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We study the occurrence of factorization in polarized and unpolarized observables in coincidence quasielas-
tic electron scattering. Starting with the relativistic distorted wave impulse approximation, we reformulate the
effective momentum approximation and show that the latter leads to observables which factorize under some
specific conditions. Within this framework, the role played by final state interactions and, in particular, by the
spin-orbit term is explored. Connection with the nonrelativistic formalism is studied in depth. Numerical
results are presented to illustrate the analytical derivations and to quantify the differences between factorized
and unfactorized approaches.

DOI: 10.1103/PhysRevC.70.044608 PACS nunm)er25.30.Rw, 24.10.Jv, 21.60.Cs

[. INTRODUCTION duced cross section. Assuming that factorization holds at
] ) ] ) least approximately, reduced cross section would yield infor-
Quasielastic(e,e’p) reactions have provided over the mation on momentum distributions of the nucleons inside the
years an enormous wealth of information on nuclear strucnucleus. On the other hand, these momentum distributions
ture, particularly, on single particle degrees of freedom: enwould cancel when taking ratios of cross sections and con-
ergies, momentum distributions and spectroscopic factors afequently these ratios might give information on the electro-
nucleons inside nucl€il-3]. In recent years important ef- magnetic form factors of the nucleofis9,2q.
forts have been devoted to provide more realistic theoretical |n spite of the importance of the factorization assumption,
descriptions of these process@s-16. However, there are there have been however almost no forrtehd very few
still uncertainties associated to the various ingredients thajuantitativg studies of its validity. So far, it has been shown
enter in the reaction dynamics: final state interactidl), by different authorg3,18,2] that in the nonrelativistic case
off-shell effects, nuclear correlations, relativistic degrees ofand when using plane waves to describe the ejected nucleon
freedom or meson exchange curre(MiEC). These ingredi-  [plane wave impulse approximatiq®WIA)], factorization
ents affect the evaluation of electron scattering observablegolds exactly for thainpolarized cross sectiomhen inter-
and hence lead to ambiguities in the information on theactions in the final state are includggistorted wave impulse
nuclear and nucleon structure that can be extracted from expproximation(DWIA)], then certain further assumptions
periments. In recent years, electron beam polarization as wellre needed to recover the factorized re8ilt The meaning
as polarization degrees of freedom for the outgoing nucleoand importance of the additional assumptions required to at-
can be measured, what makes it possible to extract a newin a factorized result has not been quantitatively studied
wealth of observables from quasielasti€ e’'p) reactions. thoroughly.
For instance, ratios of transferred polarizations are used to In the relativistic case, factorization of the unpolarized
measure ratios of nucleon form factors. cross section is broken even without FSI, due to the negative
One of the basic results which has mddee’p) reactions  energy components of the bound nucleon wave function
so appealing for investigations of single particle properties i§18,21. A quantitative estimate of the breakdown of factor-
the factorized approadii,17,1§. Within this approximation, ization is lacking for the relativistic case when taking into
the (e,e’p) differential cross section factorizes into a single- account FSI.
nucleon cross section, describing electron proton scattering, Furthermore, there has not been any study of the validity
and a spectral function which gives the probability to find aof the factorization picture for polarization observables, even
proton in the target nucleus with selected values of energthough this factorized picture is implicitly assumed when
and momentum compatible with the kinematics of the pro-using ratios of transferred polarizations to determine nucleon
cess. The simplicity of the factorized result makes it possibldorm factors[19,2Q.
to get a clear image of the physics contained in the problem. Within a nonrelativistic framework, the breakdown of fac-
Even being known that factorization does not hold in gen-torization has been usually interpreted as due to the spin-
eral, it is often assumed that the breakdown of factorizatiororbit dependent optical potentials. We note however, that
is not too severe, and then it is still commonplace to usether effects such as the Coulomb distortion of the electron
factorized calculations for few body systems or for inclusivewaves, and contributions beyond the impulse approximation
scattering. The importance of factorization lies on the factlA) such as MEC, play also a role in breaking factorization.
that the interpretation of experimental data is still usuallyln the particular case of the plane wave lirtiie., neglecting
based on this property by defining an effective spectral funcFSI between the ejected proton and the residual nucleus
tion that is extracted from experiment in the form of a re-factorization is strictly satisfied in |A at the level of the tran-
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sition amplitude[3,18. This contrasts strongly with the rela- and ¢ wave functions for initial bound and final outgoing
tivistic formalism, where the enhancement of the lower com-nucleons, respectively, and with relativistic nucleon current
ponents of the bound nucleon wave function destroy peratorjl*‘.

