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The relation of the recently proposéfi5) critical point symmetry with the interacting boson model is
investigated. The larghtlimit of the interacting boson model at the critical point in the transition fro(B)U
to O(6) is obtained by solving the Richardson equations. It is shown explicitly that this algebraic calculation
leads to the same results as the solution of the Bohr differential equation \@itipatential.
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The study of phase transitions is one of the most excitinghe (y, #) part were studied in Ref5] and tabulated in
topics in physics. Recently the concept of critical point sym-Ref.[6]. lachello solved thes part and found that th&g)
metry has been proposed by lachellj. These kinds of functions are related to Bessel functions. The main results
symmetries apply when a quantal system undergoes transire illustrated in Table | and Fig. 1 of Refl]. These
tions between traditional dynamical symmetries. In R&f.  results are obtained from a geometrical picture and we
the particular case of the Bohr Hamiltonig] in nuclear \would like to investigate its relation with the interacting
physics was worked out. In this case, in the situation inyoson model.

which the potential energy surface in tiey plane is y The geometrical interpretation of the abstract IBM Hamil-
independent and the dependence ingheegree of freedom 4121 can be obtained by introducing a coherent Stt6]

can be modeled by an infinite square well, the so-caHes hich allows to associate to it a geometrical shape in terms

.symmet{y aplpc_earrs]. ThLS situegion Is expected t? be fe?]'iz? the deformation variable§3,y). The basic idea of this
in actual nuclei when they undergo a transition from spheri- o . e
cal to y-unstable deformed shapes. TE) symmetry is formalism is to consider that the pure quadrupole states are

obtained within the formalism based on the Bohr Hamil-gIObaIIy described by a boson condensate of the form

tonian, but it has also been used in connection with the in-
teracting boson modgliIBM) [3]. Although this is not the
form it was originally proposefll], it has been in fact argued
that moving from the spherical to thgunstable deformed
case within the IBM one should reobtain, at the critical point
in the transition, the predictions of tH&5) symmetry. This where the basic boson is given by
correspondence is supposed to be valid in the limit of large

number N of bosons, but the calculations with the IBM

N, B, 9 = —(T)¥o) @)
N, £, = D)

. o e . 1 1

should provide predictions for finithl as stated in Ref4]. rf= st+ B cosvdl + — 3 sin w(dl +d!

In this paper, on one hand we calculate exactly the latge- ¢ |1+ 2 B cos \s’zﬁ Hdz+d) |,
limit of the IBM at the critical point in the transition from &)
U(5) (spherical caseto O(6) (deformedy-unstable cageOn

the other hand, we solve the Bohr differential equation for a

B* potential. Both calculations lead to the same results anavhich depends on thg andy shape variables. The energy
are not close to those obtained by solving the Bohr equatiosurface is defined as

for an infinite square wel[E(5) symmetn}. We also show

with two schematic examples that the corrections arising .

from the finite number of bosons are important. With this in En(B, ¥) =(g;N, B, ¥H|g;N, B, 1), (4)
mind, the IBM calculations still provide a tool for including

corrections due to the finite number of bosons. - o ,

In Ref. [1] the Bohr Hamiltonian is considered for the WhereH is the IBM Hamiltonian. Here we are interested
case of ay independent potential, described by an infinitein the case in which the Hamiltonian undergoes a transi-
square well in theg variable. In that case, the Hamiltonian is tion from U(5) to O(6) and, consequently, the correspond-
separable in both variables and if we set ingl potgntial energy SUffﬁCGS a@einqeplelhd?mf- e lBM

_ n order to investigate the geometrical limit of the in
V(B 7. 6) = H(B)D(y, 6), @ the transitional class going from(8) (spherical to O(6)
where ¢, stands for the three Euler angles, the Schrédinge¢deformed y-unstablé the most genera(up to two-body
equation can be split in two equations. The solutions oftermg IBM Hamiltonian is
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ﬁ = Sdﬁd + Kol’:\)Tl,:\) + Kll: . I: + KzéX:O . QX:O+ KS-’I\—S . -’i—g .

+ K4:|\—4 : :l\—4 (5)

@

wherefy is thed boson number operator, and

Energy (arbitrary units)
D

PT=1(d"d'-s'-sh, (6)
L = Tod x 8%, ™ .
Q0= (s" x d+d' x 7, (8)
2
T3=(d" > d)®, 9) i
1_4 _ (dT % a)(4). (10 FIG. 1. Representation of the energy surfacesNeR0 as func-

tions of the shape parametgrobtained for two schematic Hamil-

. . ~ oz tonians, Eq(16) (left pane) and Eq.(18) (right pane). In each case
The chlarA product “ IS defined as Ty-Ty three values of the order parameter are presented, one at the critical
=3 (DMT_ yT-m, Where T,y corresponds to theM  value, one above, and one below that value. The curves have been

component of the operator'AI'L. The operatorsam arbitrarily displaced in energy so as to show clearly the behavior.

