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We study the occurrence of factorization in polarized and unpolarized observables in coincidence quasielas-
tic electron scattering. Starting with the relativistic distorted wave impulse approximation, we reformulate the
effective momentum approximation and show that the latter leads to observables which factorize under some
specific conditions. Within this framework, the role played by final state interactions and, in particular, by the
spin-orbit term is explored. Connection with the nonrelativistic formalism is studied in depth. Numerical
results are presented to illustrate the analytical derivations and to quantify the differences between factorized
and unfactorized approaches.
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I. INTRODUCTION

Quasielasticse,e8pd reactions have provided over the
years an enormous wealth of information on nuclear struc-
ture, particularly, on single particle degrees of freedom: en-
ergies, momentum distributions and spectroscopic factors of
nucleons inside nuclei[1–3]. In recent years important ef-
forts have been devoted to provide more realistic theoretical
descriptions of these processes[4–16]. However, there are
still uncertainties associated to the various ingredients that
enter in the reaction dynamics: final state interactions(FSI),
off-shell effects, nuclear correlations, relativistic degrees of
freedom or meson exchange currents(MEC). These ingredi-
ents affect the evaluation of electron scattering observables
and hence lead to ambiguities in the information on the
nuclear and nucleon structure that can be extracted from ex-
periments. In recent years, electron beam polarization as well
as polarization degrees of freedom for the outgoing nucleon
can be measured, what makes it possible to extract a new
wealth of observables from quasielasticseW ,e8pWd reactions.
For instance, ratios of transferred polarizations are used to
measure ratios of nucleon form factors.

One of the basic results which has madese,e8pd reactions
so appealing for investigations of single particle properties is
the factorized approach[1,17,18]. Within this approximation,
the se,e8pd differential cross section factorizes into a single-
nucleon cross section, describing electron proton scattering,
and a spectral function which gives the probability to find a
proton in the target nucleus with selected values of energy
and momentum compatible with the kinematics of the pro-
cess. The simplicity of the factorized result makes it possible
to get a clear image of the physics contained in the problem.
Even being known that factorization does not hold in gen-
eral, it is often assumed that the breakdown of factorization
is not too severe, and then it is still commonplace to use
factorized calculations for few body systems or for inclusive
scattering. The importance of factorization lies on the fact
that the interpretation of experimental data is still usually
based on this property by defining an effective spectral func-
tion that is extracted from experiment in the form of a re-

duced cross section. Assuming that factorization holds at
least approximately, reduced cross section would yield infor-
mation on momentum distributions of the nucleons inside the
nucleus. On the other hand, these momentum distributions
would cancel when taking ratios of cross sections and con-
sequently these ratios might give information on the electro-
magnetic form factors of the nucleons[19,20].

In spite of the importance of the factorization assumption,
there have been however almost no formal(and very few
quantitative) studies of its validity. So far, it has been shown
by different authors[3,18,21] that in the nonrelativistic case
and when using plane waves to describe the ejected nucleon
[plane wave impulse approximation(PWIA)], factorization
holds exactly for theunpolarized cross section. When inter-
actions in the final state are included[distorted wave impulse
approximation(DWIA )], then certain further assumptions
are needed to recover the factorized result[3]. The meaning
and importance of the additional assumptions required to at-
tain a factorized result has not been quantitatively studied
thoroughly.

In the relativistic case, factorization of the unpolarized
cross section is broken even without FSI, due to the negative
energy components of the bound nucleon wave function
[18,21]. A quantitative estimate of the breakdown of factor-
ization is lacking for the relativistic case when taking into
account FSI.

Furthermore, there has not been any study of the validity
of the factorization picture for polarization observables, even
though this factorized picture is implicitly assumed when
using ratios of transferred polarizations to determine nucleon
form factors[19,20].

Within a nonrelativistic framework, the breakdown of fac-
torization has been usually interpreted as due to the spin-
orbit dependent optical potentials. We note however, that
other effects such as the Coulomb distortion of the electron
waves, and contributions beyond the impulse approximation
(IA ) such as MEC, play also a role in breaking factorization.
In the particular case of the plane wave limit(i.e., neglecting
FSI between the ejected proton and the residual nucleus)
factorization is strictly satisfied in IA at the level of the tran-
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sition amplitude[3,18]. This contrasts strongly with the rela-
tivistic formalism, where the enhancement of the lower com-
ponents of the bound nucleon wave function destroys
factorization of the transition amplitude even in the case of
no FSI. Hence, an important difference between relativistic
and nonrelativistic approaches already emerges in the plane
wave limit. Whereas factorization holds in nonrelativistic
PWIA, it does not in the relativistic plane wave impulse
approximation (RPWIA), which includes negative-energy
components in the bound nucleon wave function[18,21].

As mentioned above, the mechanism that breaks factor-
ization has been only established for the unpolarized cross
section in the nonrelativistic approach. Here we explore such
mechanisms for both polarized and unpolarized observables
starting from the more complex relativistic distorted wave
impulse approximation(RDWIA) and making simplifying
assumptions that lead to factorization. We make also the con-
nection with the nonrelativistic framework and present con-
clusions that are valid in both relativistic and nonrelativistic
cases. It is important to point out that most of these,e8pd
experiments performed recently involved energies and mo-
menta high enough to make compulsory the use of relativis-
tic nucleon dynamics. Within this context, the RDWIA,
which incorporates kinematical and dynamical relativistic ef-
fects, has proved its capability to explain polarized and un-
polarizedse,e8pd experimental data[6,9–11]. Starting from
the RDWIA, the effective momentum approximation(EMA-
noSV), originally introduced by Kelly[22], is reformulated
here paying special attention to aspects concerned with the
property of factorization. In addition, an analysis is made of
the various assumptions that lead to factorized polarized and
unpolarized observables and which are mainly linked to the
spin-orbit dependence of the problem. Finally, a quantitative
estimate of the validity(or breakdown) of factorization is
made for different observables that are commonly extracted
from se,e8pd experiments.

The paper is organized as follows: in Sec. II we outline
the basic RDWIA formalism and revisit the EMA-noSV ap-
proach, emphasizing its connection with the factorized ap-
proximation. In Sec. III we present our analysis for polarized
and unpolarized observables, deriving the specific conditions
which lead tofactorization. In Sec. IV we concentrate on
reduced cross sections and connect them to the momentum
distributions. Results for polarized and unpolarized observ-
ables are presented in Sec. V. Numerical calculations per-
formed within different approaches are compared. Finally, in
Sec. VI we draw our conclusions.

