
Automated Analysis in Feature Modelling and
Product Configuration

David Benavides1, Alexander Felfernig2, José A. Galindo1, and Florian
Reinfrank2

1 University of Seville
Av. de la Reina Mercedes S/N, 41012 Seville, Spain

{benavides,jagalindo}@us.es
2 Institute for Software Technology

Graz University of Technology
Inffeldgasse 16b/II

Graz, Austria
{afelfern,freinfra}@tugraz.at

Abstract. The automated analysis of feature models is one of the thriv-
ing topics of research in the software product line and variability manage-
ment communities that has attracted more attention in the last years.
A recent literature review reported that more than 30 analysis opera-
tions have been identified and different analysis mechanisms have been
proposed. Product configuration is a well established research field with
more than 30 years of successful applications in different industrial do-
mains. Our hypothesis, that is not really new, is that these two inde-
pendent areas of research have interesting synergies that have not been
fully explored. To try to explore the potential synergies systematically, in
this paper we provide a rapid review to bring together these previously
disparate streams of work. We define a set of research questions and give
a preliminary answer to some of them. We conclude that there are many
research opportunities in the synergy of these independent areas.

Keywords: Software Product Lines, Feature Models, Product Configuration,
Rapid Review, Knowledge-based Systems

1 Introduction

Variability modelling and management is a key issue in software product line
engineering. Feature models are one of the most used mechanisms to model
the variability within a software product line. A feature model consists of a set
of features and a set of relationships that connect features. It is arranged in
a tree–like structure with additional cross-tree constraints. There are different
feature model dialects identified in the literature [53] which include basic feature
models, cardinality based feature models and extended feature models using
feature attributes.



Figure 1 shows an example feature model using the most well known mod-
elling elements3. The model illustrates how features are connected to specify a
software product line in the mobile phone domain. We assume that the software
loaded in the phone is determined by the features that it supports. According
to the model, all phones must include features supporting calls, and displaying
information in either basic, colour or high resolution screens. Furthermore, it is
possible to optionally include support for GPS and multimedia elements such
as camera, MP3 player or both of them.

Fig. 1. A sample feature model

The automated analysis of feature models is one of the areas of research that
have attracted more attention in the last two decades [8]. It can be defined as the
computer–aided extraction of information from feature models. The analysis is
performed by means of analysis operations which take several inputs and provide
an output. As input we have a feature model with optionally some additional
information such as a set of features to be selected or deselected. As output it
is possible to find numbers, set of features and others depending on the kind
of analysis operation. An example of a feature model analysis operation would
be counting the number of possible products represented by the feature model.
In the example of Figure 1 the number of products is 14. 30 different analysis
operations have been surveyed [8] including operations for model consistency,
error detection, explanations, and feature model configuration capabilities. The
general analysis process is shown in Figure 2 where a feature model is trans-
lated to a logical representation and using some technique (e.g. logical solvers or
specific algorithms) the analysis operations are performed.

The configuration of feature models can be defined as the process of selecting
and deselecting features in a feature model until reaching a full configuration,
i.e. a configuration where no additional decision on the feature model needs to
be made to have all the information to configure a given software product of
the software product line. The configuration of feature models is no more than

3 This Figure has been taken from [8].



Fig. 2. Process for the automated analysis of feature models taken from [8]

an analysis operation where the input is a feature model with a set of decisions
on the state of a given set of features (a feature can be selected, deselected or
undecided) and the output is the feature model together with the new states of
the features.

Product configuration is an independent area of research from software prod-
uct line engineering that has a long history as an application of Artificial Intelli-
gence technologies [43,23,52]. The first paper on product configuration was pub-
lished back in 1978 [36]. Similar to feature model based configuration, product
configuration can be interpreted as the process of partially or completely instan-
tiating component types and related attributes with concrete components and
attribute values [52] in a way that preserves the consistency with a predefined
set of constraints (restrictions). Configuration technologies are typically applied
in complex product domains such as telecommunication [23], automotive [34],
and digital equipment [7,19].

Although product configuration is a well established area of research with
numerous industrial applications, the synergies between feature model configu-
ration and product configuration have been rarely explored. Our hypothesis, that
can be easily formulated from the previous descriptions, is that feature model and
product configuration have a lot of potential synergies that can be explored and
exploited. In this paper, we show first steps to explore those synergies towards a
more systematic literature review to fully gather the spread knowledge from the
different areas to start a cross fertilization process to benefit both communities
from the independent results.

