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Hartree-Bose mean-field approximation for the interacting boson model„IBM-3 …
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1Departamento de Fı´sica Atómica, Molecular y Nuclear, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain
2Instituto de Estructura de la Materia, Serrano 123, 28006 Madrid, Spain
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A Hartree-Bose mean-field approximation for the IBM-3 is presented. A Hartree-Bose transformation from
spherical to deformed bosons with charge-dependent parameters is proposed which allows bosonic pair corre-
lations and includes higher angular momentum bosons. The formalism contains previously proposed IBM-2
and IBM-3 intrinsic states as particular limits.@S0556-2813~98!50202-6#

PACS number~s!: 21.60.Fw, 21.60.2n, 21.60.Ev
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With the advent of radioactive nuclear beam~RNB! fa-
cilities, unexplored regions of the nuclear chart will becom
available for spectroscopic studies. New aspects of nuc
dynamics and novel types of collectivity and nuclear topo
gies are expected. Nuclei with roughly equal numbers
protons and neutrons (Z;N) and with masses in betwee
40Ca and100Sn are of particular interest because the build
of nuclear collectivity in this mass region occurs in the pr
ence of pairing correlations between alike nucleons~proton–
proton and neutron–neutron! as well asbetween neutrons
and protons@1#. This offers the possibility of experimentall
accessing nuclei that exhibit a superconducting phase ar
from proton–neutron Cooper pairs@2#. Although recent
breakthroughs@3,4# have made shell-model calculations po
sible for this mass region, they are still of a daunting co
plexity and alternative approximation schemes are requ
that yield a better intuitive~e.g., geometric! insight.

One of the possible alternatives is the interacting bo
model ~IBM ! @5#. It has been shown@6# that nuclei with
protons and neutrons filling the same valence shell requir
extended boson model, IBM-3. In IBM-3 three types
bosons are included: proton-proton (p), neutron-neutron
(n), and proton-neutron (d). Thep, n, andd bosons are the
three members of aT51 triplet, and their inclusion is nec
essary to obtain an isospin-invariant formulation of the IB
Over the last decade the validity of the IBM-3 has be
tested and its relationship with the shell model worked
@7–11#.

The mean-field formalism has been an important too
acquire a geometric understanding of the IBM ground s
and of the vibrations around the deformed equilibrium sh
@12–14#. Moreover, a treatment based on mean-field te
niques generally leads to a considerable reduction in
complexity of the calculation, allowing the introduction o
additional degrees of freedom if needed. Studies in the
trinsic framework are thus useful to assess the importanc
higher angular momentum bosons with, e.g.,l
532,41, . . . or to investigate the role of extra degrees
freedom not included in IBM such as two-quasiparticle e
citations, etc.

An intrinsic-state formalism for the IBM-3 was recent
presented by Ginocchio and Leviatan~GL! @15#. In that work
charge-independent deformation parameters are impose
the Hartree-Bose transformation from spherical to axially
570556-2813/98/57~2!/479~5!/$15.00
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formed bosons and the trial wave function is taken to ha
good isospin. Closer inspection reveals that this trial wa
function has the additional isospin SU~3! symmetry which in
IBM-3 is equivalent to orbital U~6! symmetry. @Isospin
SU~3! symmetry is to IBM-3 whatF-spin symmetry@16# is
to IBM-2.# Moreover, it is well known that isospin symmetr
itself is increasingly broken inZ;N nuclei as the nuclea
mass increases@17,18#. There is also tentative evidence fo
rigid triaxial shapes in the region of interest and its prop
description would require the inclusion of three body forc
or higher angular momentum bosons. We therefore pre
in this paper a generalization of the treatment of GL in wh
none of the above symmetries@isospin SU~3! and SU~2!# is
imposed on the trial wave function and which includ
bosons of angular momenta higher thanl 52. For practical
applications we restrict ourselves here tol 50,2.

We start with the usual spherical boson creation and
nihilation operatorsg l mt

† ,g l mt , wherel is the angular mo-
mentum,m is its third component, andt is the isospin pro-
jection. Each boson carries isospinT51. We also define
g̃ l mt5(21)l 2mg l 2mt . In terms of these boson operator
a system ofN bosons interacting through a general numb
conserving two-body Hamiltonian can be written in multip
lar form as

H5(
l t

« l tg l t
†

• g̃ l t1(
L

(
t1t2t3t4

kt1t2t3t4

L T̂t1t2

L
•T̂t3t4

L ,

~1!

where the center dot denotes scalar product in orbital sp
In isospin space the only restriction ist11t25t31t4 ~i.e., a
charge-conserving Hamiltonian is assumed! and T̂t1t2

L are

multipole operators with total angular momentumL,

T̂M ,t1t2

L 5 (
l 1l 2

x l 1l 2 ,t1t2

L ~g l 1t1

† 3 g̃ l 2t2
!M

L , ~2!

where the coupling is only done in angular momentum. T
Hamiltonian~1! can be used for IBM-3, for IBM-2, or even
for a general isospin nonconserving Hamiltonian with thr
kinds of bosons.