II. RELATIVISTIC DISTORTED WAVE IMPULSE
APPROXIMATION (RDWIA)

The RDWIA has been described in detail in previous
works (see for instance[6,11]). In this section we limit our
attention to those aspects needed for later discussion of the
results presented. In RDWIA the one body nucleon current

Jmsv,qd =E dpc̄F
sFsp + qdĴmckb

mbspd, s1d

where v and q are the energy and momentum of the ex-
changed virtual photon, is calculated with relativisticckb

mb

andcF
sF wave functions for initial bound and final outgoing

nucleons, respectively, and with relativistic nucleon current

operatorĴm.
The bound state wave function is a four-spinor with well

defined angular momentum quantum numberskb, mb corre-
sponding to the shell under consideration. In momentum
space it is given by

ckb

mbspd =
1

s2pd3/2E dre−ip·rckb

mbsrd

= s− id,b1 gkb
spd

Skb
fkb

spd
s ·p

p
2Fkb

mbsp̂d, s2d

which is the eigenstate of total angular momentumjb= ukbu
−1/2, andFkb

mbsp̂d are the spinor harmonics

Fkb

mbs p̂d = o
m,b

h
K,bm,b

1

2
hu jbmbLY,b

mbs p̂dx1/2
h , s3d

with ,b=kb if kb.0 and,b=−kb−1 if kb,0.
The wave function for the outgoing proton is a solution of

the Dirac equation containing scalar(S) and vector(V) op-
tical potentials[6,7]. For a nucleon scattered with asymptotic
momentumpF and spin projectionsF, its expression is

cF
sFspd = 4pÎEF + M

2EF
o
kmm

e−idk
*
i,

3K,m
1

2
sFu jmLY,

m*s p̂Fdck
ms pd. s4d

As the optical potential may be in general complex the phase
shifts and radial functions are also complex, and the wave
function ck

mspd is given by

ck
mspd = s− id,1 gk

* spd

Skfk
* spd

s ·p

p
2Fk

ms p̂d. s5d

Assuming plane waves for the electron(treated in the ex-
treme relativistic limit), the differential cross section for out-
going nucleon polarizedAseW ,e8pWdB reactions can be written
in the laboratory system in the general form

ds

d« f dV f dVF
=

EFpF

s2pd3sMfrecvmnW
mn, s6d

wheresM is the Mott cross section,h« f ,V fj are the energy
and solid angle corresponding to the scattered electron and
VF=suF ,fFd the solid angle for the outgoing proton.
The factor f rec is the usual recoil factor f rec

−1= u1
−sEF /EBdspB·pFd /pF

2u, beingpB and EB the momentum and
energy of the residual nucleus, respectively. Finally,vmn is
the familiar leptonic tensor that can be decomposed into its
symmetric(helicity independent) and antisymmetric(helicity
dependent) parts andWmn is the hadronic tensor which con-
tains all of the hadronic dynamics of the process. The latter is
defined from bilinear combinations of the one body nucleon
current matrix elements given in Eq.(1), as
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Wmn =
1

2jb + 1o
mb

Jm*sv,qdJnsv,qd. s7d

The cross section can be also written in terms of hadronic
responses by making use of the general properties of the

leptonic tensor. ForseW ,e8pWd reactions with the incoming elec-
tron polarized and the final nucleon polarization also mea-
sured, a total set of 18 response functions contribute to the
cross section. Its general expression is written in the form

ds

d« f dV f dVF
=

EFpF

s2pd3sMfrec
1

2
hvLsRL + Rn

LŜnd + vTsRT + Rn
TŜnd + vTLfsRTL + Rn

TLŜndcosfF + sRl
TLŜl + Rs

TLŜsdsinfFg

+ vTTfsRTT + Rn
TTŜndcos2fF + sRl

TTŜl + Rs
TTŜsdsin2fFg + hhvTL8fsRl

TL8Ŝl + Rs
TL8ŜsdcosfF + sRTL8 + Rn

TL8ŜndsinfFg

+ vT8fRl
T8Ŝl + Rs

T8Ŝsgjj, s8d

where va are the usual electron kinematical factors[5,11]
andh= ±1 is the incident electron helicity. The polarized and
unpolarized nuclear response functions are constructed di-
rectly by taking the appropriate components of the hadronic
tensorWmn (see Ref.[5] for their explicit expressions). The
cross section dependence on the recoil nucleon polarization

is specified by the componentsŜk sk= l ,n,sd of the ejected
proton rest frame spinssFdR along the directions:l =pF /pF,
n=sq3pFd / uq3pFu ands=n3 l.

To finish this section and in order to ease the analysis of
the results, the cross section can be also expressed in terms
of the usual polarization asymmetries, which are given as
ratios between different classes of response functions,

ds

d« f dV f dVF
=

s0

2
f1 + PnŜn + PlŜl + PsŜs

+ hsA + Pn8Ŝn + Pl8Ŝl + Ps8Ŝsdg, s9d

with s0 the unpolarized cross section,A the electron analyz-
ing power, andPk sPk8d the induced(transferred) polariza-
tions.

Factorization and effective momentum approximation

In nonrelativistic PWIA, these,e8pd unpolarized cross
section factorizes in the form

S ds

d« f dV f dVF
DPWIA

= EFpFfrecsepNNRs pmd, s10d

wheresep is the bare electron-proton cross section usually
taken asscc1 (or scc2) of de Forest[23], andNNRs pmd is the
nonrelativistic momentum distributionthat represents the
probability of finding a proton in the target nucleus with
missing momentumpm, compatible with the kinematics of
the reaction. It is well known that the factorized result in Eq.
(10) comes from an oversimplified description of the reac-
tion mechanism. FSI, as well as Coulomb distortion of the
electron wave functions, destroys in general factorization. In
fact, most current descriptions of exclusivese,e8pd reactions

involve unfactorized calculations. However, the simplicity of
the factorized result makes it very useful to analyze and in-
terpret electron scattering observables in terms of single par-
ticle properties of bound nucleons. Therefore it is common to
quote experimental reduced cross section or effective mo-
mentum distributionon the basis of the experimental unpo-
larized cross section as

rexps pmd =
sds/d« f dV f dVFdexp

EFpFfrecsep
. s11d

A similar expression can be used for the theoretical reduced
cross section,

rths pmd =
sds/d« f dV f dVFdth

EFpFfrecsep
, s12d

constructed from the the theoretical unpolarizedse,e8pd
cross section, independently of whether it is calculated
within a relativistic or nonrelativistic formalism. We will say
that the factorization property is satisfied byrths pmd when
the theoretical unpolarized cross section factors out exactly
sep, and then, the theoretical reduced cross section does not
depend on it.

