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A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite
the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum
theory: for any abstract correlation scenario with compatible measurements, models based on classical
waves produce probability distributions indistinguishable from those of quantum theory and, therefore,
share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate
along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum
experiments. Our results show that the “quantum” bounds would also occur in a classical universe without
quanta. The implications of this observation are discussed.
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Introduction.—In quantum theory (QT), an intriguing set
of numbers appear in correlation experiments with com-
patible observables. An example is the celebrated Tsirelson

bound 2v/2 [1], the maximum quantum violation of the
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [2]
recently “touched” in experiments [3]. Another one is the
maximum quantum violation of the Klyachko-Can-
Binicioglu-Shumovsky noncontextuality inequality [4],
/5. Popescu and Rohrlich [5] made the first attempts to
identify a principle behind all of these numbers. Recent

works have found different principles enforcing 21/2 [6-8]

and /5 [9], among other quantum bounds [10,11]. Still, it
is an open question as to whether a single principle can
grasp them all.

Remarkably, all principles able to work out quantum
bounds thus far, i.e., information causality [6], macroscopic
locality [7], and exclusivity [8,9], are also satisfied by
classical physics. This means that classical physics cannot
surpass the quantum bounds by turning to extra resources
such as superluminal communication [12] and/or memory
[13] without violating these principles. It also raises the
question of whether classical physics can saturate
the quantum bounds. A positive answer would indicate
that none of these numbers are specific to QT and that
they would still be natural in a fundamentally classical
(nonquantum) world.

In this Letter we show that physical models employing
classical waves to produce discrete events lead to probability
distributions indistinguishable from those of QT and there-
fore saturate all of the “quantum” bounds. We benefit from a
universal mapping between correlation experiments on
quantum systems and a protocol based on the detection
of intensities of classical waves propagating in circuits with
an appropriate configuration. The mapping is universal in
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the sense that it applies to any abstract correlation inequality
with compatible measurements (i.e., any noncontextuality
(NC) inequality [14]).

We implement this mapping in a series of three experi-
ments with classical microwaves propagating along meter-
size transmission-line networks. Each of them reproduces
the probability distribution of an emblematic experiment in
QT. This illustrates how notions such as repeatability,
nondisturbance, incompatibility, and contextuality can be
defined with classical waves. It also demonstrates that the
corresponding correlations share the exact bounds shown
by quantum correlations.

Our results prove that the bounds of quantum correla-
tions are not a hallmark of QT since they can all be attained
by a universal classical approach with corresponding
resources (such as memory). We discuss these and other
implications at the end.

Assumptions and  model—Reproducing quantum
probabilities means reproducing two key features of QT:
incompatibility and contextuality. Incompatibility is the
impossibility of assigning a joint probability to the results
of certain measurements independently of the order in which
these measurements are performed. Contextuality is the
impossibility of explaining joint probabilities by assuming
that measurement results correspond to predefined values
[15,16]. The violation of Bell inequalities is a special form of
contextuality that involves causally disconnected measure-
ments [17]. However, Bell-inequality experiments can be
formally mapped into experiments involving sequential
measurements by replacing spacelike separation with com-
patibility. In this way, any Bell-inequality experiment [see
Fig. 1(a)] is just a sequential contextuality experiment [see
Fig. 1(b)] in a certain reference frame.
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FIG. 1. (a) Bell inequality experiment. A source emits a
composite system and, on each subsystem, a unitary operation
and a demolition measurement with two possible outcomes, 1 or
—1, is performed. (b) Contextuality experiment on individual
quantum systems. A source emits a single system and a sequence
of compatible measurements is performed. Each measurement
consists of a unitary operation A, followed by a nondemolition
measurement that records the outcome in an external device, and
a unitary operation A" that recomposes the input. Together, these
three steps implement what in QT is represented by a self-adjoint
operator: something that not only provides an outcome satistying
the Born rule but also prepares a state satisfying the Liiders rule.
The last measurement can be a demolition measurement. (¢) Tree
configuration avoiding nondemolition measurements. The
outcome of each intermediate measurement is encoded in an
extra spatial path: upper paths for outcomes 1 and lower paths for
outcomes —1. In our experiments, these paths are transmission-
line wires.