factorization of the transition amplitude even in the case o The bound state wave function is a four-spinor with well

no FSI. Hence, an important difference between relativisticdefined angular momentum quantum numbeysy, corre-
and ”Of‘f.e'a“"'s“c approach_es f’i'feady eMmerges in th.e. pl.a%%onding to the shell under consideration. In bmomentum
wave limit. Whereas factorization holds in nonrelativistic LS '

space it is given by

PWIA, it does not in the relativistic plane wave impulse
approximation (RPWIA), which includes negative-energy 1 B
components in the bound nucleon wave functjb8,21). Yib(p) = 2m) J dre” Py o(r)

As mentioned above, the mechanism that breaks factor-
ization has been only established for the unpolarized cross 9, (P)
section in the nonrelativistic approach. Here we explore such =(=i)% op |O4p), 2)
mechanisms for both polarized and unpolarized observables SbeKb(p)— “
starting from the more complex relativistic distorted wave p
impulse approximatiofRDWIA) and making simplifying  which is the eigenstate of total angular momentjym| x|
assumptions that lead to factorization. We make also the con-1/2, andd*»(p) are the spinor harmonics
nection with the nonrelativistic framework and present con- b
clusions that are valid in both relativistic and nonrelativistic o o(p) =S ( ¢ym 1h|' Yéo(B) 3)
cases. It is important to point out that most of tfege’p) Ky P bMe, 5 Mbkb [ Yo\ P)X1/2:
experiments performed recently involved energies and mo-
menta high enough to make compulsory the use of relativiswith €,=«}, if k,>0 and€,=—xp—1 if x,<O.
tic nucleon dynamics. Within this context, the RDWIA, The wave function for the outgoing proton is a solution of
which incorporates kinematical and dynamical relativistic ef-the Dirac equation containing scalg) and vector(V) op-
fects, has proved its capability to explain polarized and untical potential§6,7]. For a nucleon scattered with asymptotic
polarized(e,e’'p) experimental datf6,9-11. Starting from momentumpg and spin projectiors, its expression is
the RDWIA, the effective momentum approximatiEMA-

m(/bh

noSV), originally introduced by Kelly{22], is reformulated VF(p) =4 ME e‘ifiif

here paying special attention to aspects concerned with the 2Er um

property of factorization. In addition, an analysis is made of < 1 >

the various assumptions that lead to factorized polarized and X em=selju ) YT (D) (). (4)
unpolarized observables and which are mainly linked to the 2

spin-orbit dependence of the problem. Finally, a quantitativeng the optical potential may be in general complex the phase
made for different observables that are commonly extractegnction *(p) is given by

from (e,e’p) experiments.

The paper is organized as follows: in Sec. Il we outline QZ(D)
the basic RDWIA formalism and revisit the EMA-noSV ap- prP =D .. o-p |[PUD). (5)
proach, emphasizing its connection with the factorized ap- Scf(p) D

proximation. In Sec. Ill we present our analysis for polarized
and unpolarized observables, deriving the specific conditions Assuming plane waves for the electr@reated in the ex-

which lead tofactorization In Sec. IV we concentrate on treme relativistic limij, the differential cross section for out-
reduced cross sections and connect them to the momentug®@ing nucleon polarized(€, e’ p)B reactions can be written
distributions. Results for polarized and unpolarized observin the laboratory system in the general form

ables are presented in Sec. V. Numerical calculations per-

= : . d E
formed within different approaches are compared. Finally, in g = FpFe,UMfrecw,wW“”, (6)
Sec. VI we draw our conclusions. de;dQrdQe  (2m)
Il RELATIVISTIC DISTORTED WAVE IMPULSE where gy, is the Mott cross sectiorgy, )} are the energy
APPROXIMATION (RDWIA) and solid angle corresponding to the scattered electron and

Qr=(6:,¢¢) the solid angle for the outgoing proton.

The RDWIA has been described in detail in previousTpe factor fec is the usual recoil factorfi=|1

works (see for instanc6,11]). In this section we limit our —(EF/EB)(pB'PF)/péL being ps and Eg the momentum and

attention to those aspects needed for later discussion of thﬁ]ergy of the residual nucleus, respectively. Finally, is
L] . v
results presented. In RDWIA the one body nucleon currenty,q ¢amiliar leptonic tensor that can be decomposed into its

— - symmetric(helicity independentand antisymmetri¢helicity
J(w,q) = J dpyiF(p + Q) I yo(p), (1) dependentparts andW** is the hadronic tensor which con-
tains all of the hadronic dynamics of the process. The latter is
where w and g are the energy and momentum of the ex-defined from bilinear combinations of the one body nucleon
changed virtual photon, is calculated with relativisw,gf)b current matrix elements given in E¢l), as
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1 S ) leptonic tensor. Fo(€, e’ p) reactions with the incoming elec-
T 2j,+1 Hb‘] (@.0)3"(,0). ™ tron polarized and the final nucleon polarization also mea-
sured, a total set of 18 response functions contribute to the
The cross section can be also written in terms of hadronieross section. Its general expression is written in the form
responses by making use of the general properties of the