As we will demonstrate later in this paper, factorization is
not a property exclusive of the nonrelativistic PWIA ap-
proach. It is well known that, due to the negative energy
components of the bound proton wave function, factorization
is not satisfied even in RPWIA[18]. However, if we neglect
the contribution from the negative energy components, the
unpolarized cross section factorizes to a similar expression as
in Eq. (10).

Starting from a fully relativistic calculation of the nuclear
current, in what follows we explore the most general condi-
tions under which factorization is recovered. First, it is im-
portant to note that in order to extract the elementary cross
section “sep” from the general relativistic theory(RDWIA),
the upper and lower components of the relativistic wave
functions that enter in Eq.(1) must be forced to satisfy the
“free” relationship with momenta determined by asymptotic
kinematics at the nucleon vertex, that is
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cdowns pd =
s ·pas

Eas+ M
cups pd s13d

with Eas=Îpas
2 +M2 and pas the asymptotic momentum cor-

responding to each nucleon. In what follows we discuss this
condition (13) in the nonrelativistic language.

The nonrelativistic formalism is based on bispinorsxspd
solutions of Schrödinger-like equations. Generally, the non-
relativistic formalism can be analyzed using the following
semirelativistic four-spinor

cSRs pd =
1

ÎN1 xs pd
s ·p

E + M
xs pd 2 , s14d

to be introduced in Eq.(1) in order to calculate a relativisti-
clike nucleon current amplitude. In this way the relativistic
kinematics is fully taken into account and no expansions in
p/M are needed. The one body nucleon current matrix ele-
ment takes then the following form:

Jmsv,qd =E dpxF
sF†sp + qdĴef f

m sp,qdx jb

mbs pd, s15d

with Ĵef f
m s p,qd now an effectives232d current operator that

occurs between bispinor wave functionsxF
sF sx jb

mbd for the
outgoing(bound) nucleon respectively.

The calculation of the nuclear amplitude using four-
spinors like the one written in Eq.(14), implies removal of
the enhancement of the lower components that is present in
the four-spinors of Eqs.(2) and(4). This is a well known fact
present in nonrelativistic calculations, but this alone is not
enough to get factorization. It is also required the use of
exactly the same nuclear current operator as in a free
electron-proton scattering. In Eq.(15) then, the nontruncated
effective current operator must be evaluated at the
asymptotic momentum values, leading to

Jmsv,qd =E dpxF
sF†sp + qdĴef f

m spF − q,qdx jb

mbs pd. s16d

One can show that this condition is implicit in one of the
necessary assumptions introduced in Ref.[3] to recover fac-
torization in the nonrelativistic case.

In a relativistic calculation, the assumptions written in Eq.
(13) set up the so-called effective momentum approximation
with no scalar and vector terms(EMA-noSV),1 originally
introduced by Kelly[22], to which we will refer in what
follows as EMA. The EMA approximation in the relativistic
framework, or the nonrelativistic calculation based on Eq.
(16), are essentially the same conditions which are necessary
to recover factorization, in either formalism. These condi-
tions are necessary but not sufficient and in what follows, we
concentrate on the EMA case to study additional assump-
tions needed to obtain factorization.

In EMA, the bound nucleon wave function in momentum
space is given by

ckb

mb EMAs pd = s− id,b1 gkb
spd

s ·pI

EI + M
gkb

spd 2Fkb

mbs p̂d s17d

with EI =ÎpI
2+M2 andpI =pF−q. Likewise the outgoing rela-

tivistic distorted wave function in Eq.(5) becomes

ck
m EMAs pd = s− id,1 gk

* spd
s ·pF

EF + M
gk

* spd 2Fk
ms p̂d. s18d

Introducing these expressions into the equation of the one
body nucleon current matrix element[Eq. (1)], we get

JEMA
m = o

sh

fūs pF,sdĴmus pI,hdgo
kmm
K,m

1

2
sFu jmLY,

m*s p̂Fd

3 o
m,b

m,

K,bm,b

1

2
hu jbmbLK,m,

1

2
su jmLUkb m,b

k m, s pF,qd

; o
sh

Jbare
m s pFs,pIhdAsh

mbs pF,qd, s19d

where we have written both nucleon wave functions in terms
of free positive energy Dirac spinors and we have introduced
the bare nucleon current matrix element

Jbare
m spFs,pIhd = ūspF,sdĴmuspI,hd, s20d

with the termUkb m,b

k m, spF ,qd given by

Ukb m,b

k m, =
8pM

Î2EFsEI + Md
s− id,bE dpgkb

spdgk
* sup + qud

3Y
,b

m,bsp̂dY,
m,*sp+̂qdeidk, s21d

and the amplitude

Ash
mbspF,qd = o

kmm
K,m

1

2
sFu jmLY,

m*sp̂Fd o
m,b

m,

K,bm,b

1

2
hu jbmbL

3K,m,

1

2
su jmLUkb m,b

k m, spF,qd. s22d

The result in Eq.(19) defines the nucleon current in EMA,
and is our starting point for the analysis of the conditions that
may lead to factorized observables. Notice thatJEMA

m in-
volves a sum over initial and final spin projections(s, h) of
the bare nucleon current, times an amplitude that depends on
the bound and ejected nucleon wave functions. Factorization
in JEMA

m occurs if Ash
mbspF ,qd does not depend on the spin

variabless andh.
Before entering into a detailed discussion of the observ-

ables, it is important to stress again that factorization may
only be achieved assuming EMA and/or asymptotic projec-
tion, i.e., neglecting dynamical enhancement of the lower
components in the nucleon wave functions. This isa priori
assumed within some nonrelativistic calculations.

1The factorization property could be also analyzed within the
framework of the asymptotic projection approach(see Refs.
[9,11,16] for details).
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III. ANALYSIS OF OBSERVABLES WITHIN EMA

In this section we investigate the conditions that lead to
factorization of polarized and unpolarized observables. Re-
sponse functions, transverse-longitudinal asymmetry, elec-
tron analyzing power, as well as induced and transferred po-
larizations are examined. The analysis is made directly at the
level of the hadronic tensor which, within the EMA ap-
proach, can be written in the following way:

WEMA
mn =

1

2jb + 1o
mb

sJEMA
m d*JEMA

n

= o
ss8

o
hh8

fJbare
m spFs,pIhdg*Jbare

n spFs8,pIh8d

3
1

2jb + 1o
mb

fAsh
mbspF,qdg*As8h8

mb spF,qd. s23d

Note that in Eq.(23) s,s8 are the spin variables correspond-
ing to the outgoing nucleon, whileh,h8 correspond to the
bound nucleon.