Deformed bosons are defined in terms of spherical o
by means of a unitary Hartree-Bose transformation
R479 © 1998 The American Physical Society
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Gpt
† 5(

l m
h l m

pt g l mt
† , g l mt

† 5(
p

h l m* ptGpt
† , ~3!

and their Hermitian conjugates. The deformation parame
h l m

pt in these equations verify the orthonormalization con
tions

(
l m

h l m* p8th l m
pt 5dpp8, (

p
h l m* pth l 8m8

pt
5d l l 8dmm8.

~4!

Note the explicit dependence on the isospin componentt of
the transformationh, allowing different structures for the
different condensed bosonsp, n, andd. The indexp labels
different possible deformed bosons. We choosep50 for the
fundamental deformed bosons andp51,2, . . . for thediffer-
ent excited bosons. For instance, in an SU~3! scheme differ-
ent values ofp50,1,2,3 label the ground,b, g, and scissors
bands, respectively. Since in this work we only treat
ground-state condensed boson, the Hartree superscriptp is
always zero here and it will be omitted in the following. Th
formalism for the excited states will be presented elsewh

Following Ref. @15#, the trial wave function for the
ground state of an even-even system with a proton exce
of the form~the trial wave function for an even-even syste
with a neutron excess is obtained by interchanging the
of protons and neutrons!

uf~a!&5L†Nn~a!G1
†Np2Nnu0&, ~5!

where the operatorL† creates a correlated bosonic pair
isospin space

L†~a!5G1
†G21

† 1aG0
†G0

† . ~6!

In Eq. ~5! Np (Nn) is the number of proton~neutron! pairs in
the valence space. The trial wave function~5! contains the
isospin-conserving formalism of GL and the IBM-2 as na
ral limits. Two different values ofa are connected with thes
limits. Fora52 1

2, L†(a) corresponds, in the particular cas
of t-independent deformation parameters, to an isosc
bosonic pair. Its total isospin isT5Np2Nn and the results of
GL are reproduced. Any other value ofa breaks isospin
symmetry. In particular,a50 eliminates the mixing ofd
bosons in the ground state and yields an IBM-2 intrin
state. It should be emphasized that when the deforma
parametersh l m

pt in Eq. ~3! depend on the isospin compone
t, the set of operatorsGpt

† with t521,0,1 do not form an
isospin triplet, and consequently theL† in Eq. ~6! may con-
tain mixtures ofT50,1,2 isospin components.

At this point we would like to remark that the trial wav
function ~5! is not the most general U~18! intrinsic state,
involving a combination of allt521,0,1 condense boson
The U~18! intrinsic state is written as

uf&U~18!5~Gc
†!Np1Nnu0&, ~7!

where

Gc
†5 (

l mt
j l mtg l mt

† . ~8!

In this state orbital angular momentum, isospin, and cha
are broken. The state given in Eq.~5! improves over this
state by including charge conserving pair correlations. Th
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it is expected to lead to a deeper energy minimum. Num
cal results illustrating this point will be presented later on

The variational parameters of the trial wave function a
the matrix elementsh l m

t of the Hartree-Bose transformation
associated with the orbital and isospin degrees of freed
and the parametera, which determines the amount of mixin
of d bosons in the ground state.

The ground-state energy is obtained by taking the exp
tation value of the Hamiltonian~1! in the state~5!:

E~h,a!5(
t

et f 1~a,t!

1 (
t1t2t3t4

Vt1 ,t2 ,t3 ,t4

c f 2~a,t1t2t3t4!, ~9!

where

et5(
l m

«̃ l th l m* t h l m
t , ~10!

Vt1 ,t2 ,t3 ,t4

c 5 (
l 1m1l 2m2l 3m3l 4m4

3Vl 1m1t1 ,l 2m2t2 ,l 3m3t3 ,l 4m4t4
h

l 1m1
* t1 h

l 2m2
* t2

3h
l 3m3

t3 h
l 4m4

t4 , ~11!

f 1~a,t!5
^f~a!uGt

†Gtuf~a!&

^f~a!uf~a!&
, ~12!

and

f 2~a,t1t2t3t4!5
^f~a!uGt1

† Gt2

† Gt3
Gt4

uf~a!&

^f~a!uf~a!&
. ~13!