W

d E 1 - - A - -
" (ZjZoMfreCE{vaRL +RS) +urRT+RIS) +on[(R™+ RIS)cosde + (RS + RIESysinde]
F

+ o (RTT+ RIS ) cos 2 + (RIS + RITS)sin 26 ] + h{or [(RM'S + RIY S)cose + (R™ + RI-'S)singse]
+ur[RI'S +RUST, ®

wherev, are the usual electron kinematical factgfs1]] involve unfactorized calculations. However, the simplicity of
andh= =1 is the incident electron helicity. The polarized andthe factorized result makes it very useful to analyze and in-
unpolarized nuclear response functions are constructed dierpret electron scattering observables in terms of single par-
rectly by taking the appropriate components of the hadronicicle properties of bound nucleons. Therefore it is common to
tensorW*? (see Ref[5] for their explicit expressionsThe  quote experimental reduced cross section or effective mo-
cross section dependence on the recoil nucleon polarizatiomentum distributioron the basis of the experimental unpo-

is specified by the componen® (k=I,n,s) of the ejected larized cross section as

proton rest frame spifisg)g along the directionst=pg/pg, (do/de; dQ); Q)P
n=(qX p)/|qx pe| ands=nxI. PP = (12)
To finish this section and in order to ease the analysis of FPFlrecTep

the results, the cross section can be also expressed in termssimilar expression can be used for the theoretical reduced
of the usual polarization asymmetries, which are given agrgss section,

ratios between different classes of response functions,
" _ (do/de¢ d€)s dQp)t
P (Pm) =

do 0y - - -
de; dQ; dQ = E[l +P.§,+PS+PS EFprreco'ep
F

, (12)

- P P constructed from the the theoretical unpolarizege’'p)
HhA+PS+PIS+PS)]. (9  cross section, independently of whether it is calculated

with o, the unpolarized cross sectiof the electron analyz- within a relativistic or nonrelativistic formalism. We will say
ing power, andP, (P}) the induced(transferregl polariza- that the factorization property is satisfied p{( p,) when

tions. the theoretical unpolarized cross section factors out exactly
oep and then, the theoretical reduced cross section does not
depend on it.
Factorization and effective momentum approximation As we will demonstrate later in this paper, factorization is

not a property exclusive of the nonrelativistic PWIA ap-
proach. It is well known that, due to the negative energy
components of the bound proton wave function, factorization
do PWIA is not satisfied even in RPWIRL8]. However, if we neglect
(m) = ErPrfrecoenR(Pm):  (10)  the con_tribution from 'ghe negat_ive energy components, the
unpolarized cross section factorizes to a similar expression as
where o, is the bare electron-proton cross section usuallyin Eq. (10).
taken aso.y (Or o.e) Of de Fores{23], andNyg( py) is the Starting from a fully relativistic calculation of the nuclear
nonrelativistic momentum distributiothat represents the current, in what follows we explore the most general condi-
probability of finding a proton in the target nucleus with tions under which factorization is recovered. First, it is im-
missing momentunp,,,, compatible with the kinematics of portant to note that in order to extract the elementary cross
the reaction. It is well known that the factorized result in Eqg.section ‘o’ from the general relativistic theorfRDWIA),
(10) comes from an oversimplified description of the reac-the upper and lower components of the relativistic wave
tion mechanism. FSI, as well as Coulomb distortion of thefunctions that enter in Eq1) must be forced to satisfy the
electron wave functions, destroys in general factorization. Irffree” relationship with momenta determined by asymptotic
fact, most current descriptions of exclusiége’p) reactions  kinematics at the nucleon vertex, that is

In nonrelativistic PWIA, the(e,e’p) unpolarized cross
section factorizes in the form
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O - Pas In EMA, the bound nucleon wave function in momentum
Yaowrd P) = Pup(P) (13)  space is given by
East M
With Eqs= P2+ M2 and p,s the asymptotic momentum cor- 9, (P)
responding to each nucleon. In what follows we discuss this ye B () = (=) o -py dLo(p)  (17)

condition (13) in the nonrelativistic language. ElTMg"b(p)
The nonrelativistic formalism is based on bispingfg)

solutions of Schrodinger-like equations. Generally, the nonwith E,=+p;+M?2 andp,=pg—g. Likewise the outgoing rela-

relativistic formalism can be analyzed using the following tivistic distorted wave function in Eq5) becomes

semirelativistic four-spinor

g,.(p)
x(p) g M) = (=) ope Lo |PHD). (18)
Wp=— op | (14) £+ mOP
VN E+Mx(p)