In order to simplify the analysis that follows, the general
expression of the hadronic tensor can be written in a more
compact form as

WEMA
mn = o

ss8
o
hh8

Wss8,hh8
mn Xss8,hh8

sF spF,qd, s24d

where we have introduced a general bare-nucleon tensor
Wss8,hh8

mn ,

Wss8,hh8
mn = sJbare

m d*Jbare
n

= fūspF,sdĴmuspI,hdg*fūspF,s8dĴnuspI,h8dg,

s25d

and a general spin dependent momentum distribution func-
tion Xss8,hh8

sF ,

Xss8,hh8
sF spF,qd =

1

2jb + 1o
mb

fAsh
mbspF,qdg*As8h8

mb spF,qd

=
1

2jb + 1o
mb

o
kmm

o
k8m8m8

K,m
1

2
sFu jmL

3K,8m8
1

2
sFu j8m8LY,

msp̂FdY,8
m8*sp̂Fd

3 o
m,b

m,

o
m,b
8 m,8
K,bm,b

1

2
hu jbmbLK,m,

1

2
su jmL

3K,bm,b
8

1

2
h8u jbmbLK,8m,8

1

2
s8u j8m8L

3 Ukb m,b

k m,* spF,qdU
kb m

,b
8

k8 m, spF,qd. s26d

Making use of general symmetry properties(see Appen-
dix A), the bare-nucleon tensor in Eq.(25) can be decom-
posed into terms which are symmetric and antisymmetric
under interchange ofm andn. Each of these terms shows a

different dependence on the spin variables:ss8 and/orhh8.
Explicitly, the bare nucleon tensor can be written in the form

Wss8,hh8
mn = Smn dss8 dhh8 + Ahh8

mn dss8 + Ass8
mn dhh8 + Sss8,hh8

mn ,

s27d

where S sAd refers to symmetric(antisymmetric) tensors.
Notice that the first(symmetric) term in Eq.(27) does not
depend on the initial bound neither on the final outgoing
nucleon spin variables; the antisymmetric second(third) term
depends solely on the initial(final) spin projections; finally,
the fourth (symmetric) term presents dependence on both
initial and final nucleon spin projections simultaneously. This
bare-nucleon tensor would lead to thesep cross section in
Eq. (10).

The general result for the bare nucleon tensor given in Eq.
(28) constitutes the starting point for the analysis of factor-
ization for polarized as well as unpolarized observables. In
what follows we explore the specific conditions, linked to the
spin dependence in the problem, that lead to factorized re-
sults. We investigate separately the role played by the depen-
dence on the initial and/or final nucleon spin variables. As
we show in next subsections, the factorization property at the
level of spin-averaged squared matrix elements is intimately
connected with the spin dependence: a bound nucleon in an
s-wave or, in general, no spin-orbit coupling effects on the
radial nucleon wave functions, may lead for some specific
observables to exactly factorized results. As it is clear from
the analogy between Eq.(16) and Eq.(1) with the input from
Eq. (13), the analysis of spin dependence here and in what
follows is also valid for the nonrelativistic case.

A. No spin-orbit in the initial state

The general expression ofXss8,hh8
sF (26) is greatly simpli-

fied for no spin-orbit in the initial state or, more generally in
LS coupling. For instance in the case of nucleon knockout
from s-shells the orbital angular momentum,b=0 and the
spin dependent momentum distribution is simply given by

Xss8,hh8
sF spF,qd = Nss8

sF spF,qd dhh8, s28d

with

Nss8
sF spF,qd =

1

2jb + 1o
kmm

o
k8m8m8

K,m
1

2
sFu jmL

3K,8m8
1

2
sFu j8m8LY,

msp̂FdY,8
m8*sp̂Fd

3 o
m,m,8

K,m,

1

2
su jmL

3K,8m,8
1

2
s8u j8m8LU−10

k m,8*spF,qdU−10
k8 m,spF,qd.

s29d

In the case of no spin-orbit coupling with,bÞ0 waves, a
similar reduction to Eq.(28) follows after summation of the
spin dependent momentum distributionX on jb=,b±1/2.
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Making use of Eqs.(27) and (28) the hadronic tensor in
EMA becomes

WEMA
mn = o

ss8

Nss8
sF Fo

h

Wss8,hh
mn G

= o
ss

Nss8
sF fSmndss8 + Ass8

mng

= Smno
s

Nss
sF + o

ss8

Nss8
sF Ass8

mn . s30d

From this result it clearly emerges that those responses com-
ing from the symmetric tensorSmn factorize, while the ones
coming from the antisymmetric part do not. Let us describe
more precisely what factorization really means in this situa-
tion.

First, note that the momentum distribution function
os Nss

sF that multiplies the symmetric tensor depends on the
outgoing nucleon spinsF. In the case when recoil nucleon
polarization is not measured, an extra sum insF has to be
carried out and hence the momentum distribution, which is
independent ofsF, gives rise to the unpolarized responsesRL,
RT, RTL andRTT in Eq. (8). On the other hand, if the spin of
the outgoing proton is measured via a polarimeter placed
along a fixed direction(n, l or s), the momentum distribu-
tion, now dependent on the final spin, contributes to the in-
duced polarized responses:Rn

L, Rn
T, Rn,l,s

TL andRn,l,s
TT . Hence, in

the case of no spin-orbit coupling in the initial bound state,
both types of responses(unpolarized and induced polarized)
factorize, but each kind of response factorizes with a differ-
ent momentum distribution function. Then, the induced po-
larization asymmetriesPk sk= l ,n,sd, which are basically
given by the ratio between the induced polarized responses
Rk

a and the unpolarized onesRa, will differ from the bare
result. On the contrary, the momentum distribution functions
cancel when taking a ratio between two responses of the
same kind, i.e., a ratio between two induced polarized re-
sponses along a specific direction, or a ratio between two
unpolarized responses. Therefore such ratios would coincide
with the bare results. This property can be expressed in the
general form

Rk
a

Rk
b =

Ra

Rb =
Ra

Rb , s31d

where a ,b=L ,T,TL or TT and k= l ,n,s fixes the recoil
nucleon polarization direction. The functionsRa,b represent
the bare-nucleon responses, also usually named single-
nucleon responses[21]. The result in Eq.(31) explains also
why the ATL asymmetry, which is obtained from the differ-
ence of electron unpolarized cross sections measured atfF
=0+ andfF=180+ divided by the sum, is identical to the bare
asymmetry in this case. In terms of response functions we
may write

ATL =
vTLR

TL

vLRL + vTRT + vTTR
TT

=
vTLRTL

vLRL + vTRT + vTTRTT = ATL
bare. s32d

To complete the discussion, we note that the electron ana-
lyzing power and transferred polarization asymmetries in-
volve responses coming from the antisymmetric part of the
tensor(30), which do not factorize, divided by unpolarized
responses obtained from the symmetric tensor term. There-
fore the behavior ofA andPk8 will differ from the bare one.
The amount of discrepancy between the factorized and un-
factorized calculations of different observables is discussed
in Sec. V.