The inputs of a contextuality experiment are a physical
system in a given state and a set of observables. Only
compatible observables are measured in each trial. The output
of the experiment is the list of joint probabilities for the
compatible subsets of observables. Contextuality is mani-
fested when these probabilities violate a NC inequality.

Our goal is to build physical models that produce any
distribution of probability that can be obtained with quantum
observables of a discrete spectrum measured sequentially on
individual quantum systems by using classical electromag-
netic waves and a suitable definition of discrete events. We
adopt the standard definition of quantum observables,

namely, those represented in QT by self-adjoint operators
[18]. The preparation and measurement devices are con-
structed by analogy with QT. For that, we remind the reader
that any quantum observable can be implemented as a unitary
operation A followed by a nondemolition measurement and
the unitary operation A" that recomposes the input [as in the
intermediate step in Fig. 1(b)]. On an electromagnetic wave,
any discrete finite-dimensional unitary operator can be
realized by using a sequence of two-dimensional beam
splitters [19]. This allows us to construct any unitary operator
needed for the preparation and measurement devices.

In sequential measurements, the intermediate outcomes
are typically recorded externally [Fig. 1(b)]. We instead
encode them in an extra, inner degree of freedom unfolding
an arborescent network [Fig. 1(c)]. This same approach was
used with success to demonstrate contextuality with path-
and polarization-encoded single photons (where nondemo-
lition measurements are not possible) [20].

We implement the sequential arrangement sketched in
Fig. 1(c) experimentally by probing classical microwave
states encoded in spatial modes propagating along
transmission-line tree circuits. There, we observe that the
joint probability distributions found in QT with individual
systems can be reproduced with models in which events
originate from microwave intensities detected at the output
ports. For example, events can be defined either as clicks of
detectors that are triggered only after an energy threshold
Ey £+ AFE is surpassed or as the outcomes after throwing a
die (with as many faces as output ports) loaded according to
the normalized intensity distribution; see the Supplemental
Material [21] for further details. Notice that none of these
models assume or need the existence of quanta. However,
they produce probabilities leading to the same relations of
incompatibility between measurements and to the same
violations of NC inequalities found in QT.

Tested inequalities.—We address three emblematic
experiments in QT. The first target is the maximum violation
of the CHSH Bell inequality [2] (i.e., the Tsirelson bound
[1]). If we consider four observables, A, B, a, and b, with two
possible outcomes, +1 and —1, any model with noncontex-
tual outcomes must satisfy £ < 2, with

E = (AB) + (bB) + (Aa) — (ba), (1)

where (AB) is the average of the product of the outcomes
of A and B, with A and B being compatible. However,
there are quantum states violating the CHSH inequality
up to £ = 2\/§z2.828. This can be obtained with the
following observables of a two-qubit system: A =0, @ [,
B=1®oc,a=1Q0,andb =0, ® | (where,e.g.,0, ®
[ is the tensor product of the Pauli z operator acting
on the first qubit times the identity in the Hilbert space of

the second qubit), and with the initial state |Vcepgy) =

[100) = [11) + (v2 = 1)(|01) + [10))]/(2V2 = V2) [this

choice connects Eq. (1) with the following inequalities].
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Interestingly, there is a gap between the quantum limit to
E and the maximum allowed by the no-signaling principle
[5]. Substantial effort has been put into understanding this
limit [6-8]. This gap vanishes when we consider two more
dichotomic observables, C and ¢, and extend the CHSH
Bell inequality into M < 2 [22], with

M = (ABc) + (bBC) + (AaC) — (bac). (2)

In QT, the value M = 4 can be obtained in a three-qubit
system with the same observables as before, plus C =1 ®
I®o, and c=1® 1 ® o,, and preparing a particular
Greeberger-Horne-Zeilinger-like (GHZ-like) state |Wgyy)
[23].