=(-1)"d_,, and3=s are introduced to ensure the correct ) ) )
tensorial character under spatial rotations. The correWhose leading term ig*. Alternatively, one can carry out

sponding energy surface is obtained from E4), the transformations?/ (1+5? — g2 and find 8* as the criti-
cal potential.
N 7 9 In order to make some calculations to illustrate the large-
- 2 z il
BN, p) = 1+,32[5K2+'8 (8d+6K1+K2+ SRkl 5K4>] N limit in the IBM at the critical point in the (5)-O(6)
phase transition and the corresponding finite N corrections,
N(N-1) [ (1-8%?2 18 - " toni
( )| A-89) Ko+ 4By + — Bric we propose two schematic transitional Hamiltonians. The
(1+3?)? 4 0 27 357 T4l first one is
(11 N s P
The condition to find the critical point is Hi=xhg + N - 1P P (16)
[d’E(N, B)/dB?]4=0=0 (12 The corresponding energy surface is obtained from Eq.

(11) with g4=x, ko=(1-x)/(N-1) and all the rest of the

and gives the following relation among the Hamiltonian
parameters equal to O,

parameters:

2 _ _p2\2
£a= = Byt Ay~ gs = S+ (N~ Do = 4. (19 Eu(N,B)zN{le,82+14X(1+,g2> } (17)

Thus the most general energy surface at the critical point
in the U(5)-O(6) phase transition is The condition to localize the critical point, E¢L3), gives
in this casex'C=0.5. InFig. 1 we represent as an example
the energy surfaces for Hamiltonidh6) (left pane) with
Ko 18 B three selections for the order parameteone at the criti-
X Z+(K°_4K2+3_5K4>(1+—,82)2 . (14) cal point, one above that value, and one below it. For
X>X. an equilibrium spherical shape is obtained, while for
These expressions are consistent with those obtained ¥<X. the equilibrium shape is deformed. The valxge
Ref. [10] for a slightly different Hamiltonian. Note that gives a flat* surface close tg=0.
Eq. (14) completely defines the form of the potential up to
a scale and an energy translation. The expansion of this TABLE |. Excitation energies for g@* potential relative to the

ECY(N, B) = 5Nk, + N(N - 1)

critical energy surface aroung=0 is energy of the first excited state.
EC’“(N,B)%5K2N+@N(N—1)+N(N—1) &l 2 3 £
4 =0 0.00 2.39 5.15 8.20
18 =1 1.00 3.63 6.56 9.75
X (Ko —diy + 3—5K4> [B'-2p%+ -], =2 2.09 4.92 8.01 11.34
=3 3.27 6.26 9.50 12.95

(15)
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Excitation Energy

FIG. 2. Schematic spectrum for2t potential. Numbers close to
the arrows areB(E2) values. These are relative to the transition  FIG. 3. Variation with the number of bosoiigp to N=20) of

211—0; o whoseB(E2) value is taken as 100. selected energy ari8(E2) ratios for IBM calculations performed at
the critical points of Hamiltoniari16) (full line) and (18) (dashed
The second schematic Hamiltonian we propose is line). The corresponding(5) and 3* values are marked with dotted
lines.
Py =y = T 0. g0 18
=X~ g ' Besides the excitation energieB(E2) transition prob-

) ) ) abilities can be calculated using the quadrupole operator
The corresponding energy surface is obtained from Eq.

(11) with g4=x, k,=—(1-x)/N and all the rest of the pa- 1 _
rameters equal to O, T2 =t B | D(6)cosy + ,—E[Difﬁ(ﬂi) +D2(6)]siny |,
v
1-X B (20)
- _ 2
Ei(N,B=-(5+8 )1+,82+N X1+/32