B. No spin-orbit in the final state

Let us consider now the case of no spin-orbit coupling
effects on the radial wave function of the outgoing proton. In
this case neitherdk nor gk in Eqs.(4) and(18) depend onj .
After some algebra(see Appendix B for details), this condi-
tion leads tos=s8=sF in the bare-nucleon tensor, and there-
fore the momentum distribution depends only on thehh8
spin variables of the initial nucleon. The hadronic tensor is
then given by

WEMA
mn = o

hh8

WsFsF,hh8
mn Ñhh8spF,qd, s33d

where the momentum distribution functionÑhh8spF ,qd is de-
fined in Eq.(B6) of Appendix B. Using the decomposition in
Eq. (27), we can write the following expression:

WEMA
mn = fSmn + AsFsF

mn go
h

Ñhh + o
hh8

fSsFsF,hh8
mn + Ahh8

mn gÑhh8.

s34d

The analysis of how polarized or unpolarized responses
behave with respect to factorization emerges straightfor-
wardly from Eq.(34). Let us discuss each case separately:

(i) Unpolarized responses:RL, RT, RTL andRTT. They do
not depend on spin and come from the symmetric part of the

tensor, i.e., they are given bySmnohÑhh, and hence factorize
exactly. This result coincides with that one obtained in the
nonrelativistic study of Ref.[3].

(ii ) Transferred polarization responses:Rl,s
T8 and Rl,s,n

TL8 .
They come from the antisymmetric part of the tensor and

depend on the final proton spin polarization, i.e.,AsFsF

mn ohÑhh,
in exactly the same form as displayed in Eq.(27). Conse-
quently, these responses also factorize.

(iii ) Fifth responseRTL8. It comes from the antisymmetric
part of the tensor and does not depend on the recoil nucleon

spin, i.e., it is given byohh8Ñhh8Ahh8
mn and clearly does not

factorize.
(iv) Induced polarized responses:Rn

L, Rn
T, Rn,l,s

TL andRn,l,s
TT .

They come from the symmetric tensor part and depend ex-
plicitly on the spin polarization of the outgoing proton, i.e.,

they are constructed fromohh8Ñhh8SsFsF,hh8
mn , and conse-

quently do not factorize.
Once the behavior of the response functions is estab-

lished, the asymmetries and polarization ratios can be easily
analyzed. The case ofATL, which only depends on the unpo-
larized responses, reduces toATL

bare [see Eq.(32)]. A similar
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comment applies also to the transferred nucleon polarizations
Pl8, Ps8, andPn8. Notice that the momentum distribution func-
tion involved in the unpolarized and transferred polarized
responses is the same and hence, it cancels when forming the
polarization ratios. The electron analyzing powerA and in-
duced asymmetriesPk, given in terms of responses which do
not factorize, should differ from the bare calculations.

As a particular case of no spin-orbit in the final nucleon
wave function, it is worth to explore the plane wave limit for
the outgoing nucleon. In this case[see Eq.(B8) in Appendix

B], the momentum distributionÑhh8
PW is diagonal and indepen-

dent on h, thus the fifth responseRTL8 vanishes since
ohAhh

mn=0. Similarly, the induced polarization responses do
not contribute becauseohSsFsF,hh

mn =0.

C. No spin-orbit in both initial and final states

To finish with this analysis, let us consider the case of no
spin-orbit coupling in the initial nor in the final state. In this
situation, factorization already comes out at the level of the
nuclear current matrix element. Note that,b=0 in Eq. (B4)
of Appendix B, leads toh=mb and the matrix element simply
reads

JEMA
m = ūspF,sFdĴmuspI,mbd U−1

0 spF,qd, s35d

whereU−1
0 is defined in Eq.(B5). This result resembles the

situation occurring in the free case. From the current(35) the
hadronic tensor can be written in the form

WEMA
mn =

1

2
uU−1

0 spF,qdu2o
mb

WsFsF,mbmb

mn

=
1

2
uU−1

0 spF,qdu2sSmn + AsFsF

mn d. s36d

Then all responses(polarized and unpolarized) factorize with
the same momentum distribution. Note also that the whole
dependence on the nucleon polarizationsF is contained in the
antisymmetric tensor. This implies that the polarized induced
responses must be zero. Furthermore, sinceosF

AsFsF

mn =0 the

unpolarized fifth responseRTL8 also vanishes.

IV. REDUCED CROSS SECTIONS AND MOMENTUM
DISTRIBUTIONS

Starting from a shell model approach, the relativistic(vec-
tor) momentum distribution is defined as follows:

NspId =
1

2jb + 1o
mb

ckb

mb†spIdckb

mbspId =
1

4p
fgkb

2 spId + fkb

2 spIdg.

s37d

Using the EMA approximation means projecting out the
negative energies components of the bound proton wave
function, obtaining then the relativistic EMA momentum dis-
tribution:

NEMAspId =
1

2jb + 1o
mb

ckb

mbEMA†spIdckb

mbEMAspId

=
1

4p

2EI

EI + M
gkb

2 spId, s38d

this expression reduces to the nonrelativistic momentum dis-
tribution in the proper limit because of its lack of contribu-
tion from negative energies.

In general, in a nonrelativistic formalism, the momentum
distribution is defined from bispinorsx jb

mbsrd, solutions of
Schrödinger-like equation:

NNRspId =
1

2jb + 1o
mb

x jb

mb†spIdx jb

mbspId, s39d

with x jb
mbspId the Fourier transform ofx jb

mbsrd,

x jb

mbspId =
1

s2pd3/2E dre−ipI·rx jb

mbsrd. s40d

Now, in nonrelativistic PWIA, the wave function for the
ejected proton in ther-space is

xF
sFPWsrd = eipF·rx1/2

sF , s41d

and looking at the the Fourier transform in Eq.(40), it is
natural to define a nonrelativistic distorted wave amplitude
as follows:

xDWspF,qd ;
1

s2pd3/2E drxF
sF†srdeiq·rx jb

mbsrd. s42d

Two observations are worth mentioning:
(1) xDWspF ,qd is an amplitude, not a bispinor.
(2) If the final proton wave function is a plane wave, the

following relationship is satisfied:

o
sF

uxPWspF,qdu2 = x jb

mb†spIdx jb

mbspId. s43d

So, we can define a nonrelativistic distorted momentum dis-
tribution

rDW
NRspF,qd =

1

2jb + 1o
mb

o
sF

uxDWspF,qdu2, s44d

that takes into account FSI, and has the property that we
recover the nonrelativistic momentum distribution in Eq.
(39) in the plane wave limit.