Introducing these expressions into the equation of the one
to be introduced in Eq1) in order to calculate a relativisti- body nucleon current matrix elemeftq. (1)], we get
clike nucleon current amplitude. In this way the relativistic 1
kinematics is fully taken into account and no expansions inJg,,. = > [u( pe,)3“u( p;, ) 1> emESF“lU« Y¥ (Pp)
sh

p/M are needed. The one body nucleon current matrix ele- cum
ment takes then the following form: 1 1
R X 2 fbmebéh“bﬂb fmeESUM Uﬁbmrﬁfh( Pr, Q)
IHw,q) = f dpxF'(p+ ) Xi(P.aXf(P), (19 M

~ = 2 ‘]gare( pFSv plh)AgI‘?( prQ) ’ (19)
with J4:(p,q) now an effective(2X 2) current operator that sh
occurs between bispinor wave functiogd (xj*) for the  where we have written both nucleon wave functions in terms
outgoing(bound nucleon respectively. of free positive energy Dirac spinors and we have introduced

The calculation of the nuclear amplitude using four-the bare nucleon current matrix element
spinors like the one written in Eq14), implies removal of o .
the enhancement of the lower components that is present in Iare(PES pi) = u(pg,s)I“u(py,h), (20
the four-spinors of Eqg2) and(4). This is a well known fact . K my :
present in nonrelativistic calculations, but this alone is notWlth the termUKb meb(pF’q) given by
enough to get factorization. It is also required the use of

exactly the same nuclear current operator as in a free U™ :87T=M(_i)€bfdpgk (P)g.(p+q)
electron-proton scattering. In E€L5) then, the nontruncated ® 7 V2E((E + M) °

effective current operator must be evaluated at the e, oM (S 6

asymptotic momentum values, leading to XYebb(p)Yf “(p+ape®s, (21)

and the amplitude

Hw,q) = J dpxEr" (P + ) Ji(Pe — A, X(P). (16) L .
Alb(pe,0) = X <€m5&|ju>Y2’*(bF) > <€bm€b5h|jbﬂb>

One can show that this condition is implicit in one of the Kpum mg, Mg
necessary assumptions introduced in R&f.to recover fac- 1
torization in the nonrelativistic case. XA €my=slju JUS ™ (pe,q) (22)
.. . . . . 62 Jlu‘ Kp My prq .
In a relativistic calculation, the assumptions written in Eq. b

(13) set up the so-called effective momentum approximation g yegyt in Eq(19) defines the nucleon current in EMA,
with no scalar and vector term&MA-NOSY),” originally 54 s our starting point for the analysis of the conditions that
introduced by Kelly[22], to which we will refer in what o0 1eaq to factorized observables. Notice th4g, , in-
follows as EMA. The EMA approximation in the relativistic |\ o< "4 sum over initial and final spin projectiofss h) of

framework, or the nonrelativistic calculation based on Edihe bare nucleon current, times an amplitude that depends on

1y e same : athe bound and ejected nucleon wave functions. Factorization
to recover factorization, in either formalism. These condi-;, 3z 1o \rs if A“(pg,q) does not depend on the spin
tions are necessary but not sufficient and in what follows, W‘?/ari;gll?ass andh mFF

concentrate on the EMA case to study additional assump- Before entering into a detailed discussion of the observ-

tions needed to obtain factorization. ables, it is important to stress again that factorization may
only be achieved assuming EMA and/or asymptotic projec-
The factorization property could be also analyzed within thetion, i.e., neglecting dynamical enhancement of the lower
framework of the asymptotic projection approacsee Refs. components in the nucleon wave functions. Thisuipriori
[9,11,14 for details. assumed within some nonrelativistic calculations.
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I1l. ANALYSIS OF OBSERVABLES WITHIN EMA

In this section we investigate the conditions that lead t
factorization of polarized and unpolarized observables. Re- ,»»
sponse functions, transverse-longitudinal asymmetry, elec-
tron analyzing power, as well as induced and transferred po-

PHYSICAL REVIEWTO, 044608(2004)

different dependence on the spin variables: and/orhh’.
OEpricitIy, the bare nucleon tensor can be written in the form

— v Mmv Mmv LV
- S,u 555’ 5hhr + Ahh/ 5551 + ASS’ 5hh’ + SSS',hh"

(27)

ss’,hh’

larizations are examined. The analysis is made directly at thgyere 5 (A) refers to symmetriqantisymmetrig tensors.

level of the hadronic tensor which, within the EMA ap

proach, can be written in the following way:

> (A IEma

v —
EMA™ o
2p* 17,

= E E [‘]gare(pl:sl pl h)]*‘]gare(pFS’ 1 plh,)
ss hh'

1
2jp,+1

X

2 [AL (e, )] AL, (Pr. ).

Mp

(23)

" Notice that the firs{symmetrig term in Eq.(27) does not
depend on the initial bound neither on the final outgoing
nucleon spin variables; the antisymmetric sec@hatd) term
depends solely on the initigfinal) spin projections; finally,
the fourth (symmetrig term presents dependence on both
initial and final nucleon spin projections simultaneously. This
bare-nucleon tensor would lead to thg, cross section in
Eq. (10).