This hypothesis of existing synergy potentials is not really new. In the past,
there have been already some attempts to connect these two areas [6,39] and
the importance of such a connection has been explored in the last years within
the software product line community. As an example, there have been 2 in-
vited keynotes in recent workshops of the software product line conference by



well known researchers from the configuration area (see [16,47]). Also, a recent
contribution to a workshop in the product configuration area proposes a re-
search roadmap to try to connect these two areas and revealed the importance
of surveying the literature to find synergies [31]. In this paper, in difference with
respect to previous work, we give a first step forward to complete a systematic
literature review to bring together these previously disparate streams of work
and we provide first answers to some research questions. Thus, we define a set
of research questions and give a preliminary answer to some of them which start
opening research opportunities.

Although in a systematic literature review a well established method is re-
quired [10], we do not present such a systematic method in this paper. We rather
use a rapid review approach which is also a very common method in evidence-
based research in areas such as medicine [27]. A rapid review is a method to
provide an assessment of what is already known in a given research field. In
contrast to literature reviews, it does not need a tedious and time–consuming
method trying to be “quick but not dirty” [27]. In this sense, it can serve as a
first step towards a more systematic literature review. It is fair to recognize that
this rapid literature review has an important bias due to the fact that there is
a good amount of the surveyed references that are works done by the authors.
However, we still think it is valuable to show these results since the authors have
been working independently in the surveyed areas namely, automated analysis of
feature models and product configuration. In any case, this bias is also addressed
adding a good amount of references to other existing work.

In the following section we discuss research questions related to the further
development of both research fields. Thereafter – in Section 3 – we try to provide
first answers to the posed questions.

2 Research questions

The goal of this review is to provide first answers to the following research ques-
tions (RQ 1–4). Some of them have been already answered in a recent literature
review about the automated analysis of feature models [8]. The main goal here is
to investigate how these questions have been addressed in the product configura-
tion field and see the similarities, differences and discover research opportunities.
We will try to answer these questions always comparing how different activities
are performed in the feature modelling field and how they are addressed in the
product configuration field. Although there are also other potential research
questions to be addressed we selected these 4 mainly because they cover impor-
tant parts of the engineering process such as modelling (RQ1), implementation
and design (RQ2–3), quality assurance (RQ4).

RQ1: How are the different modelling approaches related? There are different
dialects of feature models as described in [53]. In contrast, how are configuration
problems modelled? Can a feature model configuration problem be represented
as a configuration problem? Are there modelling elements in product configura-
tion that are not used in feature models? And the opposite? Are there approaches



to standardize configuration knowledge representations and how can these rep-
resentations be exploited in the context of feature model development?

RQ2: Which are the automated mechanisms proposed? There are mainly
three basic reasoning approaches used when automatically analysing feature
models [8]: propositional logic based analysis, constraint programming based
analysis and description logic based analysis. Are those paradigms also used in
product configuration? Are there any special techniques developed in that field
that could be used in feature model configuration?

RQ3: Are there similar operations? In feature models, 30 different analysis
operations have been recently reported [8]. How similar are the operations in
configuration problems? In product configuration it is well known that one of the
main important tasks is the user support which includes providing explanations
when a erroneous configuration step is reached. Are there special mechanisms
developed in the product configuration community that could be used in feature
model configurations?

RQ4: Which are the functional and performance mechanisms used? In feature
models, there are some proposals to perform functional and performance testing
of analysis tools [56,54,55,57]. The challenge is how to assess the quality of feature
model analysis tools in terms of functionality (is the analysis tool doing what
is supposed to do?) and performance (is the analysis tool performing well?).
Are there also functional and performance testing mechanisms described in the
product configuration literature? How are the different mechanisms related?

3 Preliminary results

To provide a preliminary answer to the research questions of Section 2 we
searched papers in academic databases guided from our previous experience in
the field. In this section we give a first answer to some of the research questions
by quoting and explaining some of the papers studied to show the potential
synergy between the two areas.

3.1 RQ1: How are the different modelling approaches related?

From our rapid review we have detected that the existing research on product
configuration does not have a well established or standard language to define con-
figuration problems. There have been attempts to use domain-specific languages
for product configuration, for example, on the basis of the Unified Modeling Lan-
guage (UML) [15]. Furthermore, ontology based configuration knowledge repre-
sentations [60] and description logics based representations have been developed
[18,40]. These representations are either not supporting the needed expressivity
(for an in-depth analysis of description logic based knowledge representations
see [18]) or are not based on a formal semantics (UML is based on a semi-formal
definition, the same holds for the ontology specified in [60]). In other cases, con-
figuration problems are formally defined on the basis of logic-based approaches
which are often not accessible for domain experts and even developers. In this



sense, it is easy to find configuration problems described in description logic,
constraints or propositional logic (see Section 3.2) but there is still a need for
a standardized representation with a clear underlying formal semantics. There
have been some general standardization efforts in constraint representations [45]
but not specifically in the product configuration domain. Also, there have been
some efforts to clearly define configuration tasks [43]

