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Abstract – The main goal of this work is to model a homogeneous computer material with well-
defined mechanical properties. To carry out the model material, an internal structure arranged
in layers with different atom sizes is implemented using a simple interatomic law of Lennard-
Jones type (LJ). We show that imposing an appropriate scaling law between the interatomic
potentials from different layers, we obtain the same mechanical properties as if the material was
homogeneous. Employing this scheme, given a fixed space volume to be occupied by the solid, this
structural arrangement allows to decrease drastically (∼ 30–80%) the required number of atoms as
compared with the case of a homogeneous solid, decreasing the computational effort and speeding
up calculations. In that respect, this procedure is an analogous to mesh refinements methodologies
usually applied in the continuum approaches.
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Introduction. – Computational designs of solids and
soft matter built from simplified microscopic laws of inter-
action have become an extremely useful tool to model
materials with prescribed macroscopic properties. Many
of them are devoted to understand phenomena such as
plasticity, phase transitions, creeps, large deformations,
fracture propagation and so on. Among the extensive
literature on this area, the research made in [1,2] is
worth mentioning. Over the last years, all these numer-
ical designs are commonly used within the framework of
statistical mechanics, since a direct comparison with the
theoretical models of liquids and solids is possible [3,4].
Nevertheless, to get a reliable statistical representation,
all these realizations still demand high-performance calcu-
lations in view of the large number of particles required.
For such reason, hybrid models are now very popular in
material sciences thanks to the enormous quantity of saved
calculations. This enables researchers to introduce much
more detailed physical aspects in the model, and therefore
it is no longer necessary to sacrifice the physical descrip-
tion by virtue of getting computational improvements. In
a hybrid numerical design, a continuum description of the
material coexists together with an atomistic scale level to
represent the interest zone of the problem [5]. In few words,
we may say that when the zone described by MD finishes,
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it is immediately continued by a FEM mesh coupled in
the interface. This mixed strategy is now commonly used
in computational tests of nano-indentation performed on
models of metallic materials (among many others, see for
example [6]), where the region suffering large deformations
is described by the atomic representation, and this is in
turn sustained by the continuum region where the defor-
mations are small and predominantly elastic.
In this study, we present an alternative scenario,

without abandoning the discrete nature of the internal
representation of a solid, whose origins, as far as we
know, started back with the bidimensional research made
in [7,8]. In our deterministic description, correspond-
ing to the mesoscopic level, we assume that particles
can be considered as “super-atoms”, which are fully
characterized by their positions, velocities, interparticle
distances and forces. Using this description, we design
a macroscopic solid internally structured in layers. Each
layer is an amorphous assembly of super-atoms that
possess a conveniently selected “size” or interaction range
obeying a simple scaling law. This generates a solid
bulk locally rearranged by amorphous atomic layers with
different thicknesses. The interaction between atoms has
been modeled by means of LJ potential, which has been
used to model fluids (see pioneer research in refs. [9,10])
and solids such as metallic glasses, alloys and van der
Waals solids [11–13]. This potential is simple, well known
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and widely used to study the microscopic to macroscopic
crossover in condensed matter physics.
This paper is organized as follows: Firstly, we present

some basic preliminary definitions, nomenclature and the
fundamental physical meaning of the variables employed
in this study. Subsequently, the motivation of this alterna-
tive description is commented, together with our proposal
for the interaction and scaling laws. Later on, we shall
describe the central aspects of our computational imple-
mentation, that is, a detailed description of the layering
procedure as well as the advantages obtained from it.
Finally, the results obtained from the mechanical tests by
means of uniaxial and isotropic compressions are exposed,
and compared with those results obtained from the
“classical” or homogenous solid bulk.