wheret is a scale factor. In Table Il two importaB{(E2)
B2 ratios are given foE(5) and 8* cases. In Fig. 2 th&(E2)
—4(N- 1)(1_X)(1+—32)2- (19) values for a* potential are shown besides the arrows.
They are given normalized to th&(E2;2, ;— 0, o) value
Condition (13) gives in this case the critical point. which is taken as 100.
=(4N-8)/(5N-8) that in the largeN limit gives 4/5. Comparing Fig. 1 and Table | in Rdfl] with the present
In Fig. 1 the corresponding energy surfaces are plotted ifrig. 2 and Table | we can observe important differences be-
the right panel. Same comments as in the preceding case ameen E(5) and 8* potentials. In order to see which is the
in order. Thus, we conclude that, in the transition fromactual largeN limit of IBM we have performed calculations
spherical systems witl-unstable deformed ones, the critical with the IBM codes for Hamiltoniansi, [Eq. (16)] and H,
point in IBM should be associated to gt potential rather [Eq.(18)] at the critical point for different number of bosons.
that to an infinite square well. The question is then howThese codes allow to manage a small number of bosons,
different are theE(5) predictions from those obtained with a typically 20. In Fig. 3 the results of these calculations are
B* potential? In order to investigate this point we haveshown with a full line for Eq(16) and with a dashed line for
solved numerically the Bohr Hamiltonian for a potentiil Eq. (18). The values folE(5) and 8* potentials are shown as
The results for energies are presented in Table | and in Fig. 2lotted lines as references. The last two panels latig|eohd
Here we keep the labé&lused in theE(5) case. Itis related to R, refer to theB(E2) ratios presented in Table II.
the labelng=(ng—17)/2, sometimes used in the() classifi- From Fig. 3 it is clear that the finitdl effects are impor-
cation, byns=¢-1, whereny is the U5) label andr is the  tant and depend on the precise form of the Hamiltonian used.
O(5) label. Particularly interesting are the energy ratios giverHowever, it is difficult to conclude whethd&(5) or 8* is the
in Table Il which have been used in recent works to identifylargeN limit of the corresponding IBM Hamiltonian. It is
possible nuclei as critical. In this table t¢5) andB* values  necessary to perform calculations with larger valuesNof
are shown for comparison. The labeling of the statds; is Fortunately, Dukelskyet al. [11] have recovered an exactly

TABLE Il. Energy andB(E2) transition rate ratios in thE(5) symmetry and for thgg* potential.

B(E2;4,,—2; 1) B(E2;0,0—2;1 )
E41,2/ = Eoz,o/ By E01,3/ By Eo, o/ Bo, Ri= B(E2;2,,—0, 9 27 B(E2; 210,

E(5) 2.20 3.038 3.59 0.84 1.68 0.86
Jen 2.09 2.39 3.27 0.73 1.82 1.41

041302-3



RAPID COMMUNICATIONS

J. M. ARIAS et al. PHYSICAL REVIEW C 68, 041302R) (2003

R L S that the largeN limit for the studied IBM Hamiltonians, cor-
responds to thg3* potential. Both Hamiltonians Eq$16)
and (18) converge to the same results in the lagdimit,
although the corresponding corrections for fifiteare quite
different (see Fig. 3.

We conclude that the largg-limit of the IBM Hamil-
tonian at the critical point in the transition from(&) (spheri-
i N s cal) to O(6) (deformedy-unstablg is represented in the geo-
Bl ] metrical model by g3* potential. The results are similar but

""" @ 13,/-’------%(»»5-)2 not close to those of an infinite square well as in E(&)
& o5l E critical point symmetry. The analysis of the IBM energy sur-
| i E ] face followed by an IBM calculation, as presented in Ref.

0 B0 100 102030 40 10 2 3 4 [13], can provide the appropriate finifd corrections and
thus lead to the identification of nuclei at the critical points.
FIG. 4. Same as Fig 3 but here the number of bosons runs up t§ that work a systematic study of the properties of the Ru
1000 in the energy ratios and up to 40 in BEE2) ratios. isotopes allowed to select the appropriate form of the Hamil-
B . ) tonian. Once it is fixed the construction of the energy sur-
solvable model for_ pairing proposed by Rlchardsqn in therzces identify the critical nucleu€®Ru in that casp The
1960's [12]. Following Ref.[11] we have solved Richard- corresponding IBM calculation for the critical nucleus then
son’s equations and obtained the exact eigenvalues fQ§rovides the correct finithl corrections. We believe that this
Hamiltonians(16) and (18) up to N=1000, so approaching s a fundamental step if we wish to robustly identify the
the largeN limit of the corresponding IBM Hamiltonians. spectroscopic properties that signal the presence of criticality
Details of this method will be given in a longer publication. i, the atomic nucleus.
In Fig. 4 we present the results of these calculations for
energy ratios up tdN=1000 andB(E2) ratios up toN=40 This work was supported in part by the Spanish DGICYT
together with the corresponding values for &) symme-  under Project No. BFM2002-03315, by CONAC§Néxico)
try and theg* potential. From this figure it clearly emerges and by an INFN-DGICYT agreement.
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