In the two previous inequalities, once measurements are
fixed, the quantum violation only occurs for certain
quantum states. However, if we consider five additional
dichotomic observables, D, d, a, , and 6, and extend the
CHSH Bell inequality into y < 4, with

x = (ABD) + (abd) + (aps) + (Aaa) + (Bbp) — (Dd5),
(3)

then there is a set of quantum observables on a two-qubit
system for which y = 6, no matter which quantum state the
system is prepared in [14]. This is called quantum state-
independent contextuality and it can be observed with the
same A, B, a, and b used before, plus the observables
D=0,®0, d=06,Q0,, a=0,Q0,, f=0,Q0,
and § = o, ® o,.

Experimental setup.—We build a series of networks of
the type illustrated in Fig. 1(c) for each test. In those cases
in which we need to measure sequences of two observables,
as when testing Eq. (1), the experimental setup looks
exactly like Fig. 1(c). When we measure sequences of
three observables, as in Egs. (2) and (3), the setup
incorporates extra splittings.

The circuit implementation of the operators is built upon
two basic elements: coaxial-cable segments of equal
electrical length and hybrid-ring (rat-race) couplers used
as beam splitters. These elements are designed to work at
2.45 GHz (the usual frequency of consumer microwave
ovens). See Figs. 2(b) and 2(c) and the Supplemental
Material [21].

We designed the devices to produce the initial states and
to test the desired observables as we would for a quantum
system defined by four or eight spatial modes of a photon.
We used the one-to-one correspondence between unitary
transformations and beam-splitter arrangements of
Ref. [19]. For example, a path representation of operator
a =1® o, is depicted in Fig. 2(a). See Figs. S1 and S2 in
the Supplemental Material [21] for the circuit implemen-
tation of all other operators.

The classical equivalents to quantum states are multi-
channel microwave signals propagating along independent
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FIG. 2. Path encoding. (a) Schematic representation of the
observable a = | ® o, used for testing inequalities (1) and (3).
Each propagating channel identifies with an element of the
Hilbert space basis. Operators (I ® ¢,)} and (I ® ¢,)! recom-
pose the incoming state. (b) Beam splitter used as a building
block to process incoming signal amplitudes u and v scattered as
% and A. (c) Rat-race (hybrid ring) coupler acting as a classical
microwave beam splitter in our experimental setup, designed to
work at 2.45 GHz.

waveguides with well-defined relative phases. Each classical
microwave channel is identified with an element of the
Hilbert space basis. The states are produced from a single
microwave source by coherent splitting. For example,

the classical equivalent of a singlet state |¥_) = (|10) —

|01))/+/2 is created by injecting the microwave signal into
the v port of a hybrid-ring beam splitter [see Figs. 2(b) and
2(c)] and identifying the output ports £ and A with the
corresponding input channels 10 and 01 in, e.g., Fig. 2(a).

The classical analog of the state |¥cygy) Which reaches
the Tsirelson bound is produced with the help of an unequal
split branch line coupler; see Fig. S3 in the Supplemental
Material [21].

The state |¥gyy) is the only common eigenstate
with eigenvalue +1 of the operators o, @ 6, ® o,
0,0, ®0,, and 0, ® 6, @ o,. Therefore, to produce
the classical analog of |¥gyy), we arrange sequentially the
measurement devices representing these operators and
select the corresponding outcomes for an arbitrary incom-
ing signal; see Fig. S4 in the Supplemental Material [21].

The signal was generated and measured by an automatic
vector network analyzer; see Fig. S5 in the Supplemental
Material [21]. The experimental outcomes are the normal-
ized transmission coefficients identified as joint probabil-
ities distributed over the output ports. The effect of
microwave power loss along the circuit is equilibrated
by the symmetric design of the tree network [Fig. 1(c) and
Fig. S6 in the Supplemental Material [21], for example].

We perform a series of control tests to establish that the
conditions of compatibility are satisfied up to an acceptable
degree. Concretely, we check the following. (i) Marginal
probabilities are context independent. This is tested with
different states by placing identically built circuits for
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each operator in every possible context. (ii) Marginal
probabilities are order independent. This is tested by
placing the circuits in all possible orders. (iii) Results
are repeatable. This is tested by measuring sequences like
AAA and checking to see that the results of all of the
measurements are equal. (iv) Measurements are nondis-
turbing. This is tested by measuring sequences like ABA,
where B is compatible with A, and checking to see that the
results of the first and second measurements of A are equal.
See the Supplemental Material [21].