The coefficients«̃ l t include the single particle energies« l t
in Eq. ~1! plus contributions from the two body term in th
same equation. The coefficientsVl 1m1t1 ,l 2m2t2 ,l 3m3t3 ,l 4m4t4

are the symmetrized interaction matrix elements betw
normalized two-boson states following Ref.@14#,

Vl 1m1t1 ,l 2m2t2 ,l 3m3t3 ,l 4m4t4

[ 1
4 ^l 1m1t1 ,l 2m2t2uHul 3m3t3 ,l 4m4t4&

3A11d l 1l 2
dm1m2

dt1t2
A11d l 3l 4

dm3m4
dt3t4

.

~14!

The dependence of the energy on the variational par
etersh ’s is contained in the one-bodye ~10! and the two-
body Vc ~11! terms, while the dependence ona comes
through the isospin matrix elementsf 1 ~12! and f 2 ~13!. The
latter matrix elements are straightforward to calculate b
binomial expansion of the ground-state trial wave functi
~5!.

The Hartree-Bose equations for the orbital variational
rametersh are obtained by minimizing the energy~9! con-
strained by the norm of the transformation. Assuming
charge-conserving Hamiltonian~1!, the following Hartree-
Bose equations result:
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(
l 2m2

hl 1m1 ,l 2m2

t h l 2m2

t 5Eth l 1m1

t , ~15!

where the Hartree-Bose matrixht is

hl 1m1 ,l 2m2

t 5 «̃ l 1t f 1~a,t!d l 1l 2
dm1m2

12 (
l 3m3l 4m4t2t3t4

Vl 1m1t,l 3m3t3 ,l 4m4t4 ,l 2m2t2

3
h

l 3m3
* t3 h

l 4m4

t4 h
l 2m2

t2

h l 2m2

t f 2~a,tt3t4t2!. ~16!

The termh l 2m2

t in the denominator is a consequence o

mathematical trick for obtaining a set of three coupl
Hartree-Bose equations~15!. These depend on the isosp
matricesf 1 and f 2. For each value ofa the matricesf 1 and
f 2 are calculated and the Hartree-Bose Eqs.~15!–~16! are
solved self-consistently. The procedure is iterated until o
finds the absolute minimum of the energy~9!. Once the prob-
lem is solved self-consistently, the diagonalization of~15!
provides the deformation parametersh l m

t for the ground
state.

To test the present formalism and to compare with the
by GL, we used a simple Hamiltonian recently proposed
Ginocchio@19#,

H52k (
T50,1,2

P̂T: P̂T, ~17!

where

P̂T5@s† d̃̃1~21!Td† s̃̃ #L52,T. ~18!

In these equations the colon denotes a scalar

duct in orbital and isospin spaces andg̃̃ l mt
5(21)l 2m112tg l 2m2t . The Hamiltonian~17! is clearly
isospin invariant and provides a first simple test to
present formalism.

FIG. 1. Calculated ground-state intrinsic energy as a function
a for a system with 5 proton and 3 neutron pairs interacting thro
the Ginocchio Hamiltonian~17! with k51 MeV.
e

e
y

o-

e

Figure 1 shows, for a system with 5 proton pairs and
neutron pairs, the ground-state energy for the Hamilton
~17! as a function ofa. The dashed line is calculated wit
t-independent deformation parameters; the GL minimum
ergy is reproduced fora52 1

2. The full line is calculated
with the present formalism. The latter calculation alwa
gives a lower energy and, in particular, the minimum is n
obtained fora52 1

2, but for a'20.32. In addition, the cor-
responding deformation parameters aret dependent. The en
ergy gained by breaking isospin invariance in our trial wa

f
h

FIG. 2. Deformation parametersbt for a system withNn54
neutron pairs as a function of the differenceNp2Nn between the
numbers of proton and neutron pairs. The Ginocchio Hamilton
~17! with k51 MeV is used.

FIG. 3. Mean values of the boson numbers,Nt , for a system
with Nn54 neutron pairs as a function of the differenceNp2Nn

between the numbers of proton and neutron pairs. The Ginoc
Hamiltonian~17! with k51 MeV is used.
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function is relatively small. In this respect it may be adva
tageous to use the GL intrinsic state for isospin conserv
Hamiltonians. Though, a better approximation would be
tained by performing variation after isospin projection ov
our trial wave functions.

