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We show theoretically that near a fluid-fluid interface a single active colloidal particle generating, e.g.,
chemicals or a temperature gradient experiences an effective force of hydrodynamic origin. This force is
due to the fluid flow driven by Marangoni stresses induced by the activity of the particle; it decays very
slowly with the distance from the interface, and can be attractive or repulsive depending on how the activity
modifies the surface tension. We show that, for typical systems, this interaction can dominate the dynamics
of the particle as compared to Brownian motion, dispersion forces, or self-phoretic effects. In the attractive
case, the interaction promotes the self-assembly of particles into a crystal-like monolayer at the interface.
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Significant attention has been paid lately to micrometer
sized particles capable of self-induced motility [1–3]. They
are seen as promising candidates for novel techniques in
chemical sensing [4] or water treatment [5]. The motion of
active colloidal particles has been the subject of numerous
experimental [1–3,6,7] and theoretical [8–12] studies. One
realization is a particle with a catalytic surface promoting a
chemical reaction in the surrounding solution [13]. For an
axisymmetric particle lacking fore-and-aft symmetry, the
distributions of reactant and product molecules may
become nonuniform along its surface and the particle
could move due to self-induced phoresis [14]. If the particle
is spherically symmetric, it will remain immobile in bulk
solution but can be set into motion by the vicinity of walls
or other particles (not necessarily active) which break the
spherical symmetry [10,13–16].
A relevant case corresponds to the movement of active

particles bounded by a fluid-fluid interface. This situation
raises new issues, in particular if the reactants or the
products have a significant effect on the properties of
the fluid interface implying tensioactivity. For example, it
has been recently predicted that catalytically active, spheri-
cal particles which are trapped at the interface may be set
into motion along the interface by Marangoni flows, self-
induced via the spatially nonuniform distribution of ten-
sioactive molecules [17–19]. (A similar motility mecha-
nism can originate from thermally induced Marangoni
flows if, e.g., the particle contains a metal cap which is
heated by a laser beam [20].) Furthermore, self-induced
Marangoni flows, combined with a mechanism of trigger-
ing spontaneous symmetry breaking, have also been used
to develop self-propelled droplets [21–23].
However, another category of experimental situations

occurs if the particles are not trapped at the interface but
may reside in the vicinity of the interface or get near it

during their motion. In this study we provide theoretical
evidence that such catalytically active or locally heated
spherical particles, although immobile in bulk, experience a
very strong, long-ranged effective force field due to the
Marangoni stresses self-induced at the interface. This force
of hydrodynamic origin manifests itself at spatial length
scales much larger than those of typical wetting forces. It
gives rise to a drift of the particle towards or away from the
fluid interface, depending only on how the tensioactive
agent, i.e., a gradient in chemical concentration or in
temperature, affects the interface. This effect dominates
any possible self-phoresis or dispersion interactions, and
acts on time scales which can be orders of magnitude
shorter than those associated with Brownian diffusion. This
drift can facilitate particle adsorption towards the interface
and therefore has important implications for the self-
assembly of particles at fluid-fluid interfaces. We comple-
ment the theoretical calculations with a thorough analysis
regarding the observability of these phenomena in future
experiments.
The model system consists of a spherical colloidal

particle with radius R in front of a flat interface at z ¼ 0
between two immiscible fluids. Fluid 1 (2) occupies the
half space z > 0 (z < 0) (see Fig. 1). The spherical particle
is located in fluid 1; its center is at x0 ¼ ð0; 0; LÞ with
L > R (i.e., the particle does not penetrate through the
interface). By virtue of a chemical reaction occurring
uniformly over its surface [24], the particle acts as a
spherically symmetric source (or sink) of a chemical
species A. We assume that the time scale for diffusion
of A is much shorter than any relevant time scale associated
with fluid flows [25]. Therefore, we consider only the
stationary state neglecting advection by the ensuing
Marangoni flow. Additionally, the number density cðx ¼
rþ zezÞ of species A [with r ¼ ðx; y; 0Þ in the following] is
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assumed to be sufficiently small so that for A the ideal-gas
approximation holds, and thus cðxÞ obeys Fick’s law for
diffusion with constant diffusivity Dα in fluid α (¼ 1, 2):