In contrast, configuration problems in software product lines are mainly mod-
elled using any of the following families of notations: decision-based modelling
notations or feature model–based notations [12]. There are also other notations
such as OVM [49] or COVAMOF [59] but these are less common in the liter-
ature. There is even a current effort to define a common variability modeling
language (CVL) [24] which could also serve as a basis for the definition of con-
figuration problems. There exist different dialects of feature models as described
in [53] and also some textual syntax of feature models like TVL [11]. In addition,
formal semantics of feature model dialects have been reported [13,53].

We will now try to answer the following sub question: can a feature model
configuration problem be represented as a configuration problem? To do so, we
provide the following definitions adapted from the discussions in Section 1 and
from any general definition of a configuration problem that can be found in the
literature. Note that this definition can be exploited for the representation of
basic configuration problems which do not include complex connection structures
and component hierarchies [23,38]. However, it is a good basis for having a
common representation for both, basic configuration problems and feature model
configuration problems.

Definition 1 (Feature Model Configuration Problem). A feature model
configuration problem is defined by the tuple (F,D,C) where F = {f1, f2, ..., fn}
is a set of features fi. Furthermore, D= {dom(f1), dom(f2), ..., dom(fn)} is the
set of corresponding feature domains where dom(fi) = {true, false}. Finally, C
= CR ∪ CF is a set of constraints restricting the possible configurations which
can be derived from the feature model. In this context, CR = {c1, c2, ..., ck}
represents a set of user requirements (e.g. selection or deselection of features)
and CF = {ck+1, ck+2, ..., cm} represents a set of feature model constraints.

The hypotheses here is that any relationship defined in a feature model dialect
can be translated to a constraint in a Constraint Satisfaction Problem (CSP)(see
[5] for an introduction on CSP).

Definition 2 (Feature Model Configuration). A feature model configu-
ration for a given feature model configuration problem is a complete assignment
of the variables fi ∈ F . Such a configuration is consistent if the constraints
ci ∈ C are consistent with the given variable assignment. Furthermore, a fea-
ture model configuration is valid, if it is consistent and complete, i.e. it does not
violate any constraint defined in the feature configuration problem and all the
variables have an assigned value.

Results. We conjecture that a feature model configuration problem in par-
ticular and any software product line configuration problem in general could be
seen as a special case of a product configuration problem.



In configuration problems not only boolean constraints are used as in most
of the cases of feature model configuration problems. In product configuration
problems there is no standard language to describe configuration problems while
in software product lines there is de facto standard which are feature models
and an effort to a standardized notation such as CVL. These more established
notations in software product line engineering could inspire product configura-
tion researchers to identify ways to share, disseminate, and model configuration
problems. On the other hand there are also challenges with respect to prod-
uct domains (e.g., telecommunication switches [23]) where complex connection
structures and related (aggregation) constraints have to be specified (see, e.g.,
[18]). We want to emphasize that a detailed analysis of needed extensions of
existing feature model representations is a major challenge for future research if
feature models want to be adopted as a sort of standard language in the product
configuration field.

3.2 RQ2: Which are the automated mechanisms proposed?

There are mainly three categories of mechanisms used for the automated analysis
of feature models [8]: propositional logic based analysis, constraint programming
based analysis, and description logic based analysis. In a survey on product con-
figuration in 19984, Sabin et al. [52] divided the existing paradigms on product
configuration as the following: rule-based reasoning and model-based approaches.
In the former, rules of the form if condition then action are used to represent con-
figuration knowledge. According to [52], this kind of configuration systems have
maintenance problems. In model-based configuration systems, the assumption is
that the configuration knowledge is expressed in an explicit language in terms
of a model. Among the approaches in model–based configuration problems, de-
scription logics and constraint–based approaches are presented [52].

Results. Among constraint based approaches there are some based on so–
called conditional constraint satisfaction problems (CCSP) [26], dynamic con-
straint satisfaction problems(DCSP) [42], and generative constraint satisfaction
problems (GCSP) [23,38]. There are also some proposals to combine description
logics and constraint satisfaction problems [35]. Furthermore, we have found pa-
pers in the product configuration literature that use binary decisions diagrams
(BDD) to represent and solve configuration problems [9,4,28] and also proposals
which combine CSPs with BDD techniques to obtain better product configura-
tors [61].