The general result for the bare nucleon tensor given in Eq.
(28) constitutes the starting point for the analysis of factor-
ization for polarized as well as unpolarized observables. In

Note that in Eq(23) s,s’ are the spin variables correspond- what follows we explore the specific conditions, linked to the
ing to the outgoing nucleon, whilk,h” correspond to the spin dependence in the problem, that lead to factorized re-

bound nucleon.

sults. We investigate separately the role played by the depen-

In order to simplify the analysis that follows, the generaldence on the initial and/or final nucleon spin variables. As
expression of the hadronic tensor can be written in a morgve show in next subsections, the factorization property at the

compact form as

Wg;\}/IA: E E \/\/g;,hhrngvhhr(pF,CI),
ss hh'

(24)

level of spin-averaged squared matrix elements is intimately
connected with the spin dependence: a bound nucleon in an
s-wave or, in general, no spin-orbit coupling effects on the
radial nucleon wave functions, may lead for some specific

where we have introduced a genera' bare-nucleon tens&bservables to eXaCtIy factorized results. As it is clear from

YIg
Wss’,hh”
I T 1]
Wss’,hh’ - (‘]bare) Jbare

= [U(pg, 9 3“u(p;, )T [Ulpe,s)3"u(py,h)1,

the analogy between E(L6) and Eq.(1) with the input from
Eq. (13), the analysis of spin dependence here and in what
follows is also valid for the nonrelativistic case.

A. No spin-orbit in the initial state

ofr

The general expression &

(26) is greatly simpli-

and a general spin dependent momentum distribution fundied for no spin-orbit in the initial state or, more generally in

@)
tion X:;hh,,
K Prs0)= 51 (A 0T A e
=5 b1+ 1%‘; Engm,<€m%SF|jM>

1 . N TP
><<€’m’ESFIJ’u’>Y2“(pF)Y“7 (Pe)
1 1.
x> 2 €bm€b5h|1bﬂb €m€55|lﬂ
Mg Merm! !
) €m€bm(

! 1 AN ! ,1 AR !/
X €bmeb§h libmo )\ € m5S i

X UL (P U b (pr.0).
b

Kp Mg,

(26)

Making use of general symmetry propertisge Appen-

dix A), the bare-nucleon tensor in E(R5) can be decom-

LS coupling. For instance in the case of nucleon knockout
from s-shells the orbital angular momentufg=0 and the
spin dependent momentum distribution is simply given by

X3 (PR @) = N (PR, @) Sy, (29)
with
. 1 1
ng(pp,q)—zijrlE > moselin
K’umKr#rmr

1 oMt
><<e'm'§sF|J’M’>Y2"(pF)Y21 (Pr)

1.
X > <€m(§S|JM>
memy

X<€ ’%S’Ij'u’>Uflz“%p,q)uiom*(ppq)-
(29)

In the case of no spin-orbit coupling with,# 0 waves, a

posed into terms which are symmetric and antisymmetrisimilar reduction to Eq(28) follows after summation of the
under interchange gf and ». Each of these terms shows a spin dependent momentum distributi®non j,=€,+1/2.
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Making use of Eqs(27) and(28) the hadronic tensor in To complete the discussion, we note that the electron ana-

EMA becomes lyzing power and transferred polarization asymmetries in-
volve responses coming from the antisymmetric part of the
W’EKAA:E NZ«[E W’;;,hh] tensor(30), which do not factorize, divided by unpolarized
ss h responses obtained from the symmetric tensor term. There-

fore the behavior oA and P, will differ from the bare one.
The amount of discrepancy between the factorized and un-

= > NF[S# 8¢ + ALY
SS
factorized calculations of different observables is discussed

= S NE+ ) N ALY (30 in Sec. V.
s ss
From this result it clearly emerges that those responses com- B. No spin-orbit in the final state

ing from the symmetric tensa§*” factorize, while the ones | ot 5 consider now the case of no spin-orbit coupling
coming fro_m the antisymmetric part do not. LEt_US qesqr'beeffects on the radial wave function of the outgoing proton. In
more precisely what factorization really means in this situaynis case neithes nor g, in Egs.(4) and(18) depend orj
tion. o . After some algebrg&see Appendix B for detaijsthis condi-