∇2cðxÞ ¼ 0; x ∈ fluid 1 or 2; ð1aÞ

subject to the boundary conditions [25] that (i) a single
reservoir of species A fixes the number density far away
from the particle to be c∞α in fluid α (¼ 1, 2), (ii) the
discontinuity of cðxÞ at the interface, given by
λ ≔ cðr; z ¼ 0−Þ=cðr; z ¼ 0þÞ ¼ c∞2 =c

∞
1 , is determined,

as in equilibrium, by the distinct solvabilities of species
A in the two fluids, (iii) the current of species A along
the direction of the interface normal is continuous at the
interface ½D1ð∂c=∂zÞjz¼0þ ¼ D2ð∂c=∂zÞjz¼0−], and (iv) the
current at the surface Sp of the particle is

n · ½−D1∇cðxÞ� ¼ Q
4πR2

; x ∈ Sp; ð1bÞ

where n is the unit vector normal to Sp (pointing into fluid
1);Q > 0 (Q < 0) is the rate of production (annihilation) of
species A.
The surface tension γ of the fluid interface is assumed to

depend on the local number density of species A and is
modeled within the local equilibrium approximation as [25]

γðrÞ ¼ γ0 − b0½cðr; z ¼ 0þÞ − c∞1 �: ð2Þ

Here, γ0 is the surface tension in equilibrium in which the
density of A in fluid 1 is c∞1 ; the effect of local deviations
thereof are quantified by the coefficient b0, the sign of
which depends on the chemical.
This inhomogeneity of the surface tension induces

Marangoni stresses which set the fluids into motion. The
velocity field vðxÞ can be derived as a solution of the
Stokes equations (i.e., in the limit of incompressible flow
and negligible inertia):

∇ · vðxÞ ¼ 0; ∇ · σ
↔ðxÞ ¼ 0; x ∈ fluid 1; 2; ð3aÞ

where σ
↔ðxÞ ¼ ηðxÞ½∇v þ ð∇vÞ†� − pðxÞI is the stress

tensor in the fluid, pðxÞ the pressure, ηðxÞ ¼ η1 or η2 the
viscosity, and I denotes the second-rank identity tensor.
The Stokes equations are subject to the following boundary
conditions: (i) vanishing velocity at infinity, (ii) no slip flow
at the surface of the particle, (iii) at the interface, continuity
of the tangential velocity and vanishing of the normal
velocity, and (iv) balance between the tangential fluid
stresses and the Marangoni stresses induced by the gradient
of the surface tension along the interface:

ðI − ezezÞ · ½σ↔jz¼0þ − σ
↔jz¼0− � · ez ¼ −∇∥γ: ð3bÞ

The tensor I − ezez provides the projection onto the
interfacial plane and ∇∥ ¼ ð∂x; ∂y; 0Þ is the nabla operator
within the interfacial plane. (Actually, the interface must
deform so that the normal component of the fluid stresses
can be balanced by the Laplace pressure. A posteriori it
turns out [25] that this deformation is typically so small that
the flat interface approximation is reliable.)
The translation velocity V of the particle, or equivalently

the force F exerted by the particle on the fluid, can be
inferred from the Lorentz reciprocal theorem [32]. We
consider the auxiliary flow field vauxðxÞ, for the same
geometrical setup, corresponding to the translation of a
rigid, spherical, chemically passive (i.e., without
Marangoni stresses) particle in front of a flat fluid interface.
This is the solution of Eq. (3a) subject to the same boundary
conditions as above but with ∇∥γ ¼ 0 in Eq. (3b), a
problem studied in Refs. [33–35]. We thus obtain [25]