Preliminary issues. – Let us consider a pair of atoms
separated by a separation distance r and subjected to
the action of a central potential u(r) and interaction
force f(r) = u′(r). Note that the following definitions
are independent from the potential form except for the
non-directional and pairs-additivity features. Let us use
designations σ, r0, and r1 for the distances at which
the potential and its first and second derivatives become
zero, i.e.: u(σ) = 0, u′(r0) = 0 and u′′(r1) = 0. For all usual
potentials, σ < r0 < r1. The physical meaning of these
distances are: σ —hard sphere radius, r0 —equilibrium
distance and r1 —break distance. We shall not use
the quantity σ. The three most important dimensional
characteristics of the interaction are energy, strength
and stiffness of the bond, given by D=−u(r0), fmax =
u′(r1) and C = u′′(r0), respectively. All these quantities
are positive. In this study we use D and fmax as the
units of energy and force, respectively. For the pressure
we define the magnitude σ0 = fmax/r

2
0, whose meaning

is the stress needed to break a single interatomic bond
(changing the sign to negative). The unit of time is the
period of oscillation of a single atom of mass m given by
T0 = 2π

√
m/C. Finally, the critical dissipation coefficient

given by γc =
√
mC represents the quantity of mass that

can be slowed down per unit time. The critical value
corresponds to the viscosity of an effective medium where a
particle is immersed and whose value prevents the particle
to complete an oscillation due to the action of the potential
field. In that respect, we have considered an athermal
problem. Therefore the simplest way to represent a global
dissipative mechanism is to fix a constant dissipation
coefficient, in our case γ = 0.03γc. We are aware of this
deliberate simplification, since this choice does not allow
us to control the thermal properties of the system. To
control the temperature of the material an additional
equation for γ should be included, evolving in time and
readjusting the energy of the system [14]. Nevertheless, in
this work we are interested in calculating the mechanical
properties under very low temperatures.
To perform the mechanical tests, the barostatic proce-

dure devised by [15] has been implemented. It consists of a
mathematical procedure that enables us to apply any kind

of external stressed/compressed state on the solid, so that
the internal stress of the system, given by the expression
of the Cauchy stress tensor,

σαβ =
1

V

∑
i<j

∂u(rij)

∂rαij
rβij , (1)

can match the externally applied pressure. In (1), the
central character of the potential has been assumed,
rαij denotes the α-component of the interatomic distance
between atoms i and j, and V is the volume occupied by
the solid. Pressure changes are accomplished by changing
the coordinates of the particles and the size of the
computational cell under periodic boundary conditions.
Using this procedure, we have carried out uniaxial and
isotropic tests. From these tests, the elastic moduli can be
accurately calculated using the internal state of stresses
(with eq. (1)) and deformations (relative changes of the
periodic cell given by εαβ), i.e.

E =
2σ2xx+σxx(σyy +σzz)− (σyy +σzz)2

εxx(2σxx+σyy +σzz)− (εyy + εzz)(σyy +σzz) , (2)

ν =
σxx(εyy + εzz)− εxx(σyy +σzz)

(εyy + εzz)(σyy +σzz)− εxx(2σxx+σyy +σzz) , (3)

B =
1

3

σxx+σyy +σzz
εxx+ εyy + εzz

, (4)

where E, ν and B are the Young modulus, the Poisson
coefficient and the bulk modulus, respectively. Formulae
(2)–(4) can be obtained assuming an isotropic and homo-
geneous material (or a material with cubic symmetry)
together with the constitutive equations of elasticity [16].

Motivation, interaction and scaling laws. – The
motivation is to create a computer solid bulk material
without compromising neither a good knowledge of their
mechanical properties nor the computational effort associ-
ated to an elevated number of particles. This improvement
is aimed at designing a computer bulk material: i) with
well-defined mechanical behavior, ii) with simple but
well-determined physics, iii) with an affordable number of
particles and, iv) using an efficient and simple algorithm.
We combine two ideas: first, an inhomogeneous internal
structure and secondly, an appropriate scaling law of the
interatomic potentials.
We chose to build heterogeneous arrangements of atoms