Even when all previous requirements are satisfied by
design, imperfections in the sample fabrication and assem-
blage inevitably lead to small signal leakages into paths that
should not be taken in the ideal case. This is accounted for
by the corresponding deviation rates that translate into an
increment of the upper bounds of inequalities (1), (2), and
(3). See the Supplemental Material [21].

Experimental results.—Our experiment with the classical
microwave state analog to |Wcysy) brought the result
E =2.78(14). This represents a clear-cut violation of
inequality (1), which is in agreement with the results obtained
in experiments with two-photon states (e.g., E = 2.697(15)
[24]). Indeed, our result is closer to the quantum maximum,
E = 2.828, than those from homologous experiments testing
inequality (1) on single-photon [E = 2.595(15) [25]] and
single-neutron states [E = 2.365(13) [26]].

In the experiment with the classical microwave GHZ-like
state, we obtained M = 3.93(11), showing a large violation
of inequality (2). Curiously, this experimental result is
much closer to the maximum predicted by QT, M = 4, than
the results of experiments with three-photon states and
spacelike separation [M = 2.77(8) [27]] or with single-
photon [M = 3.551(13) [25]] and single-neutron states
[M = 2.558(4) [28]]. Moreover, recent realizations with
classical light obtained a relatively small violation M =
2.62(5) [29].

We tested y over 11 different input states which are the
classical analogs of pure quantum states with different
degrees of entanglement, from separable to maximally
entangled states (listed in Table S1 of the Supplemental
Material [21]). The experimental results show a clear state-
independent violation of the NC inequality (3) with an
average value y = 5.93(24), which is significantly closer to
the QT prediction for an ideal experiment, y = 6, than the
one obtained in previous experiments with single-ion [with
y ranging from 5.23(5) to 5.46(4) [30]] and single-photon
states [with an average value of y = 5.4550(6) [20]].

Discussion.—Here, we have shown that, under the
precise terms defined in the mapping between Figs. 1(a)
and 1(b) into Fig. 1(c), classical-wave protocols and QT
produce the same set of correlations.

Unlike ad hoc classical models reproducing some non-
locality [12] and contextuality experiments [13,31-33], our
approach is universal and tight: it reproduces any possible
structure of compatibility or incompatibility and any form

of contextuality that is possible in QT, and it fails to
produce any nonquantum distribution. This shows that
quantum correlations can be universally recreated with
classical systems at the expense of some extra resources. In
our case, the extra memory needed to display contextuality
[13] is provided naturally by the network branches (used to
store the outcomes of partial measurements) and the
microwave phase taken from one generation of observables
to the next one.

Our results have several implications. (I) The bounds of
quantum correlations are not distinctive of QT. Hence, the
principles determining the extent of quantum correlations
(necessarily shared by universal models employing
classical waves plus memory) are insufficient to grasp
QT. This also means that, even if quantum systems would
not exist (and classical fields would be the fundamental
physical objects), the so-called quantum bounds would still
arise naturally. (II) The characteristic trait of QT rely on the
fact that the quantum bounds are achieved without employ-
ing extra resources such as memory. Therefore, the prin-
ciples needed to fully derive QT (in the spirit of
Refs. [34-38]) should account for that. (III) Our model
has at disposal more memory than strictly needed to
simulate the quantum bounds: it has one bit of memory
for each dichotomic decision, which is more than needed to
simulate quantum probabilities (with this memory, one
could simulate, e.g., a nonlocal box [5]). However, it stops
right at the quantum bound, respecting the constraints
imposed by information causality [6] and exclusivity [9]
(while a simulation of a nonlocal box would indicate their
violation). This suggests that the bounds are not related to
the availability or the amount of extra resources. (IV)
Finally, the fact that our experiments do not require any
special conditions of isolation or control beyond phase
coherence demonstrates that quantumlike probabilities and
correlations can emerge in other classical supports with an
appropriate network structure allowing the coherent propa-
gation of wave signals. The possibilities run from artificial
networks to biological ones. This also warns us about
potential quantumlike features of classical origin that could
be wrongly taken as actual quantum effects in complex
systems.
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