Let us generalize the above expression to the relativistic
case. We request that we recover from it the relativistic EMA
momentum distribution of Eq.(38) when there is not FSI and
the initial wave function is evaluated within EMA. For that
purpose we define a relativistic distorted wave amplitude,

cDWs pF,qd ;
K

s2pd3/2E drcF
sF†srdeiq·rckb

mbsrd

=
K

s2pd3/2E dpcF
sF†s p + qdckb

mbs pd s45d

with K=Îs2EIEFd / sEIEF+pI ·pF+M2d, so that the relativistic
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distorted momentum distribution is given by this amplitude
squared after sum and average over initial and final spins,

rDWs pF,qd =
1

2jb + 1o
mb

o
sF

ucDWs pF,qdu2. s46d

It is easy to check thatrDWspF ,qd coincides with the relativ-
istic EMA momentum distribution Eq.(38), when one takes
EMA approximation for the initial wave function and the
plane wave limit for the final one,

rPW
EMAs pF,qd = NEMAspId. s47d

It is also important to remark thatrDWs pF ,qd coincides with
the corresponding reduced cross section of Eq.(12) when-
ever there is factorization.

V. NUMERICAL RESULTS

To show quantitatively the effects introduced by the dif-
ferent approaches to the general description ofseW ,e8pWd reac-
tions, we compare our fully RDWIA calculations with the
EMA results, exploring also the effects introduced by the
spin variables in the initial and final nucleon states. The re-
sults presented in this section illustrate and reinforce the con-
clusions reached in the preceding sections concerning the
factorization properties.

Guided by the factorization properties one may focus on
two different aspects in the analysis of observables.

(1) On the one hand, one may factor out the elementary
electron-proton electromagnetic cross section, in order to
isolate and investigate nuclear properties like momentum
distributions. To the extent that factorization holds the re-
duced cross section will follow the momentum distribution.
In the first part of this section we compare factorized and
unfactorized results for the reduced cross section to the mo-
mentum distribution. We show how the different ingredients
that break factorization may obscure the extraction of mo-
mentum distributions. First of all, we note that since FSI
modify the response of the ejected nucleon, it is more ad-
equate to compare reduced cross sections with distorted mo-
mentum distributions(as defined in the previous section).
This is done in Fig. 1 that we discuss below.

(2) On the other hand, one may take ratios between ob-
servables to cancel out the dependence on the momentum
distribution, in order to isolate and investigate intrinsic
nucleon properties in the nuclear medium, like nucleon form
factors.

In Fig. 1 we present reduced cross sections at quasielastic
kinematics for three cases: complete RDWIA approach(solid
line), EMA (dashed line), and EMA with no spin dependence
in the final state, referred to as EMA-noLS(dotted line). We
also show by a thin solid line the distorted momentum dis-
tributions [rDW, Eq. (46)] which are equivalent to what one
would obtain from a factorized approach to RDWIA. Note
that up to upmu of around 250 MeV/c, the factorized ap-
proachrDW follows reasonably well the full calculation. Ac-
tually in this pm range, EMA and EMA-noLS are also rea-
sonable approximations to the complete calculation.
However, atupmu.250 MeV/c the full approach produces

more reduced cross section forpm,0 than forpm.0, lead-
ing to a much larger asymmetry in this region as we would
see in Fig. 2. We also note that differences between complete
RDWIA reduced cross section andrDW (hence deviations

FIG. 1. Reduced cross section for proton knockout from 1p1/2

(upper panel) and 1p3/2 (middle panel) in 16O and from 2s1/2 in 40Ca
(lower panel). RDWIA calculations(solid line) are compared to
EMA (short-dashed line) and EMA-noLS(dotted line) results. The
corresponding relativistic distorted wave momentum distribution is
also plotted(thin solid line). Negative(positive) pm values corre-
spond tofF=0° s180°d, respectively.

FIG. 2. ATL asymmetry for proton knockout from 1p1/2 (left
panel) and 1p3/2 (middle panel) in 16O and from 2s1/2 in 40Ca (right
panel). RDWIA calculations(solid line) are compared to RDWIA-
noLS (dashed line), EMA (short-dashed line), EMA-noLS (dotted
line) and factorized(dash-dotted line) results. The EMA-noLS cal-
culation coincides in all panels with the factorizedsATL

bared result. In
the right hand panel EMA, as well as EMA-noLS, coincides with
the factorizedsATL

bared result.
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from factorization) are more noticeable atupmu.250 MeV/c
in the pm,0 region. Nonrelativistic calculations would gen-
erally yield results on the line of the EMA ones presented
here. Note also that, the reduced cross section in EMA prac-
tically coincides withrDW for the s1/2 orbital in 40Ca, and
even in the16O p1/2 and p3/2 orbitals the reduced cross sec-
tions in EMA andrDW are rather close in the wholepm range.

In Figs. 2–4 we show theTL asymmetry, electron analyz-
ing power, induced polarization and transferred polariza-
tions, respectively, for proton knockout from thep1/2 (left
panels), p3/2 (middle) in 16O ands1/2 (right) shells in40Ca.
Results are computed for CC2 current operator and Coulomb
gauge. The bound nucleon wave function corresponds to the
nonlinear set of Sharma(NLSH) [24–27] and the outgoing
nucleon wave function has been derived using the energy
dependentA-independent relativistic optical potential fitted
to 16O (EDAIO) parametrization[28]. As in the previous
figure, the selected kinematics corresponds to the experimen-
tal conditions of the experiments E89003 and E89033 per-
formed at Jlab[29–31]. This is sq,vd constant kinematics
with q=1 GeV/c, v=440 MeV and the electron beam en-
ergy fixed to«i =2.445 GeV. Coplanar kinematics, withfF
=0°, are chosen for computing the polarization asymmetries.

Therefore, asPl =Ps=Pn8=0 whenfF=0°, they are not plot-
ted. In each graph, we show five curves corresponding to the
following approaches: RDWIA(solid), RDWIA but without
spin-orbit coupling in the final nucleon state, denoted as
RDWIA-noLS (dashed), EMA (short-dashed), EMA-noLS
(dotted), and finally the factorized result(dash-dotted).