First, note that the momentum distribution function i, jeads tos=s' =s- in the bare-nucleon tensor, and there-
3¢ N that multiplies the symmetric tensor depends on th&qre the momentum distribution depends only on tte

outgoing nu<_:|e0n Spirg. In the case when recon nucleon spin variables of the initial nucleon. The hadronic tensor is
polarization is not measured, an extra sunsinhas to be then given by

carried out and hence the momentum distribution, v&ich is
independent o$g, gives rise to the unpolarized responBes v “ N
R", R™-andR"" in Eq. (8). On the other hand, if the spin of Weira hEh,WSFSF’hh'Nhh (Pr. ). 33
the outgoing proton is measured via a polarimeter placed .
along a fixed directior(n, | or s), the momentum distribu- where the momentum distribution functidg (pg,q) is de-
tion, now dependent on the final spin, contributes to the infined in Eq.(B6) of Appendix B. Using the decomposition in
duced polarized responsd®;, RT, T} andR! . Hence, in  Eq.(27), we can write the following expression:
the case of no spin-orbit coupling in the initial bound state, . .
both types of responsganpolarized and induced polarized — Wgya=[S*"+ AQ‘F”SF]E N+ > [S;”Sphh, + Af INRy
factorize, but each kind of response factorizes with a differ- h hh'
ent momentum distribution function. Then, the induced po- (34)
larization asymmetrie®?, (k=1I,n,s), which are basically ) ) _
given by the ratio between the induced polarized responses The analysis of how polarized or unpolarized responses
R¢ and the unpolarized oneR®, will differ from the bare behave with respect to fact.onzatlon emerges straightfor-
result. On the contrary, the momentum distribution functiongvardly from Eq.(34). Let us discuss each case separately:
cancel when taking a ratio between two responses of the (i) Unpolarized responseR-, R', R™" andR™". They do
same kind, i.e., a ratio between two induced polarized reDot depend on spin and come from the symmetric part of the
sponses along a specific direction, or a ratio between twetensor, i.e., they are given ">, N, and hence factorize
unpolarized responses. Therefore such ratios would coincidexactly. This result coincides with that one obtained in the
with the bare results. This property can be expressed in theonrelativistic study of Ref[3].
general form (i) Transferred polarization response®l, and R'L,.
R' R R® They come from the antisymmetric part of the tensor and
T REC B (31)  depend on the final proton spin polarization, iAg‘;FEhNhh,
R in exactly the same form as displayed in Eg7). Conse-
where «,B=L,T,TL or TT and k=I,n,s fixes the recoil quently, these responses also factorize.
nucleon polarization direction. The functio®s*# represent (iii) Fifth respons&™ . It comes from the antisymmetric
the bare-nucleon responses, also usually named singleart of the tensor and does not depend on the recoil nucleon
nucleon respons¢21]. The result in Eq(31) explains also  gpin, je., it is given byS,, Nyy.A“, and clearly does not
why the At asymmetry, which is obtained from the differ- factorize.
ence of electron unpolarized cross sections measurefg at
=0" and ¢-=180 divided by the sum, is identical to the bare Th
asymmetry in this case. In terms of response functions wi

(iv) Induced polarized response®;;, R, RT}  andR[ ..

ey come from the symmetric tensor part and depend ex-
%Iicitly on the spin polarization of the outgoing proton, i.e.,

may write they are constructed fronEhh,Nhh,SQ‘FVSthh,, and conse-
A = v R™ quently do not factorize.
T o R+ uR + v RTT Once the behavior of the response functions is estab-
L lished, the asymmetries and polarization ratios can be easily
— unR :A_ll)_ire (32) analyzed. The case @¥;, which only depends on the unpo-

o RE o RT o RTT larized responses, reducesAlf™ [see Eq.(32)]. A similar
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comment applies also to the transferred nucleon polarizations 1

P/, P, andP/. Notice that the momentum distribution func- N=MA(py) = 2+ 12 Y= () o= ()

tion involved in the unpolarized and transferred polarized

responses is the same and hence, it cancels when forming the 1 2E

polarization ratios. The electron analyzing powerand in- = ZTE| + MgKb(pO, (38
duced asymmetrieB,, given in terms of responses which do

not factorize, should differ from the bare calculations. this expression reduces to the nonrelativistic momentum dis-

As a particular case of no spin-orbit in the final nucleontribution in the proper limit because of its lack of contribu-
wave function, it is worth to explore the plane wave limit for tion from negative energies.
the outgoing nucleon. In this cageee Eq(B8) in Appendix In general, in a nonrelativistic formalism, the momentum

B], the momentum distributioﬂm’ is diagonal and indepen- distribution is defined from bispinorgﬁb(r), solutions of

dent on h, thus the fifth respons&k™ vanishes since Schradinger-like equation:
2L AR=0. Similarly, the induced polarization responses do