A product configuration problem is interactive if the configuration process
is performed interactively, i.e. the user makes selections and the system has to
provide feedback to the user as soon as possible. In such scenarios the response
time of the systems is crucial. It is desirable to guarantee a given response
time. In this sense, there is a branch of research on product configuration that
deals with the off-line compilation of configuration problems for a later on-line

4 It is interesting to note that we have not found any more recent review on product
configuration



configuration process. An off–line compilation of a configuration problem is a
process where the configuration problem is translated to a given representation
that ensures a good response time. In the best case, the compilation will deliver
a backtrack-free configurator. Once the compilation is performed, the system
can be used for an on-line configuration process. There are several proposals in
the literature of product configuration using compilation techniques, some are
based on translation the configuration process into a BDD representation [33,29]
and others are based on transforming a configuration problem into an automata
[14,50].

Although there have been some efforts to use efficient techniques for feature
model analysis [41], in general, these techniques have been rarely studied in the
feature model analysis literature and there is significant work to be done to
include those techniques in the feature model analysis field.

3.3 RQ3: Are there similar analysis operations?

An analysis operations over a feature model, as stated in Section 1, is an op-
eration that takes a feature model as input and returns a result as output. An
analysis operation over a configuration model would be the same but taking as
input a configuration model. In feature models, 30 different analysis operations
have been recently reported [8] and it is common to find more and more papers
describing some new operations or a sort of redefinition of them (e.g. [44]).

Results. In the product configuration field, it is not common to find new
operations besides the basic ones like propagate a configuration decision, pro-
vide feedback to the user in terms of explanations or maintain the consistency
of the configuration knowledge base. This could be the case because in software
product line models such as feature models, a very important aspect is the con-
nection of the variability model with other software artefacts like code, software
components, test cases or UML diagrams among others. It would be necessary
to have a catalogue of operations in product configuration similar to the one
found in feature model analysis [8] to explore if there are operations in one side
or the other that could be used as well as existing techniques to automate them.

A special case of analysis operations are the so-called explanations. In the
feature model analysis field an explanation is defined as an operation of analysis
that not only provides a result but also an explanation of why or why not a
given result is provided [64]. There are some proposals to explain why a feature
model is inconsistent, why a feature is dead or why a feature is false optional
[63]. Also, there are some proposals to explain why a given configuration is
erroneous with respect to a given feature model [66,65]. Most of these approaches
are based on Reiter’s theory of diagnosis [51] which means that the method is
complete and provides an explanation which is minimal. A minimal explanation
is the one that explain a given analysis result with the minimum number of
elements. For instance, given a flawed configuration with a set of selected features
and a set of deselected features, an explanation could be used to determine the
changes to be made in the configuration to repair it [65]. It would be possible
to say that all the selections or deselections have to be changed, but usually the



interesting information is to know the minimum changes required to repair the
flawed configuration.

In product configuration it is well known that the methods based on Reiter’s
theory of diagnosis are computationally hard to solve. To face this problem,
there are several proposals in the product configuration literature to provide
faster explanations that either preserve minimality (in terms of the number of
needed repair actions) [17,32,48] or focus on the determination of personalized
repairs which are also minimal but are not necessarily minimal cardinality repairs
[46,20,22].

From this discussion it seems clear that explanation mechanisms for feature
model analysis have to be synchronized with respect to existing product config-
uration mechanisms.

3.4 RQ4: Which are the functional an performance mechanisms
used?

Developing and maintaining feature model analysis tools is difficult and costly
as any other software system due to its complexity and changeability [56]. As
any other software tool, a feature model analysis tool has to use functional
testing mechanisms to detect bugs in the development and evolution process. In
product configuration, tools for providing configuration capabilities are known as
configurators. Configurators suffer from the same problems that feature model
analysis tools, i.e. they are difficult to develop and maintain and most of the
configuration operations are computationally hard to tract.

Results. In the feature model analysis literature we have found specific func-
tional testing mechanisms to detect bugs in analysis tools [56,54]. The basic idea
is to have an automated test data generator that can generate a feature model
together with its represented set of products by means of so-called metamorphic
relations. Once we have a feature model and its set of products, this test input
can serve as an oracle to see if the expected output of an analysis tool is correct
with respect to the test data. The conceptual underpinning of this idea is that
most of the analysis operations could be calculated once the set of products
represented by the feature model is available. This is a black box testing tech-
nique that has been shown to be useful in detecting bugs in some feature model
analysis tool like FaMa5 and SPLOT 6 [56].