We note that for a system with equal number of proto
and neutrons, the present formalism recovers exactly the
results; differences occur forZÞN. This can be seen in Fig
2 where the deformation parametersbt are plotted versus the
differenceNp2Nn ~starting with 4 proton pairs and 4 neu
tron pairs!. The deformation parametersbt are obtained
from bt5A(1/uh00

0tu2)21 @see Eq.~1! of Ref. @15##. For
Np5Nn the deformation parameters are independent ot,
but not any longer asNp2Nn increases. The proton an
neutron deformations remain very close; thed deformation
bd , however, quickly becomes very large in compariso
This is becauseNd decreases asNp2Nn increases. This ef-
fect can be seen in Fig. 3 where the mean values of the bo
numbers,Nt , are plotted. The same behavior has been
tained recently with large scale shell model calculations~see
Ref. @20#!. In all our calculations we found that the Gino
chio Hamiltonian~17! leads to ag-independent energy sur
face.

It is worth noting that the present formalism allows one
reproduce the well-known case of triaxiality in IBM-2. T
show this we use the IBM-2 Hamiltonian

H52~Qp1Qn8!•~Qp1Qn8!, ~19!

where the center dot denotes scalar product
angular momentum,Qp is the SU~3! generator,Q5s†d̃

1d† s̃2(A7/2) (d†3 d̃)L52, for proton bosons andQn8 is the

SU(3) generator, Q85s†d̃1d† s̃1(A7/2) (d†3 d̃)L52,
for neutron bosons. The minimization procedu
now gives a50, which corresponds to the IBM-2
limit. In addition, the minimum deformation paramete
correspond to a prolate proton condensate, axi
symmetric about the intrinsicz axis, and to an oblate neu

FIG. 4. Same as Fig. 2, but for the nonconserving isos
Hamiltonian~20! with the parameters given in the text.
-
g
-
r

s
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troncondensate axially symmetric about the intrinsicy axis,
giving rise to an overall triaxial shape. It should be point
out that in this case there is no triaxial minimum for align
proton-neutron shapes with equal deformations. Here
overall shape is triaxial, but the underlying separate pro
and neutron condensates correspond to different~prolate-
oblate! axial shapes.

Finally, we present a calculation in which isospin is e
plicitly broken by the Hamiltonian:

H5(
l t

e l tn̂l t2 1
5 N@Q0:Q01 2

3 Q1:Q1#, ~20!

whereQT5@s† d̃̃1d† s̃̃2(A7/2) (d†3 d̃̃)#L52,T andN@ . . . #
stands for normal ordering product. In Figs. 4 and 5
present the results of a calculation withesp5esn50, edp

5edn51.5, esd52.3uNp2Nnu, and edd51.512.3uNp1Nnu
~all e ’s in MeV!. In Fig. 4 the deformation parameters,b ’s,
are shown as a function ofNp2Nn ~the calculation starts
with Np5Nn54 and thenNp is increased!. Figure 5 shows
the corresponding ground-state energies for the intrin
states of GL, and those defined in Eqs.~5! and ~7!. It is
interesting to note that the GL intrinsic state and our p
correlated intrinsic state produce the same results forNp
2Nn50, being better than the U~18! intrinsic state. ForNp
2Nn.0 both isospin nonconserving intrinsic states give b
ter results than GL. It is also interesting to see that our p
correlated ansatz is superior to the U~18! for moderate values
of Np2Nn . No triaxial deformation is found in these calcu
lations.

In summary, we have extended the intrinsic-state form
ism of Ginocchio and Leviatan@15# for IBM-3 in three dif-
ferent ways. First, the Hartree-Bose transformation is cho
to depend on the isospin componentt. Second, variable isos
pin bosonic pair correlations are introduced through the
rametera. Finally, higher-order bosons, other than the us

n FIG. 5. Calculated ground-state intrinsic energy, as a function
the differenceNp2Nn between the numbers of proton and neutr
pairs, for the nonconserving isospin Hamiltonian~20! with the pa-
rameters given in the text.
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s andd bosons, are included in the Hartree-Bose transform
tion. This formalism contains the IBM-2 and GL intrins
states as particular limits. Substantial differences in the
formation parameters are obtained whenNpÞNn . We have
presented results for isospin conserving and nonconser
Hamiltonians withs andd bosons. Substantial differences
the deformation parametersbt are obtained forNp.Nn . In
most of the cases studied, our pair correlated intrinsic gro
states are lower in energy than the GL ground states,
n

g/

s.

ys

s

a-

e-

ng

d
l-

though for the isospin conserving Hamiltonian the ene
gain is small. We therefore conclude that the new intrin
state is useful for treating isospin breaking Hamiltonians.
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@17# G. Colò, M. A. Nagarajan, P. Van Isacker, and A. Vittur

Phys. Rev. C52, R1175~1995!.
@18# P. J. Enniset al., Nucl. Phys.A535, 392 ~1991!.
@19# J. N. Ginocchio, Phys. Rev. Lett.77, 28 ~1996!.
@20# J. Engel, K. Langanke, and P. Vogel, Phys. Lett. B389, 211

~1996!.