+
ot contribute because St ny=0. Nnr(P1) = 20+ 12 X5 (PDXG (P (39
C. No spin-orbit in both initial and final states with xj*(py) the Fourier transform ofj>(r),
To finish with this analysis, let us consider the case of no o — 1 .
spin-orbit coupling in the initial nor in the final state. In this Xip (p) = (2m)32 dre™ Xip (r). (40)
situation, factorization already comes out at the level of the
nuclear current matrix element. Note thgat=0 in Eq. (B4) Now, in nonrelativistic PWIA, the wave function for the
of Appendix B, leads td=u, and the matrix element simply €jected proton in the-space is
reads ipe-
'S:FPW(r) - elp,: rX?jZi (41)
JEMA:U(PF.SF)j”U(phMb) Ugl(pF,q), (35) and looking at the the Fourier transform in Eg0), it is

natural to define a nonrelativistic distorted wave amplitude
whereU?; is defined in Eq(B5). This result resembles the as follows:
situation occurring in the free case. From the cur(88j the

hadronic tensor can be written in the form Yow(Pr, Q) = (277_1)3/2 f er'S:FT(r)eiq-rXﬁ;b(r)_ (42)
1 - e
WE % (pe, ) P> W Two observatlons_ are worth mentioning:
EMA™ | 1P| E SFSF Hpk (1) xow(pe,q) is an amplitude, not a bispinor.
(2) If the final proton wave function is a plane wave, the
= —|U_l pF*Q)|2(S”V+A§VsF)- (36)  following relationship is satisfied:
E [Xew(Pe A% = X2 () XL2(Py). (43)

Then all responsgolarized and unpolarizedactorize with
the same momentum distribution. Note also that the wholg, \ye can define a nonrelativistic distorted momentum dis-
dependence on the nucleon polarizatspis contained inthe i1 tion
antisymmetric tensor. This implies that the polarized induced
responses must be zero. Furthermore, sﬁjgeél”” =0 the

Pow(PE, Q) = > > Ixow(Pe )%, (44)

unpolarized fifth responsB™  also vanishes. 21b+ 1 s
that takes into account FSI, and has the property that we
IV. REDUCED CROSS SECTIONS AND MOMENTUM recover the nonrelativistic momentum distribution in Eq.
DISTRIBUTIONS (39) in the plane wave limit.

Let us generalize the above expression to the relativistic
case. We request that we recover from it the relativistic EMA
momentum distribution of Eq38) when there is not FSI and
1 the initial wave function is evaluated within EMA. For that
2 w (py W (p) = ZT[g'ib(pl) + f’i‘b(pl)]_ purpose we define a relativistic distorted wave amplitude,

Starting from a shell model approach, the relativigtiec-
tor) momentum distribution is defined as follows:

N(p) = ZJb

(37) Yowl Pr,Q) = f dr g (e yrio(r)

K
(2,”_)3/2
Using the EMA approximation means projecting out the K N

negative energies components of the bound proton wave =(ZT)3’2fdp¢§F (p+a)ie(p) (45
function, obtaining then the relativistic EMA momentum dis-

tribution: with K=/(2E,Eg)/ (E,Ex+p, -pe+M?), so that the relativistic
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distorted momentum distribution is given by this amplitude 100

16 '
squared after sum and average over initial and final spins, 10 | O 1Pz
1 1F
powl Pe, Q) = = > 2 [ow(pr 9. (46) ]
2Jpt1 P 0.1

It is easy to check thaipw(pg,q) coincides with the relativ- 0ot

istic EMA momentum distribution Eq:38), when one takes %, 0001
EMA approximation for the initial wave function and the > 10— : :
plane wave limit for the final one, e 10 O 132
EMA, EM '~§
pew (Pr.a) = NT"A(py). (47) g T RDWIA ——
It is also important to remark thak,w( pe,q) coincides with 2 T & > em A_:O'\Cg s
the corresponding reduced cross section of @) when- S 00t S Pow -
. . . [
ever there is factorization. § 0.001 f .
£ 1000 . . .
V. NUMERICAL RESULTS 100 £
10 F
To show quantitatively the effects introduced by the dif- 1t
ferent approaches to the general descriptionépé’p) reac- 01k
tions, we compare our fully RDWIA calculations with the 001 | e et
EMA results, exploring also the effects introduced by the 0.001 B g = 2445 MeV
spin variables iq thg initial'anq final nucleon states. The re- 500 250 0 250 500
sults presented in this section illustrate and reinforce the con- P, (MeV/c)
clusions reached in the preceding sections concerning the
factorization properties. FIG. 1. Reduced cross section for proton knockout fropg,.1
Guided by the factorization properties one may focus onupper pangland Ipz/, (middle panelin *°0 and from ,,,in *°Ca
two different aspects in the analysis of observables. (lower panel. RDWIA calculations(solid line) are compared to

(1) On the one hand, one may factor out the elementarfEMA (short-dashed lineand EMA-noLS(dotted ling results. The
electron-proton electromagnetic cross section, in order tgorresponding relativistic distorted wave momentum distribution is
isolate and investigate nuclear properties like momentunalso plotted(thin solid ling. Negative(positive) py values corre-
distributions. To the extent that factorization holds the re-spond tog-=0° (180°), respectively.