Besides functional testing mechanisms for feature model analysis tools, per-
formance is also an additional problem to be taken into account when assuring
the quality of this kind of tools. Most of the feature model analysis operations
are known to be computationally complex to perform [53] and this is especially
important when analysis operations are used for feature model interactive con-
figuration. Most of the times, feature model analysis tools have been tested for
performance evaluation using random inputs [8], i.e. a set of random feature
models are generated to stress the analysis tools to see how they perform when

5 www.isa.us.es/fama
6 www.splot-research.org/

www.isa.us.es/fama
www.splot-research.org/


increasing the size of the models or the percentage of modelling elements like
cross-tree constraints. Although this mechanisms are useful to be used to get
averages (e.g. in terms of time or memory consumption) there are some propos-
als to provide mechanisms to build hard feature models in pessimistic situations
[55,57]. The idea is to define the problem of looking for hard feature models as
an optimization problem. A tool is build to generate hard feature models using
metaheuristic algorithms like evolutionary search to explore the space and try
to guide the tool to find hard feature model instances for a given tool for a given
operation. For instance, the tool can be used to find feature models with between
100 and 200 features with 10% of cross-tree constraints that take more than 5
minutes in detecting the set of dead features which could be considered as an
non affordable time constraint.

There are some similar approaches in the product configuration literature to
what has been done in feature model analysis. For instance, a configurator can
be performance tested by using real configuration models (a.k.a configuration
benchmarks [1]) or by using randomly generated configuration models [62]. On
the other hand, we found a work providing a technique for white-box testing of
configuration systems [21]. However, we have not found any approach to system-
atically perform functional testing of configurators using metamorphic relations
as we found for feature model analysis tools. Similarly, we have not found tech-
niques to systematically search for difficult configuration problems as proposed
for hard feature models.

3.5 Summary of findings

Figure 3 provides a first overview 7 of existing related research in the fields of
variability models (putting special attention to feature model related results)
and product configuration and how they can be used in the other area. Next,
we explain the results from our literature review detecting opportunities for
cross–fertilization either from feature model analysis to product configuration or
backwards.

Feature model analysis can contribute to product configuration in:

– Defining a standard configuration language similar to some of the existing
variability languages in the software product line community like any variant
of feature models [53], CVL [24] or TVL [11] and providing formal syntax
and semantics to the standard configuration language as it has been done in
feature models [13,53].

– Providing a historical catalogue of configuration operations similar to what
has been reported in the feature model analysis literature [8]. In the fea-
ture model literature more than 30 analysis operations exists. Finding a
similar catalogue in the product configuration field remains as a challenge.
Having such a catalogue can help to summarize the results in the product

7 Due to the fact that we are reporting first results of our ongoing research, we do not
claim for completeness with regard to this overview.



configuration field and ease the adoption of the results by the feature model
community.

– Providing more elaborated mechanisms for functional and performance test-
ing of configurators like the ones reported for feature model analysis tools
either for functional testing using an automated test data generator [56] or
using metaheuristic techniques for finding difficult configuration instances
for a given configurator [55,57].

Product configuration can contribute to feature model analysis in:

– Exploring similar automated mechanisms to perform analysis operations us-
ing existing approaches like DCSP [26], CCSP [42] or GCSP [23,38]. Also
combinations of different paradigms depending on the kind of the operation
like description logics and CSP [35].

– Adapting off-line compilation techniques for interactive configuration re-
mains as a challenge in feature model configuration tools in order to provide
back–track free feature model configurators [33,29,14,50].

– Reusing explanations mechanisms [25,17,32,46,48,20,22] since the known fea-
ture model explanation mechanisms mostly rely on Reiter’s theory of diag-
nosis.

4 Conclusions and future work

Feature model analysis and product configuration has a lot more in common
than what has been reported until now. We think that the cross–fertilization
of these two independent areas is a mandatory step for the next years at least
in the software product line and variability management communities. In this
paper, we have reported a rapid literature review that put this fact in evidence
and give concrete research opportunities.

To better explore the results of one and other communities a more exhaus-
tive literature review specially in the field of product configuration seems to be
desirable and this paper is a first step forward.

Other research questions remained can be related to other engineering task
such as maintenance or requirement analysis. In this sense, we have found in the
recent variability management related venues papers about reverse engineering
of variability models [2,3,30,37,58,67]. Exploring if similar problems haven been
addressed in the configuration literature remains as part of our future work.

Acknowledgements

We would like to thank Sergio Segura for giving some comments on a previ-
ous version of this paper. This work was supported, in part, by the European
Commission (FEDER), the Spanish Government under project SETI (TIN2009-
07366) – by the Andalusian Government under project THEOS (TIC-5906), and
the Austrian Research Promotion Agency under the project ICONE (827587).