Faux · V − Vaux · F ¼
Z
z¼0

d2r∇∥γðrÞ · vauxðrÞ

¼ −
I
Sp

dSn · σ
↔

auxðxÞ · uðxÞ; ð4Þ

with

uðxÞ ¼
Z
z¼0

d2r0 ∇∥γðr0Þ ·Oðx − r0Þ ð5aÞ

in terms of the Oseen tensor,

OðxÞ ¼ 1

8πηþx

�
I þ xx

x2

�
; ηþ ≔

1

2
ðη1 þ η2Þ: ð5bÞ

Here, uðxÞ is the Marangoni flow, which would be induced
solely by the Marangoni stresses ∇∥γðrÞ, i.e., as if the
surface of the particle would not impose any boundary
condition on the flow [25]. Note that Eq. (4) can be
interpreted as a generalization of the Faxén laws [36] for
the present problem. For a force-free [F ¼ 0 in Eq. (4)]
spherical particle, the problem exhibits axial symmetry,

R

z

fluid 1
(liquid)z = 0

fluid 2
(liquid or gas)

L

x

y

FIG. 1. Coordinates and configuration of the system. The
interface between fluid 1 (liquid) and fluid 2 (liquid or gas) is
located at z ¼ 0.
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which implies that V is parallel to ez. Thus, it suffices to
solve the auxiliary problem with Faux∥ez, which allows one
to introduce the dimensionless stream function ψ auxðr; zÞ,
in terms of which Eq. (4) reduces to [25]

V ¼ −ez2πR2b0Γz

Z
∞

0

dr
∂c
∂r

����
z¼0þ

∂ψ aux

∂z
����
z¼0

; ð6Þ

where Γz is the L-dependent mobility of a (chemically
passive) rigid spherical particle moving normal to the
planar fluid interface [35].
The boundary-value problems given by Eqs. (1) and (3),

subject to the coupling provided by Eq. (2), can be solved
exactly as a series in terms of bipolar coordinates [25].
However, the relevant phenomenology can be highlighted
and significant physical intuition can be gained from an
approximate closed form valid asymptotically in the limit
R=L → 0. We therefore proceed with the latter; its range of
validity will be assessed later by comparison with the exact
solution (cf. Fig. 3).
To the lowest order in R=L, the solution of Eq. (1) for the

given boundary conditions can be obtained using the
method of images in terms of monopoles located at x0 ¼
ð0; 0; LÞ and x�

0 ¼ ð0; 0;−LÞ. In fluid 1 (z > 0) one has

cðxÞ ¼ c∞1 þ Q
4πD1

�
1

jx − x0j
þ D1 − λD2

D1 þ λD2

1

jx − x�
0j
�
: ð7Þ

Accordingly, the Marangoni flow (illustrated in Fig. 2) is
given by Eqs. (2) and (5a) as uðxÞ ¼ ezuzðr; zÞ þ
erurðr; zÞ with [25]

uzðr; zÞ ¼ −
Qb0

16πDþηþ

zðjzj þ LÞ
½r2 þ ðjzj þ LÞ2�3=2 ; ð8aÞ

urðr; zÞ ¼
Qb0

16πDþηþr

�
1 −

r2Lþ ðjzj þ LÞ3
½r2 þ ðjzj þ LÞ2�3=2

�
; ð8bÞ

and Dþ ≔ ðD1 þ λD2Þ=2. The integral over Sp in the
second line of Eq. (4) can be evaluated by expanding
the Marangoni flow in terms of a Taylor series about the
particle center so that asymptotically uðxÞ ≈ uðx0Þ for
R=L → 0. Since

H
Sp

dSn · σ
↔

auxðxÞ ¼ −Faux, and Faux can
be chosen arbitrarily, one concludes that a force-free
(F ¼ 0) active particle at a distance L from the interface
is carried by the flow with velocity