with ordering by layers and with different atom sizes.
This structural representation of the material is specially
suitable to perform uniaxial tests. Computational effi-
ciency is notoriously improved, since this ordering allows
us to classify atoms using techniques inspired by parallel
computing using particle systems [17]. The simple idea
behind our proposal is that using different atom sizes
in a given volume, the number of atoms per volume
decreases, and therefore the number of pair interactions
decreases as well. The result is an obvious speed-up
of the computations: the final purpose of this research
is to obtain the same mechanical behavior as in the
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Fig. 1: (Colour on-line) Left: detail of the building material
in layers. Black boxes are virtually bounding the region of
the sample corresponding with a layer, and the red ones are
enclosing the interfaces between a couple of layers. Right:
snapshot of the interface between two layers with different
atom sizes. An appropriate cut-off distance must be set. For
an efficient calculation (see text), this cut-off will depend on
the scaling factor used in the interatomic potential for both
adjacent layers.

homogeneous case but reducing the computing time
significatively. A problem for which this methodology
will be particulary suitable is the contact between a
deformable sphere and a rigid plane. As described in [18],
the sphere can be obtained from the cut of a block made
of this heterogeneous material. Since the most important
events will occur in the contact zone, this contact is more
precisely described by the layer that contains the smallest
atoms, whilst the rest of the regions far from the contact
zone are represented by larger atom sizes.
The idea is to create a block of the bulk material

arranged by layers, as it is shown in fig. 1, where the
layering process is indicated by virtual boxes. Each layer
has a different atom size. When we say “atom sizes” we
are refereing to equilibrium distances inside the amorphous
lattice. In our simple election, the relation between atom
sizes belonging to a couple of adjacent layers scales as
rl+1 = k rl (l� 0), where rl is the atom size of the layer l.
The first layer of atoms contains the smallest atoms with
size r0 defined previously. Thus, the atom size in the
n-th layer is rn = k

nr0. Taking into account this scaling,
the potential energy between atoms from two contiguous
layers l and m is

ulm(rij) =Dlm

[(
rlm

rij

)12
− 2
(
rlm

rij

)6]
, (5)

where rij is the distance between atoms and rlm is the
equilibrium distance equal to (klr0+ k

mr0)/2. This is a
long-range potential but in practice one usually defines a
cut-off distance from which the potential action becomes
negligible. In the case of a homogeneous structure, we set
this cut-off distance to rcut-off = 2.1 r0, that corresponds to
a typical distance beyond which forces between pairs are
essentially zero. For the scaled potential written in eq. (5),
we have established an analogous cut-off distance given by
rcut-off,lm = 2.1 rlm.

The elastic moduli of a solid composed by two layers
indexed by letters l and m, respectively should be
invariable if the potential parameters satisfy the following
scaling formulae

rlm = γlmr0, Dlm = γ
3
lmD, γlm =

1

2
(kl+ km). (6)

To obtain these relations, we have reasoned as follows.
Let us suppose a hypothetic elastic modulus of our
homogeneous material denoted by M . This modulus has
a dependency to the potential parameters D and r0 given
by M = λD/r30. The quantity λ is a number depending
i) on the spatial distribution of the lattice nodes (i.e., the
internal structure: amorphous, FCC, BCC, or whatever)
and ii) on the interaction range between atoms (i.e.,
first, second or farther neighbor shells). For a two-layered
computer material, the same elastic modulus should have a
dependency given byM = λ′Dlm/r3lm. Then, we admit the
following assumption: both types of solids, homogeneous
and two-layered, will have the same effective internal
structure, i.e., λ= λ′. After a straightforward operation,
we obtain the relations written in (6). Therefore, if this
assumption is true, a heterogeneous material composed by
more than 2 layers will keep their elastic moduli equal to
the homogenous ones if the scaling given by (6) is fulfilled
between each interface formed by two contiguous layers.