Variability models

Modelling


• standard common variability language (CVL) [24]
• different feature modelling dialects [53]
• textual variability languages like TVL [11]
• formal syntax and semantics [13,53]

Operations
{
• catalogue of analysis operations [8]

Quality assurance

{
• functional testing by means of metamorphic relations [56]
• performance testing by means of metaheuristic search [57]

Product configuration

Modelling


• UML/OCL-based representations [15]
• semantic web and description logics based representations [18,40]
• standardization efforts in constraint representations [45]
• definition of configuration tasks [43]

Automated support



• Different forms of constraint satisfaction problems
DCSP[26], CCSP [42] or GCSP[23,38]
• combination of descripton logics and CSP [35]
• off-line compilation techniques for interactive
configuration [33,29,14,50]
• explanation mechanisms [25,17,32,46,48,20,22]

Quality assurance

{
• configuration benchmark [1]
• white–box testing techniques [21]

Fig. 3. Summary of potential synergies



References

1. Configuration Benchmarks Library. available online at www.itu.dk/research/

cla/externals/clib.
2. M. Acher, B. Baudry, P. Heymans, A. Cleve, and J. Hainaut. Support for reverse

engineering and maintaining feature models. In Proceedings of the Seventh Interna-
tional Workshop on Variability Modelling of Software-intensive Systems, page 20.
ACM, 2013.

3. M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, and
P. Lahire. On extracting feature models from product descriptions. In Proceedings
of the Sixth International Workshop on Variability Modeling of Software-Intensive
Systems, VaMoS ’12, pages 45–54, New York, NY, USA, 2012. ACM.

4. H. R. Andersen, T. Hadzic, and D. Pisinger. Interactive cost configuration over
decision diagrams. J. Artif. Intell. Res. (JAIR), 37:99–139, 2010.

5. K. R. Apt. Principles of Constraint Programming. Cambridge University Press,
Cambridge, United Kingdom, 2003.

6. T. Asikainen, T. Männistö, and T. Soininen. Kumbang: A domain ontology for
modelling variability in software product families. Advanced Engineering Infor-
matics, 21(1):23 – 40, 2007.

7. V. Barker, D. OConnor, J. Bachant, and E. Soloway. Expert systems for configu-
ration at digital: Xcon and beyond. Communications of the ACM, 32(3):298–318,
1989.

8. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models
20 years later: a literature review. Information Systems, 35(6):615–636, Sept 2010.

9. F. Bouquet and P. Jegou. Using obdds to handle dynamic constraints. Information
Processing Letters, 62(3):111–120, 1997.

10. P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons from
applying the systematic literature review process within the software engineering
domain. Journal of Systems and Software, 80(4):571–583, 2007.

11. A. Classen, Q. Boucher, and P. Heymans. A text-based approach to feature mod-
elling: Syntax and semantics of tvl. Sci. Comput. Program., 76(12):1130–1143,
2011.

12. K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski. Cool
features and tough decisions: a comparison of variability modeling approaches. In
VaMoS, pages 173–182, 2012.

13. A. Durán, D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Flame: Fama
formal framework (v 1.0). Technical Report ISA–12–TR–02, Seville, Spain, March
2012.

14. H. Fargier and M.-C. Vilarem. Compiling csps into tree-driven automata for in-
teractive solving. Constraints, 9:263–287, 2004.

15. A. Felfernig. Standardized configuration knowledge representations as technologi-
cal foundation for mass customization. IEEE Transactions on Engineering Man-
agement, 54(1):41–56, 2007.

16. A. Felfernig. Intelligent techniques for software product line engineering. In Proc-
cedings of the 2nd International Workshop on Formal Methods and Analysis in
Software Product Line Engineering, FMSPLE at SPLC, www. iese. fraunhofer.
de/ en/ events/ fmsple2012. html , 2011.

17. A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-based
Diagnosis of configuration knowledge bases. Artificial Intelligence, 152(2):213–234,
2004.

www.itu.dk/research/cla/externals/clib
www.itu.dk/research/cla/externals/clib
www.iese.fraunhofer.de/en/events/fmsple2012.html
www.iese.fraunhofer.de/en/events/fmsple2012.html


18. A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker. Configura-
tion Knowledge Representations for Semantic Web Applications. Artificial Intelli-
gence in Engineering, Design, Analysis and Manufacturing (AIEDAM), 17(2):31–
50, 2003.

19. A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Web-based configuration of
virtual private networks with multiple suppliers. In Proceedings of 7th International
Conference on Artificial Intelligence in Design (AID02), pages 41–62, Cambridge,
UK, 2002.