VðLÞ ≈ uðx0Þ ≈ −ez
Qb0

64πDþηþL
ð9Þ

due to the self-induced Marangoni stresses. Since V∥ez,
this implies a time dependence of L.
Equation (9) captures the essence of all the relevant

phenomenology. (i) For b0 > 0 (i.e., the generic surfactant
case) the particle drifts towards or away from the interface

if it is a source (Q > 0) or a sink ðQ < 0Þ of species A,
respectively. For b0 < 0, the behavior is reversed. (ii) The
slow 1=L decay of V is tantamount to a long-ranged
interaction with the fluid interface. The associated phe-
nomenology can dominate the influence of dispersion
forces between the particle and the interface, which decay
∼1=L4 at best [37], and also the motion due to Brownian
diffusion alone.
The argument can be quantified by introducing the

diffusion coefficient Dp ≔ kBT=ð6πηþRÞ of the particle
in a medium of viscosity ηþ at temperature T. Equation (9)
leads to the Peclet number of the particle

PeðLÞ ≔ RjVðLÞj
Dp

¼ jqjR
L
; q ≔

3Qb0R
32DþkBT

: ð10Þ

FIG. 2. Vertical cut through the Marangoni flow uðxÞ in the
limit R=L → 0 [Eq. (8)]. The streamlines follow the direction of
the vector field (assuming Qb0 > 0), while the color code
corresponds to juðxÞj in units of jQb0j=ð16πDþηþLÞ. The center
of the particle (white dot) is at y ¼ 0, z=L ¼ 1. The three-
dimensional flow field is obtained by rotation around the z axis
and mirror reflection with respect to the interfacial plane z ¼ 0.
(This flow is driven by the stress located at the interface, not by
the particle.)

FIG. 3. The ratio V=uðx0Þ [Eqs. (6) and (9)] as a function of
L=R for λD2=D1 ¼ 0.1, 1, 10 (circle, square, diamond) and
η2=η1 ¼ 0.1, 10 (open, filled). The inset provides an enlarged
view of the range L=R≲ 2 for λD2=D1 ¼ 10 and η2=η1 ¼ 0.02,
0.1, 1, 10, 50 (circle, square, diamond, triangle, times); at that
scale, the data are indistinguishable. The dashed line indicates the
approximation provided by Eq. (9).
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The dominance of drift means PeðLÞ≳ 1. Thus, one
estimates the distance Lmax from the interface, beyond
which the motion of the particle is controlled by diffusion
rather than by drift, as PeðLmaxÞ ¼ 1 so that Lmax ¼ jqjR.
Focusing on the case b0 > 0, one can determine the time
tdrift it takes the particle to reach the interface starting (for
Q > 0) from a given distance L0 (or, for Q < 0, to reach a
given distance L0 starting from near the interface) via
straightforward integration of the equation of motion
dL=dt ¼ ez · V (within the overdamped regime [25]).
This renders the drift time tdrift ¼ tdiff=ð2jqjÞ in terms of
the time of diffusion tdiff ≔ L2

0=Dp over the same distance
L0. Therefore, for large values of jqj the drift caused by the
Marangoni flow, rather than diffusion, dominates the
dynamics of the particle.
In order to estimate the magnitude of q, we shall use the

experimental result that typically b0 can take values in the
range from b0 ∼ −10−3 N=ðm ×MÞ (M denotes mol/liter)
for simple inorganic salts in water [38], up to b0 ∼
102 N=ðm ×MÞ for dilute solutions of surfactants (i.e.,
far from their critical micelle concentrations) [39]. We
consider two distinct setups of potential experimental
relevance.
(i) The particle is a source. The chemical species A is

molecular oxygen liberated from peroxide in aqueous
solution by a platinum-covered particle. For the experi-
mental conditions described in Ref. [40], one has
Q=ð4πR2Þ ≈ 10−3 mol=ðs × m2Þ [compare Eq. (1b)]. At
room temperature (300 K) and for R≃ 1 μm, Eq. (10)
leads to jqj ∼ 3 × 10−4 × ½Dþ=ðm2 × s−1Þ�−1½jb0j=
ðN ×m−1 ×M−1Þ�. For an air (fluid 2)-water (fluid 1)
interface [41], diffusion in the gas phase dominates
(typically D2 ≃ 10−5 m2=s and D1 ≃ 10−9 m2=s [42]),
and Dþ ≈ λD2=2≃ 10−4 m2=s (since λ ∼ 10–100 for oxy-
gen and air-water interface [43]), while b0 is in the lower
range of values [40]. Thus Lmax=R ¼ jqj ∼ 10−2, which
explains the lack of reports of such effects for experimental
setups as in Ref. [40]. However, for a liquid-liquid interface
(e.g., water-decane), one has Dþ ≃D1 ≃D2 ≃ 10−9 m2=s
(one expects λ≲ 1 [42]) and thus jqj≳ 102 across the range
of values b0 noted above. Therefore, for the same exper-
imental setups of active colloids, but which involve liquid-
liquid interfaces instead of liquid-gas ones, we predict that
the effective interactions discussed here dominate. The
same conclusion holds for liquid-gas interfaces but with a
reaction product with very low solubility in the gas phase
(i.e., λ ≪ 1).
(ii) The particle is a sink; i.e., the tensioactive species