As shown in Sec. III, factorization only holds within the
EMA approach and assuming specific conditions on the spin
dependence in the problem. In Table I we summarize the
basic assumptions within EMA that lead to factorization for
the different observables. To simplify the discussion of the
results that follows we consider each observable separately.

The asymmetryATL, presented in Fig. 2, shows that fac-
torization emerges within EMA in the case of thes1/2 shell
(where EMA, EMA-noLS and factorized results coincide).
For spin-orbit dependent bound states(p1/2 andp3/2), factor-
ization emerges only when there is no spin-orbit coupling in
the final state(EMA-noLS coincides with factorized results).
Also note that the oscillatory behavior shown byATL in
RDWIA and in RDWIA-noLS is almost entirely lost within
EMA, even when there is no factorization. This reflects the
crucial role played by the dynamical enhancement of the
lower components of the nucleon wave functions for this
observable. The spin dependence in the final nucleon state
modifies significantly the values ofATL even at low missing
momentum, but preserves its general oscillatory structure,
compare for instance RDWIA vs RDWIA-noLS or EMA vs
EMA-noLS.

The electron analyzing powerA is presented in Fig. 3.
This observable is zero in coplanar kinematics so the azi-
muthal angle is fixed tofF=225° in Fig. 3, but the remarks
that follow also apply to otherfFÞ0°, 180° values. As we
demonstrated in Sec. III, the fifth responseRTL8 involved in
A only factorizes if there is no spin-orbit contribution in the
initial and final nucleon wave functions. Moreover, in such
situation RTL8=0 and henceA=0, as occurs fors1/2 shell
within EMA-noLS in Fig. 3. From a careful inspection of
Fig. 3 we also observe that the main differences between the
various approaches come from the spin-orbit term in the final
state. Note that the discrepancy between RDWIA and EMA
(or likewise between RDWIA-noLS and EMA-noLS) is sig-
nificantly smaller than the discrepancy between RDWIA and

FIG. 3. Electron analyzing powerA at sq,vd constant kinemat-
ics and azimuthal anglefF=225°. The labeling of the curves is as
in Fig. 2. For this observable factorization is only achieved in the
EMA-noLS curve on the right hand panel. See text for details.

FIG. 4. Induced polarizationPn at coplanar kinematics with
fF=0°. Kinematics and labeling as in Fig. 2. Only the EMA-noLS
calculation for as1/2 shell factorizes.

TABLE I. Properties of factorization of different observables
using the EMA approximation and turning off the spin-orbit cou-
pling in the initial wave function(first column), in the final wave
function (second column) or in both simultaneously(third column).

No LS initial No LS final No LS both

ATL ATL
bare ATL

bare ATL
bare

A 0

Pn 0

Pl 0

Ps 0

Pn8 Pn8
bare Pn8

bare

Pl8 Pl8
bare Pl8

bare

Ps Ps8
bare Ps8

bare
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RDWIA-noLS (or EMA vs EMA-noLS). In all of the cases
with AÞ0, oscillations survive. The behavior ofA contrasts
with the one observed for the asymmetryATL. This is due to
the fact that factorization is broken down already at the EMA
level even in thes1/2 shell.

The induced polarizationPn is presented in Fig. 4. Here
the discussion of results follows similar trends to the previ-
ous one onA. Factorization requires no spin dependence in
any of the nucleon wave functions, being the induced polar-
ized responses equal to zero in such a case(notice thatPn is
zero in the plane wave limit). In any other situation factor-
ization breaks down andPn shows strong oscillations in all
cases. Again, it is important to point out that the behavior of
the RDWIA calculation is qualitatively followed by the
EMA approach, differing much more from the RDWIA-
noLS or EMA-noLS. This reveals the important effects in-
troduced by the spin-orbit coupling in the optical potential
for polarized observables, contrary to what happens for the
unpolarizedATL.

The comment above applies also to the transferred polar-
izations Pl8 and Ps8 (Fig. 5) for which RDWIA and EMA
approaches give rise to rather similar oscillating(unfactor-
ized) results. On the contrary, RDWIA-noLS, which is also
unfactorized, deviates significantly from RDWIA due to the
crucial role of the spin-orbit dependence in the final state.
Finally, EMA-noLS coincides with the bare asymmetries
showing a flat behavior without oscillations. This is in accord
with the findings in Sec. III B, where we demonstrated that

the unpolarizedRa and transferred polarizedRl,s
a8 responses

factorize with the same momentum distribution function[see
Table I and Eq.(34)].

VI. SUMMARY AND CONCLUSIONS

A systematic study of the property of factorization in
quasielasticseW ,e8pWd reactions has been presented. Starting

from a RDWIA analysis, we have reformulated the EMA
approach and studied the conditions which are needed to get
factorization. In this context, we have explored the role of
the spin-orbit coupling in the initial and/or final nucleon
states and its influence on the breakdown of factorization.

From our general study we conclude that exact factoriza-
tion only emerges within the EMA approach, i.e., neglecting
the dynamical enhancement of the lower components in the
nucleon wave functions by using Eq.(13). Furthermore, ad-
ditional restrictions on the spin dependence in the problem
are necessary to get factorization in the case of polarized
observables.

Within the EMA approach, the factorization properties of
various seW ,e8pWd responses and asymmetries are as follows
(see also Table I). The unpolarizedRa responses factorize to
a single, polarization independent, momentum distribution
when the initial or the final nucleon wave functions are in-
dependent on spin-orbit coupling(i.e., depend on, but not
on j). As a consequence, theATL asymmetry is in these cases
given by the bare-nucleonATL

bare asymmetry.
The fifth responseRTL8 (and consequentlyA), depending

on electron beam polarization, never factorizes, but becomes
zero when both initial and final nucleon wave functions are
independent on spin-orbit coupling, as well as in the nonrel-
ativistic plane wave limit(PWIA).

The transferred polarization responsesRk
a8 factorize when

the final nucleon wave function is independent onj . Conse-
quently the transferred polarizations are in this case given by
the bare-nucleon ones, independent on whether the initial
state may or may not depend on spin-orbit coupling.

The induced polarized responsesRk
a do not factorize even

when the final nucleon wave function is independent onj ,
unless the initial wave function is also independent onj , in
which caseRk

a become zero. If the final wave function de-
pends on spin-orbit coupling but the initial wave function
does not, the induced polarized responses factorize with a
polarization-dependent momentum distribution different
from the unpolarized one. Therefore, as stated in Eq.(32), a
new factorization property emerges when there is no spin-
orbit coupling in the initial state.