General aspects of the implementation. – An
efficient MD realization requires, at least, the following
features: i) to admit a suitable cut-off distance to avoid the
unnecessary counting of particles that do not contribute,
ii) an efficient algorithm for searching and sorting the
nearest neighbors and iii) a convenient division of the
problem using techniques based on the domain decom-
position procedure [17]. In a polydispersive size system, as
the one we are dealing with here, one can tackle the inter-
particle interaction in two ways: 1) to consider a mean
cut-off distance for all layers using it for any pair with
non-equal atom sizes (see the right picture in fig. 1), or 2)
to take advantage of the layered structure to classify atoms
according to their sizes and recalculating the appropriate
cut-off distance as a function of the scaling factor.
The first strategy is very easy to implement but

produces an inefficient handling of interacting pairs and
an inaccurate calculation of forces and internal stresses.
In our situation, to compute the total force acting on one
atom we need to consider the adjacent atoms possessing
different sizes. To consider an average cut-off distance
may lead to miss atoms beyond this range and whose
contributions to the interaction force are not negligible.
On the other hand and at the same time, since each
atom has a list of potential neighbors to interact with, to
assume this average cut-off distance may lead to include
atoms in the list whose contributions are negligible. This
implies additional and expensive operations of insertion,
calculation and extraction of memory allocations.
In that respect, the second strategy, although it is a bit

more elaborated to implement, leads to a more efficient
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Fig. 2: (Colour on-line) Snapshot showing how a continuum
bulk material is obtained once a layered sample with nl = 5,
N = 21311, k= 4/3 reaches the equilibrium. In this case,
the periodic boundary conditions are only imposed in the
directions of the plane perpendicular to the column axis of the
sample.

handling of the interacting pairs. This reduces the truly
necessary interacting number of atoms compared with the
previous strategy and with the homogeneous case. Also,
the interatomic forces and the stress tensor components
are properly calculated, since any interacting pair is not
missed. The problem is straightforwardly divided into
two stages: first, we perform the interactions between
atoms with the same size, i.e. inside a layer, which is
computationally enclosed within a virtual bounding box,
as the black ones depicted in the left picture of fig. 1, and
secondly, we perform the interactions in the zone created
by the interface between two adjacent layers, as the
red virtual box shown in the same picture. This simple
classification of interactions saves many unnecessary
memory accesses (atoms inside virtual boxes are located
in contiguous blocks of memory) and helps to control all
forces calculated on each part of the material.

Layering details. – This procedure has been imple-
mented in a C++ code as follows. An amorphous and
mechanically equilibrated block of monosized atoms
is created at low temperature (< 0.1K). This block is
replicated nl− 1 times, where nl is the number of layers.
Each copy is placed on the previous block, but scaling the
atom size according to rl+1 = k rl, i.e., the copied block
is “inflated”. Due to the expansion of the scaled block,
the boundary box has to be readjusted to keep the same
cross-section as the original block. Thus, the atoms falling
outside the readjusted box must be removed. In each new
layer the mass density remains approximately constant

Fig. 3: Atom number as a function of the number of layers in
a heterogeneous-layered system in comparison with a homoge-
neous system (solid line).

while the numerical density decreases drastically. Using
this procedure, it is easy to calculate the number of atoms
in the layer l, given by Nl =N0/k

2l, where N0 is the atom
number in the original block. Next, the program detects
nl bounding boxes corresponding to the layers containing
monosized atoms and nl− 1 bounding boxes corre-
sponding to interfaces containing two-sized atoms (with a
negligible numerical cost). Then, the key leading to an effi-
cient performance is that the interaction treatment in each
layer becomes identical as in a homogeneous case, i.e.,
Dlm, rlm with l=m, except for the interface where l �=m.
The result is a complexity linear with the total particle
number, therefore the computation time of this scheme is
reduced according to this number. Once a configuration
is obtained, the last step consists of getting a continuum
bulk. Layers must stick to each other, as fig. 2 shows,
whilst forces, stresses and energy are monitored. After the
equilibrium, the new multi-layer system is achieved with
zero stresses and low temperature. In fig. 3 we show the
advantage of using this methodology for two growth rates
k. These results can be easily checked, since the total
number of atoms in a configuration, as fig. 2 shows, can
be accurately calculated just making the following sum:

N =

nl−1∑
l=0

N0

k2l
=N0

1− k−2nl
1− k−2 . (7)

This expression is nothing more than the predicted atom
number in a multilayered specimen, corresponding to a
simple geometrical series with rate k and nl terms. In
fig. 3 we have represented with dashed lines those values
according to eq. (7), while symbols are the results obtained
after the construction of the solid for different layer
numbers. The solid line marks the limit established by
homogeneous-like constructions. Figure 4 shows the huge
advantages obtained from the layering in terms of the
saved number of atoms in a given volume: the number of
atoms needed to perform the model is drastically reduced,
between 30%–80%, depending on nl and k.

Elastic coefficients and mechanical response. – A
variety of specimens has been created, varying the atom
number (n), the layer number (nl) and the scaling size
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Table 1: Young modulus E, Poisson coefficient ν and bulk modulus B calculated for different configurations of the computer
bulk layered material. Their expressions are given by formulae (2)–(4).

nl k n E/σ0 ν B/σ0
1 1.0 1000 24.5± 0.8 0.370± 0.1 31.5± 0.2
1 1.0 8000 22.5± 0.8 0.377± 0.004 31.05± 0.07
1 1.0 10648 22.1± 0.4 0.379± 0.002 31.2± 0.02
2 1.40 1626 22.55± 0.07 0.379± 0.001 31.8± 0.3
2 1.50 4375 22.45± 0.07 0.3849± 0.001 32.5± 0.3
2 1.33 4737 22.48± 0.02 0.380± 0.002 32.4± 0.4
2 1.50 5113 23.105± 0.014 0.3765± 0.0002 31.32± 0.06
3 1.40 1432 24.4± 0.7 0.372± 0.008 32.2± 0.5
3 1.33 2079 24.3± 0.4 0.371± 0.005 31.8± 0.3
3 1.33 7924 23.5± 0.1 0.375± 0.001 31.78± 0.12
4 1.33 8728 23.0± 0.4 0.379± 0.003 31.9± 0.2
5 1.33 21311 24.0± 0.5 0.373± 0.005 31.4± 0.3

Fig. 4: Improvements obtained using the layered model. The
reduction in the number of particles is plotted as a function of
the number of layers, nl.

factor (k). Table 1 shows the results of mechanical tests
for these layered materials. Young modulus and Poisson
coefficient are obtained from uniaxial tests, while the
bulk modulus was calculated from isotropic compressions.
Note that the case nl = 1 corresponds to the homogeneous
material.
The results from table 1 suggest that the elastic moduli

seem to be constant, despite small differences probably
caused by a slight size effect of the sample. These values
were obtained applying stresses below 10−3σ0, producing
deformations much smaller than 0.2%: we made sure
that the samples never abandoned the elastic regime.
Uniaxial stress was applied in the direction perpendicular
to the layering, and the isotropic test in the three spatial
directions. In both cases periodic boundary conditions
were considered. When an uniaxial compression imposing
a very slow strain rate is performed (ε̇ T0 = 10

−5), the
mechanical response of the computer material is clearly
linear, as fig. 5 shows. This diagram illustrates the stress-
strain curve where the pressure and strain are calculated
according to the original dimensions of the sample and
not the instantaneous values. We also checked that the
same samples behaved in a similar way if a test of uniaxial
tension was carried out. In fig. 5, the continuous line was
obtained from averaging over five different specimens. The

Fig. 5: Stress-strain diagram for homogeneous and heteroge-
neous material. The material is deformed imposing a quasi-
static–like but continuous cell shrinking on the periodic cell
that contains the material. The layered specimen has 3 layers
with a growth rate k= 4/3.

