supe@:riispt 6722 ;/Tﬂﬁrﬁﬂ;m: (10)
always zero here and it will be omitted in the following. The /m
formalism for the excited states will be presented elsewhere.
Following Ref. [15], the trial wave function for the c _

ground state of an even-even system with a proton excess is "’ 71:72:73:7 /1My et sMas amy
of the form(the trial wave function for an even-even system

. . . . . * T1 * To
with a neutron excess is obtained by interchanging the role XV/lmm/zmzrz/3m373/4m4r4’7/1m1’7/2m2
of protons and neutrohs

T1T27T3T4

XnB ph (11
|¢(a)>:ATN”(a)FINP_N“|O>, (5) 7]/3m37]/4m4
where the operatoA T creates a correlated bosonic pair in Fr(a )= ($(a)|TTT | p()) (12
isospin space HED= g (@) pla))
A(a)=TIrT  +ar{r]. (6) and

In Eqg. (5) Ny (N,) is the number of protofneutron pairs in (¢>(a)|FT IIr,T,|é(a)
the valence space. The trial wave functié® contains the f _ T2 s T4 13
. . . . 2@, T1To737,) 13
isospin-conserving formalism of GL and the IBM-2 as natu- (p(a)|d(a))

ral limits. Two different values o& are connected with these L~ . . .

limits. Fora= — %, AT(«) corresponds, in the particular case .ThE Coiﬁlc;em&/}' '.EdtL.jde t?e S|ntalet[\)irtgzledert1erg|e_§7th
of r-independent deformation parameters, to an isoscala'spamg'é )ugtlijosncg'rr]\e”clcj);?f?csierr\?m € two body term in the
bosonic pair. Its total isospin 5= N,— N, and the results of q T _ _$1m171»/z_mzfz~/3m373/4m4f4

GL are reproduced. Any other value of breaks isospin 7€ the_ symmetrized interaction maitrix elements between
symmetry. In particulara=0 eliminates the mixing ofs ~ Normalized two-boson states following Rgt4],

bosons in the ground state and yields an IBM-2 intrinsic

state. It should be emphasized that when the deformation 1My Ty oMy T/ Mg T3,/ yMy 7y

parameters;’7. in Eq. (3) depend on the isospin component
7, the set of operatorE;;, with 7=—1,0,1 do not form an
isospin triplet, and consequently the in Eq. (6) may con- X\1+8, /) 8mm,0r N1+ 8/ s Omum,Oryr,
tain mixtures ofT=0,1,2 isospin components.

At this point we would like to remark that the trial wave
function (5) is not the most general () intrinsic state,
involving a combination of all-=—1,0,1 condense bosons.
The U(18) intrinsic state is written as

=3 (/1My7,/ oMy H|/ sMy 3,/ 4my7y)

(14)

The dependence of the energy on the variational param-
etersy’s is contained in the one-body (10) and the two-
body V¢ (11) terms, while the dependence an comes
|¢>u<1s>=(rz)Np+ Na|0), (7)  through the isospin matrix elemerfts (12) andf, (13). The

latter matrix elements are straightforward to calculate by a
binomial expansion of the ground-state trial wave function
(5).
TI=2 &mYim- (8) The Hartree-Bose equations for the orbital variational pa-
Jmr rametersy are obtained by minimizing the energ9) con-
In this state orbital angular momentum, isospin, and chargstrained by the norm of the transformation. Assuming a
are broken. The state given in E() improves over this charge-conserving Hamiltoniafl), the following Hartree-
state by including charge conserving pair correlations. ThusBose equations result:

where
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FIG. 1. Calculated ground-state intrinsic energy as a function of
« for a system with 5 proton and 3 neutron pairs interacting through
the Ginocchio Hamiltoniaril7) with k=1 MeV.
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FIG. 2. Deformation parameteiB, for a system withN,=4

neutron pairs as a function of the differenig— N, between the
numbers of proton and neutron pairs. The Ginocchio Hamiltonian

/2m2
where the Hartree-Bose matiix is

. ~
h/lml,/zmz_ 8/1rf1(a’: ) 6/1/25m1m2

> W om, 7 m, = E) m (15 (17) with k=1 MeV is used.

Figure 1 shows, for a system with 5 proton pairs and 3
neutron pairs, the ground-state energy for the Hamiltonian
(17) as a function ofa. The dashed line is calculated with

r-independent deformation parameters; the GL minimum en-
+2 > V imyn,/ amyrs / amy 74/ sy ergy is reproduced for=—3. The full line is calculated

/3M3/ 4gMy 7o 73Ty

with the present formalism. The latter calculation always

i pTh g7 gives a lower energy and, in particular, the minimum is not
(M T/ aMma T oM (e, 779747) (16  obtained fora= — 1 put for a~—0.32. In addition, the cor-
”;zmz 2T rrstatal responding deformation parameters amependent. The en-

The term 7’;2”‘2 in the denominator is a consequence of a

mathematical trick for obtaining a set of three coupled
Hartree-Bose equationd5). These depend on the isospin
matricesf, andf,. For each value of the matricesf; and
f, are calculated and the Hartree-Bose EJ$)—(16) are
solved self-consistently. The procedure is iterated until one
finds the absolute minimum of the ener@). Once the prob-
lem is solved self-consistently, the diagonalization(db)
provides the deformation parameterg,, for the ground
state.