20. A. Felfernig, G. Friedrich, M. Schubert, M. Mandl, M. Mairitsch, and E. Teppan.
Plausible repairs for inconsistent requirements. In IJCAI, pages 791–796, 2009.

21. A. Felfernig, K. Isak, and T. Kruggel. Testing knowledge-based recommender
systems. OEGAI Journal, 4:12–18, 2005.

22. A. Felfernig, M. Schubert, and C. Zehentner. An Efficient Diagnosis Algorithm
for Inconsistent Constraint Sets. Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing (AIEDAM), 25(2):175–184, 2011.

23. G. Fleischanderl, G. Friedrich, A. Haselboeck, H. Schreiner, and M. Stumptner.
Configuring large systems using generative constraint satisfaction. IEEE Intelligent
Systems, 13(4):59–68, 1998.

24. F. Fleurey, Ø. Haugen, B. Møller-Pedersen, G. K. Olsen, A. Svendsen, and
X. Zhang. A generic language and tool for variability modeling. Technical Re-
port A13505, SINTEF, Oslo, Norway, 2009.

25. F. Gedikli, M. Ge, and D. Jannach. Explaining online recommendations using
personalized tag clouds. i-com, 10(1):3–10, 2011.

26. E. Gelle and B. Faltings. Solving mixed and conditional constraint satisfaction
problems. Constraints, 8:107–141, 2003.

27. M. J. Grant and A. Booth. A typology of reviews: an analysis of 14 review types and
associated methodologies. Health Information and Libraries Journal, 26(2):91–108,
2009.

28. T. Hadzic and H. R. Andersen. A bdd-based polytime algorithm for cost-bounded
interactive configuration. In Proceedings of the 21st national conference on Artifi-
cial intelligence - Volume 1, AAAI’06, pages 62–67. AAAI Press, 2006.

29. T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen, J. Møller, and H. Hul-
gaard. Fast backtrack-free product configuration using a precompiled solution
space representation. In Proceedings of the International Conference on Economic,
Technical and Organisational Aspects of Product Configuration Systems, pages 131–
138, 2004.

30. E. Haslinger, R. Lopez-Herrejon, and A. Egyed. Reverse engineering feature models
from programs’ feature sets. In 18th Working Conference on Reverse Engineering,
WCRE 2011, Limerick, Ireland, October 17-20, 2011, pages 308–312, 2011.

31. A. Hubaux, D. Jannach, C. Drescher, F. Murta, T. Männistö, K. Czarnecki, P. Hey-
mans, N. Nguyen, and M. Zanker. Unifying software and product configuration:
A research roadmap. In Proceedings of the configuration workshop at ECAI, 2012.

32. D. Jannach and J. Liegl. Conflict-directed relaxation of constraints in content-
based recommender systems. In IEA/AIE, pages 819–829, 2006.

33. R. Jensen. Clab: A c++ library for fast backtrack-free interactive product configu-
ration. In M. Wallace, editor, Principles and Practice of Constraint Programming
- CP 2004, volume 3258 of Lecture Notes in Computer Science, pages 816–816.
Springer Berlin Heidelberg, 2004.

34. E. Juengst and M. Heinrich. Using resource balancing to configure modular sys-
tems. IEEE Intelligent Systems, 13(4):50–58, 1998.



35. U. Junker and D. Mailharro. The logic of ilog (j)configurator: Combining constraint
programming with a description logic. In Proceedings of the IJCAI-03 configuration
workshop, pages 13–20, 2003.

36. F. Liguori and F. Schreiber. The software configurator : an aid to the industrial
production of software. In Proceedings of the IEEE Second International Computer
Software and Applications Conference (COMPSAC), pages 487–492, 1978.

37. R. Lopez-Herrejon, J. Galindo, D. Benavides, S. Segura, and A. Egyed. Reverse
engineering feature models with evolutionary algorithms: An exploratory study. In
Search Based Software Engineering - 4th International Symposium, SSBSE 2012,
Riva del Garda, Italy, September 28-30, 2012. Proceedings, pages 168–182, 2012.

38. D. Mailharro. A classification and constraint-based framework for configura-
tion. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing
(AIEDAM), 12(4):383–397, 1998.

39. T. Männistö, T. Soininen, and R. Sulonen. Product configuration view to software
product families. In In Software Configuration Management Workshop (SCM-10),
2001.

40. D. McGuiness and J. Wright. An industrial strength description logics-based con-
figurator platform. IEEE Intelligent Systems, 13(4):69–77, 1998.

41. M. Mendonça, A. Wasowski, K. Czarnecki, and D. Cowan. Efficient compilation
techniques for large scale feature models. In Generative Programming and Compo-
nent Engineering, 7th International Conference, GPCE , Proceedings, pages 13–22,
2008.