bars represent the standard deviation from the average for
the heterogeneous material (similar ones are obtained for
the homogeneous case). These heterogeneous specimens
were created using an identical procedure but changing
the initial distributions of positions and velocities of the
atoms during the stage of amorphous preparation. Each
specimen consisted of three layers with k= 4/3. In order to
compare with the homogeneous case, we have also plotted
with dashed line the stress-strain curve obtained from
compressing a homogeneous computer material occupying
an equivalent volume. Both types of structures responded
with the same mechanical behavior. Even in the domain
of large deformations, average values were always within
the numerical error bars. This situation is also present in
experimental results of physical materials.
For the sake of completeness, we performed (on the

heterogeneous material used in fig. 5) uniaxial tests
imposing the external pressure by means of a stepwise
mechanism using the barostatic procedure described in
ref. [15] The leaps of pressure were set to 0.05σ0. Figure 6
shows the resultant behavior. Two cycles consisting of
loading and unloading were carried out. In the first cycle
the specimen was compressed from 0 up to 0.25σ0 (black
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Fig. 6: (Colour on-line) Stress-strain diagram for the heteroge-
neous material imposing small leaps of pressure. Each symbol
represents a mechanical equilibrated state at low temperature.
The material definitely breaks once the pressure exceeds the
value 0.5σ0. Comparison with the values obtained from homo-
geneous structures gave an excellent agreement, proving that
effects of the scaling law are exactly the expected ones.

circles). Once the equilibrium was reached, the specimen
was immediately unloaded up to zero pressure (red
circles). The second cycle started reloading the previous
final state at zero stress, incrementing step by step up
to 0.5σ0 (black crosses). Decompression process was from
0.5σ0 returning to 0 (red crosses). To finish this test, the
last state of the second reload was newly compressed up
to 0.65σ0 (black squares). In this case we observed that
the material broke once the value 0.5σ0 was exceeded
(deformation jumped from 4% up to 12%).
Concerning this breakage, there are two specific quanti-

ties that complete the characterization of the mechanical
behavior together with the elastic moduli: the onset of
plasticity σY , or yield strength (beyond which the material
flows plastically) and the maximum stress that the mater-
ial can sustain σU , or ultimate strength. From calculations
averaged from over 20 different samples of homogeneous
bulk materials consisting of 104 atoms each, we have
obtained that these quantities are σY /σ0 = 0.29± 0.12
and σu/σ0 = 0.51± 0.08. In figs. 5 and 6 it can be seen that
the heterogenous material behaves identically within this
range of values. In fact we obtained similar values for these
two quantities: σY /σ0 = 0.3± 0.1 and σu/σ0 = 0.50± 0.1.

Conclusion. – Within the framework of the MD
approach, a simple computational procedure based on
the scaling of the interatomic potential was used to
model heterogenous amorphous solids that possess the
same mechanical properties as if they had an internal
homogeneous structure. The layered model was subjected
to various mechanical tests. From the tests, Young and
bulk moduli, the Poisson coefficient and the stress-strain
diagrams (controlling the strain rate or the applied pres-
sure) were obtained. The mechanical response showed by
layered structures exhibited the same behavior as if they
were homogeneous. The combination between simple scal-
ing laws on the interatomic potential and an appropriate

layering makes it possible to reduce up to 80% the numeri-
cal density of required atoms to describe the solid. This set
of ideas presented in this paper are suggested as the begin-
ning of a methodology similar to the mesh refinements
approach in FEM, although applied to discrete simulation
using particles. In that sense, an immediate application
that we have already started is a detailed study of the
elastic-plastic and fully plastic regime in adhesive nano-
contacts [18]. This method will allow us to build a much
larger spherical body to carry out the contact with a rigid
plane. We shall be in a position to obtain the JKR solu-
tion, commonly used to describe the contact between a
spherical macroscopic soft body and a rigid flat surface,
in the elastic regime [19].
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