To test the present formalism and to compare with the one
by GL, we used a simple Hamiltonian recently proposed by
Ginocchio[19],

H=-«x > PT:PT, (17)
where

PT=[s'd+(—1)Td"s]-=2T. (18)
In these equations the colon denotes a scalar pro-
duct in orbital and isospin spaces andy,,

A
P
\Z

10

ergy gained by breaking isospin invariance in our trial wave

FIG. 3. Mean values of the boson numbexs,, for a system

=(—1)/"™*f1-7y _ . The Hamiltonian(17) is clearly  with N,=4 neutron pairs as a function of the differenidg— N,
isospin invariant and provides a first simple test to thebetween the numbers of proton and neutron pairs. The Ginocchio
present formalism. Hamiltonian(17) with k=1 MeV is used.
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FIG. 4. Same as Fig. 2, but for the nonconserving isospin FIG. 5. Calculated ground-state intrinsic energy, as a function of
Hamiltonian(20) with the parameters given in the text. the differenceN,— N, between the numbers of proton and neutron

pairs, for the nonconserving isospin Hamiltoni@®) with the pa-

function is relatively small. In this respect it may be advan-rameters given in the text.

tageous to use the GL intrinsic state for isospin conservingt; ) ) S

Hamiltonians. Though, a better approximation would be oblironcondensate axially symmetric about the intrinsiaxis,

tained by performing variation after isospin projection overdiving rise to an overall triaxial shape. It should be pointed

our trial wave functions. out that in this case there is no triaxial minimum for aligned
We note that for a system with equal number of protonsoroton-neutron_ shgpgs with equal defqrmations. Here the

and neutrons, the present formalism recovers exactly the GVerall shape is triaxial, but the underlying separate proton

results; differences occur fa+ N. This can be seen in Fig. and neutron condensates correspond to diffefgnblate-

2 where the deformation parametgrsare plotted versus the OPlate axial shapes. o o o

differenceN,— N,, (starting with 4 proton pairs and 4 neu- _Flnally, we present a cglcul_atlon in which isospin is ex-

tron pairy. The deformation parameter8, are obtained Plicitly broken by the Hamiltonian:

from B.= (173 —1 [see Eq.(1) of Ref. [15]]. For

Np=N, the deformation parameters are independent,of H:z e/fﬁ/T_ IN[Q%:Q%+ 2Q%:0Q1Y], (20)

but not any longer a?N,—N, increases. The proton and /T

neutron deformations remain very close; #haleformation TS = B N

B,, however, quickly becomes very large in comparisonWhereQ =[s'd+d s—(ﬁ/Z) (@' >xd)]""""andN[. .. ]

This is becausel; decreases al,— N, increases. This ef- stands for normal ordering prod'uct. In Figs. 4 and 5 we

fect can be seen in Fig. 3 where the mean values of the boscﬁ{eseft the results of a calculation wigg, = €5,=0, €q,

numbersN_, are plotted. The same behavior has been ob-~ 6dV’—-jl--5, 555:2.3{Np_Nn|1 and fd6:.1-5+2-3|Np+Nn|

tained recently with large scale shell model calculatigeee (@l €'S in MeV). In Fig. 4 the deformation parametefs's,

Ref. [20]). In all our calculations we found that the Ginoc- &€ shown as a function dfi,—N, (the calculation starts

chio Hamiltonian(17) leads to ay-independent energy sur- With Ny=Np=4 and therl,, is increasef Figure 5 shows

face. the corresponding ground-state energies for the intrinsic

It is worth noting that the present formalism allows one toStates of GL, and those defined in EdS) and (7). It is
reproduce the well-known case of triaxiality in IBM-2. To interesting to note that the GL intrinsic state and our pair

show this we use the IBM-2 Hamiltonian correlated intrinsic state produce the same resultsNpr
—N,=0, being better than the (W8) intrinsic state. FON,,
H=-(Q,+Q,) (Q,+Q.,), (199  —N,>0 both isospin nonconserving intrinsic states give bet-

irfer results than GL. It is also interesting to see that our pair

where the center dot denotes scalar product : .
lar momentumQ.. is the SU3) generator,Q—s'd correlated ansatz is superior to th€l8) for moderate values
angu G 9 Q= of Np—N,. No triaxial deformation is found in these calcu-

+d"s—({/7/2) (d"xd)-=?2, for proton bosons an@’, is the  |ations.

SU(3) generator, Q' =s"d+d"s+(y7/2) (dTxd)-=2, In summary, we have extended the intrinsic-state formal-
for neutron bosons. The minimization procedureism of Ginocchio and Leviatafil5] for IBM-3 in three dif-
now gives =0, which corresponds to the IBM-2 ferentways. First, the Hartree-Bose transformation is chosen
limit. In addition, the minimum deformation parameters to depend on the isospin componenSecond, variable isos-
correspond to a prolate proton condensate, axiallpin bosonic pair correlations are introduced through the pa-
symmetric about the intrinsiz axis, and to an oblate neu- rametera. Finally, higher-order bosons, other than the usual
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s andd bosons, are included in the Hartree-Bose transformathough for the isospin conserving Hamiltonian the energy

tion. This formalism contains the IBM-2 and GL intrinsic gain is small. We therefore conclude that the new intrinsic
states as particular limits. Substantial differences in the destate is useful for treating isospin breaking Hamiltonians.
formation parameters are obtained wheég=N,. We have _ ) )
presented results for isospin conserving and nonconserving This work has been supported in part by the Spanish
Hamiltonians withs andd bosons. Substantial differences in DGICYT under Contract Nos. PB95/0123 and PB95-0533, a
the deformation parametef, are obtained foN,>N,. In  DGICYT-IN2P3 agreement and by the European Commis-
most of the cases studied, our pair correlated intrinsic groungion under Contract CI1*-CT94-0072.

states are lower in energy than the GL ground states, al-
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