42. S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In AAAI,
pages 25–32, 1990.

43. S. Mittal and F. Frayman. Towards a generic model of configuration tasks. In Pro-
ceedings of 11th International Joint Conference on Artificial Intelligence (IJCAI
1989), pages 1395–1401, Detroit, MI,USA, 1989.

44. S. Mohalik, S. Ramesh, J.-V. Millo, S. N. Krishna, and G. K. Narwane. Tracing spls
precisely and efficiently. In Proceedings of the Software Product Line Conference,
SPLC(1), pages 186–195. ACM, 2012.

45. N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack. Minizinc:
Towards a standard cp modelling language. In Proceedings of 13th International
Conference on Principles and Practice of Constraint Programming (CP’2007),
pages 529–543. Springer, 2007.

46. B. O’Callaghan, B. O’Sullivan, and E. C. Freuder. Generating corrective explana-
tions for interactive constraint satisfaction. In CP, pages 445–459, 2005.

47. B. O’Sullivan. Tutorial on product configuration. In ASPL 2008, First Workshop
on Analyses of Software Product Lines at SPLC, www. isa. us. es/ aspl08/ , 2008.

48. B. O’Sullivan, A. Papadopoulos, B. Faltings, and P. Pu. Representative explana-
tions for over-constrained problems. In AAAI, pages 323–328, 2007.

49. K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Berlin Heidelberg New York,
2005.

50. V. N. Rao. Solving constraint satisfaction problems using finite state automata.
In Proceedings of the tenth national conference on Artificial intelligence, AAAI’92,
pages 453–458. AAAI Press, 1992.

51. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

52. D. Sabin and R. Weigel. Product configuration frameworks - a survey. IEEE
Intelligent Systems, 13(4):42–49, 1998.

www.isa.us.es/aspl08/


53. P. Schobbens, J. T. P. Heymans, and Y. Bontemps. Generic semantics of feature
diagrams. Computer Networks, 51(2):456–479, Feb 2007.

54. S. Segura, D. Benavides, and A. Ruiz-Cortés. Functional testing of feature model
analysis tools: a test suite. IET Software, 5(1):70–82, 2011.

55. S. Segura, J. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés. Betty:
benchmarking and testing on the automated analysis of feature models. In VaMoS,
pages 63–71, 2012.

56. S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated metamor-
phic testing on the analyses of feature models. Information & Software Technology,
53(3):245–258, 2011.

57. S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés. Ethom:
An evolutionary algorithm for optimized feature models generation (v. 1.1). Tech-
nical Report ISA-2012-TR-01, ETSII. Avda. de la Reina Mercedes s/n, 2 2012.

58. S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering
feature models. In ICSE, pages 461–470, 2011.

59. M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A framework for
modeling variability in software product families. In Third Software Product Line
Conference, volume 3154 of Lecture Notes in Computer Science, pages 197–213.
Springer, September 2004.

60. T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen. Towards a general on-
tology of configuration. Artificial Intelligence in Engineering Design Analysis and
Manufacturing (AIEDAM), 12(4):357–372, 1998.

61. S. Subbarayan. Integrating csp decomposition techniques and bdds for compiling
configuration problems. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 3524 of Lecture
Notes in Computer Science, pages 351–365. Springer Berlin Heidelberg, 2005.

62. J. Tiihonen, T. Soininen, I. Niemelä, and R. Sulonen. Empirical testing of a weight
constraint rule based configurator. In Proceedings of the ECAI Configuration Work-
shop, 2002.

63. P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Automated
error analysis for the agilization of feature modeling. Journal of Systems and
Software, 81(6):883–896, 2008.

64. P. Trinidad and A. Ruiz-Cortés. Abductive reasoning and automated analysis of
feature models: How are they connected? In Third International Workshop on
Variability Modelling of Software-Intensive Systems. Proceedings, pages 145–153,
2009.

65. J. White, D. Benavides, D. C. Schmidt, P. Trinidad, B. Dougherty, and A. Ruiz-
Cortés. Automated diagnosis of feature model configurations. Journal of Systems
and Software, 83(7):1094–1107, 2010.

66. J. White, D. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated
diagnosis of product-line configuration errors in feature models. In Proceedings of
the Sofware Product Line Conference, 2008.

67. L. Yi, W. Zhang, H. Zhao, Z. Jin, and H. Mei. Mining binary constraints in the
construction of feature models. In Requirements Engineering Conference (RE),
2012 20th IEEE International, pages 141 –150, sept. 2012.


	Automated Analysis in Feature Modelling and Product Configuration