From our numerical calculations a clear difference in the
behavior of polarized and unpolarized observables comes
out. In the case of the unpolarizedATL asymmetry, its general
structure is not substantially modified by the final spin-orbit
dependence, being much more affected by the lower compo-
nents of the nucleon states. The strong oscillations inATL
within RDWIA practically vanish in EMA. On the contrary,
the polarized asymmetriesA, Pn and Pl,s8 , present a very
strong sensitivity to the final spin dependence, while the gen-
eral structure of the RDWIA results is preserved by the EMA
calculations.

As a general conclusion, we can say that observables that
require less extra assumptions(apart from EMA) to factor-
ize, are more sensitive to any ingredient of the calculation
that breaks factorization. Such observables are good candi-
dates to test the elements of any model/calculation, as it is
the case of theATL asymmetry.

In spite of the fact that factorization is not reached when
realistic calculations are made, we show that the reduced

FIG. 5. Longitudinal transferred polarizationPl8 (top panels) and
sideways transferred polarizationPs8 (bottom panels) at coplanar
kinematicssfF=0°d. In this case, factorization is obtained within
the EMA approach when there is no spin-orbit coupling in the final
state(EMA-noLS, dotted line).
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cross sections extracted from fully unfactorized calculations
follow the factorized distorted momentum distribution quite
well for moderate values of the missing momentum, where
the bulk of the cross section lies. Then, reduced cross sec-
tions and integrated quantities directly related to them, like
nuclear transparencies or inclusive cross sections, are reason-
ably predicted by the factorized scheme, as long as one re-
mains at quasielastic kinematics. We may conclude that the
unpolarized cross section follows closely the factorized cal-
culation that takes FSI into account. In other words, in spite
of the breakdown of factorization of the cross section intro-
duced by FSI and by negative energy components of the
relativistic model, one may still extract a meaningful effec-
tive momentum distribution within this formalism.

While the bulk of the cross section factorizes to a good
approximation, ratios of cross sections likeATL or polariza-
tions are very sensitive to the ingredients of the calculation
that break factorization. This is why in particular theATL
observable is very sensitive to the negative energy compo-
nents of the wave functions, and provides a plausible signa-
ture of the relativistic dynamics.

Contrary toATL, polarizations are much more sensitive to
the spin-orbit properties of the upper components of the
wave functions than to the dynamical enhancement of the
lower components. Yet, RDWIA transferred polarizations
closely match the factorized results in certainpm ranges. This
suggests that measuring transferred polarizations in those
ranges may safely explore modifications of the nucleon form
factor ratios in the nuclear medium.

ACKNOWLEDGMENTS

The authors thank T.W. Donnelly for his helpful com-
ments. This work was partially supported by funds provided
by DGI (Spain) under Contract Nos. BFM2002-03315,
BFM2002-03562, FPA2002-04181-C04-04, and BFM2003-
04147-C02-01 and by the Junta de Andalucía(Spain). J.R.V.
and M.C.M. acknowledge financial support from the Conse-
jería de Educación de la Comunidad de Madrid and the Fun-
dación Cámara(University of Sevilla), respectively.

APPENDIX A: HADRONIC BARE-NUCLEON TENSOR

In this appendix we present in more detail the hadronic
bare-nucleon tensor(25), which can be written using traces
in the form

Wss8,hh8
mn = TrfĴ mus pF,sdūs pF,s8dĴnus pI,h8dūs pI,hdg,

sA1d

where we use the notationĴm;g0Ĵm†g0.
Making use of the following relation[17,18]:

us p,sdūs p,s8d =
dss8 + g5w/ ss8

2

P/ + M

2M
, sA2d

with wss8
m a pseudovector defined as wss8

m

= ūs p,s8dgmg5us p,sd which reduces to the four spinSm in

the diagonal case, i.e.,wss
m =Sm, the bare nucleon tensor reads

Wss8,hh8
my =

1

16M2TrfĴmsP/ F + MdĴysP/ I + Mdgdss8dhh8

+
1

16M2TrfĴmsP/ F + MdĴyg5w/ hh8sP
/

I + Mdgdss8

+
1

16M2TrfĴmg5w/ ss8sP
/

F + MdĴysP/ I + Mdgdhh8

+
1

16M2TrfĴmg5w/ ss8sP
/

F + MdĴyg5w/ hh8sP
/

I + Mdg.

sA3d

This result is expressed in a compact form in Eq.(27).

APPENDIX B: NO SPIN-ORBIT IN THE EJECTED
NUCLEON WAVE FUNCTION

Let us consider the case of no spin-orbit coupling in the
final nucleon wave function. This means that the radial func-
tionsgk anddk depend only onl but not onj . Then the upper
component of the wave function is given by

cF,up
sF s pd = 4pÎEF + M

2EF
o
,m

e−id,
*
Y,

m*s p̂Fdgl
*spd

3o
jm
K,m

1

2
sFu jmLFk

msp̂d

= Gsp,pFdxsF
sB1d

with

Gs p,pFd = 4pÎEF + M

2EF
o
,m

e−id,
*
Y,

m*s p̂Fdgl
*spdY,

ms p̂d.

sB2d

The resulting wave function for the ejected proton is then

cF
sF EMAs pd =Î 2M

EF + M
Gs p,pFdus pF,sFd. sB3d

Introducing this result into the expression of the current ma-
trix element, we get

JEMA
m = o

m,b
h
K,bm,b

1

2
hu jbmbLfūs pF,sFdĴmus pI,hdgU

kb

m,bs pF,qd

sB4d

being,

U
kb

m,bs pF,qd =
2M

ÎsEI + MdsEF + Md
s− id,b

3E dpG*s p + q,pFdgkb
spdY

,b

m,bs p̂d. sB5d

We observe that the whole dependence on the spin polar-
ization sF is contained in the Dirac spinorus pF ,sFd. From
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Eq. (B4) we can immediately construct the hadronic tensor
WEMA

mn , which can be written in the form of Eq.(33) with the
momentum distribution function given by

Ñhh8s pF,qd =
1

2jb + 1o
mb

o
m,b

m,b

K,bm,b

1

2
hu jbmbL

3K,bm,b
8

1

2
h8u jbmbLU

kb

m,b
*
U

kb

m,b
8

. sB6d

As a particular example, let us consider the case of the
plane wave limit without dynamical relativistic effects. In

this situation the functionGs p,pFd [Eq. (B5)] simply re-
duces to

GPWs p,pFd =ÎEF + M

2EF
s2pd3/2d3s p − pFd, sB7d

and the momentum distribution results

Ñhh8
PWs pF,qd = dhh8

M2

2EIEF
s2pd3NEMAs pId. sB8d
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