A is absorbed completely by the particle. One can
infer Q from the diffusion-limited regime in which the
surface of the particle acts as an absorbing boundary
so that cðx ∈ SpÞ ¼ 0, which with Eq. (7) provides the
estimate Q ≈ −4πD1Rc∞1 as R=L → 0. With Eq. (10) one
arrives at jqj∼3×108×ðD1=DþÞðR=μmÞ2ðc∞1 =MÞ½jb0j=
ðN×m−1×M−1Þ�. Therefore, Lmax=R ¼ jqj can indeed be

large for colloidal particles even if species A is only weakly
tensioactive (i.e., jb0j small) and even for liquid-gas
interfaces (D1=Dþ ≪ 1).
The availability of an exact series representation for V as

given by Eq. (6) allows us to assess the range of validity of
the asymptotic approximation [Eq. (9)] discussed above.
For several values of the viscosity and diffusivity ratios
[25], Fig. 3 shows V=uðx0Þ as a function of the separation
L=R. It turns out that uðx0Þ provides a reliable approxi-
mation (less than 10% relative error) of the exact solution
down to separations L=R≃ 2, i.e., covering most of the
range within which the model is relevant. Furthermore, the
deviations from uðx0Þ depend very weakly on the ratios
η2=η1 and λD2=D1.
These results, yet to be explored experimentally, have

several implications, which we highlight in conclusion.
First, as noted in the Introduction, if the particle maintains a
temperature gradient, e.g., through local heating, the very
same equations hold with the temperature playing the role
of the number density cðxÞ. Therefore, all the phenom-
enology discussed above extends to this case, too. Second,
sufficiently close to the interface the drift due to the induced
Marangoni flows can dominate even self-phoretic motion.
For instance, a Janus particle of size R ¼ 1 μm (with Dp ∼
10−13 m2=s in water) and self-propelling with a typical
velocity of ∼1 μm=s [1] has a Peclet number Pephor ≃ 10,
which, e.g., at distances L=R < 10 is smaller than
PeðLÞ ¼ ðR=LÞjqj if jqj≳ 102 [see Eq. (10)]. Third, based
on the single-particle phenomenology studied here one
can infer potentially significant collective effects. Consider,
for example, a dilute suspension of active particles
which are driven towards the interface by the Marangoni
stresses and in addition experience a short-ranged
repulsion by the interface (e.g., due to electrostatic
double layer interactions). Then the particles are expected
to reside near the interface while experiencing a mutual
long-ranged lateral repulsion as each particle is carried by
the Marangoni flows induced by the others [see the
flow lines in Fig. 2 and Eq. (8b), which tells that ur
exhibits also a slow in-plane decay ∼1=r]. Therefore, near
the interface and in the presence of lateral boundaries
self-organized crystal-like monolayers could be reversibly
assembled and “dissolved” by simply turning on and
off the activity of the particles. Finally, we note that this
effective lateral pair interaction violates the action-
reaction principle because nonidentical particles (e.g.,
due to size polydispersity, different production rates Q,
or a heterogeneous coverage of the surface) create
Marangoni flows of different strength. As for other
systems in which such violations occur [44], this
feature can be expected to give rise to a complex
collective behavior and to a rich, barely explored
phenomenology.
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