duced cross section will follow the momentum distribution. )
In the first part of this section we compare factorized and™0re reduced cross section fag <0 than forp,>0, lead-

unfactorized results for the reduced cross section to the mdd t0 @& much larger asymmetry in this region as we would
mentum distribution. We show how the different ingredientsS€€ in Fig. 2. We also note that differences between complete

that break factorization may obscure the extraction of moRPWIA reduced cross section anghy (hence deviations
mentum distributions. First of all, we note that since FSI

- . Y %0 1py %0 1pgy, “Ca 24
modify the response of the ejected nucleon, it is more ad- 45

RDWIA ——

equate to compare reduced cross sections with distorted mc ROWIADWIA = 1000 Movo
mentum distributiongas defined in the previous sectjon EMA-IA & = 2445 MeV b

This is done in Fig. 1 that we discuss below. <\ factorized -

(2) On the other hand, one may take ratios between ob-
servables to cancel out the dependence on the momentur 2
distribution, in order to isolate and investigate intrinsic =
nucleon properties in the nuclear medium, like nucleon form
factors.

In Fig. 1 we present reduced cross sections at quasielasti
kinematics for three cases: complete RDWIA approacitid 10 , , , , ,
line), EMA (dashed ling and EMA with no spin dependence 0 200 400 0 200 400 0 200 400
in the final state, referred to as EMA-nol(8otted ling. We Pm MoV Pm (MeVic Pm (MeVic)
also show by a thin solid line the distorted momentum dis- 5 ». A asymmetry for proton knockout frompl, (left

tributions [p.DW, Eq. (46)] wh_|ch are equivalent to what one pane) and 1, (middle panelin 0 and from 2y, in “°Ca (right
would obtain from a factorized approach to RDWIA. Note pane). RDWIA calculations(solid line) are compared to RDWIA-
that up to|py| of around 250 MeVé, the factorized ap- noLS (dashed ling EMA (short-dashed line EMA-noLS (dotted
proachpp,y follows reasonably well the full calculation. Ac- |ine) and factorizeddash-dotted lingresults. The EMA-noLS cal-
tually in this p,, range, EMA and EMA-noLS are also rea- culation coincides in all panels with the factorize2"®) result. In
sonable approximations to the complete calculationthe right hand panel EMA, as well as EMA-noLS, coincides with
However, at|p,|>250 MeV/c the full approach produces the factorized A% result.
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150 1pyjp 180 1pgy “Ga 25, TABLE I. Properties of factorization of different observables
0.2 - : FOWIA —— - using the EMA approximation and turning off the spin-orbit cou-
RDWIA-OLS —— 0p = 225° pling in the initial wave function(first column, in the final wave

EMAOLS - function (second columnor in both simultaneouslythird column.

/\ /\ NoLSinitial  NoLSfinal  No LS both
< .
b e e e
A 0
L g =1000 MeVrc e
= 440 MeV ¥ Pn 0
g = 2445 MeV P, 0
0.2 L 1 1 L L
0 200 400 O 200 400 O 200 400 Ps 0
Py (MeVic) P (MeV/c) Py (MeVi/c) P p,bare p,pare
PI, PI, bare PI’ bare
FIG. 3. Electron analyzing poweX at (g, ) constant kinemat- pbare prbare
S S

ics and azimuthal anglé-=225°. The labeling of the curves is as _S
in Fig. 2. For this observable factorization is only achieved in the
EMA-noLS curve on the right hand panel. See text for details.  Therefore, a®,=P,=P/=0 wheng-=0°, they are not plot-
. ) ted. In each graph, we show five curves corresponding to the
from factorization are more noticeable @b, >250 MeV/c following approaches: RDWIAsolid), RDWIA but without
in the p,,<0 region. Nonrelativistic calculations would gen- spin-orbit coupling in the final nucleon state, denoted as
erally yield results on the line of the EMA ones presentedgp\wiA-nolS (dasheg, EMA (short-dashed EMA-noLS
here. Note also that, the reduced cross section in EMA Pradyotted, and finally the factorized resuftlash-dottey
tically coincides withppy for the sy, orbital in *Ca, and As shown in Sec. Ill, factorization only holds within the
even in the'®O p,, andpy; orbitals the reduced cross sec- gy approach and assuming specific conditions on the spin
tions in EMA andpp, are rather close in the whofg, range.  genendence in the problem. In Table | we summarize the
_ InFigs. 2-4 we show thgL asymmetry, electron analyz- pagic assumptions within EMA that lead to factorization for
ing power, induced polarization and transferred polarizayg gifferent observables. To simplify the discussion of the
tions, respectively, for E’Gmto” knockout from tmg,24gleft results that follows we consider each observable separately.
panels, ps, (middle) in O ands,, (right) shells in™Ca. The asymmetnyAr,, presented in Fig. 2, shows that fac-
Results are computed for CC2 current operator and Coulompy iz ation emerges within EMA in the case of tg, shell
gauge. The bound nucleon wave function corresponds_ to th@vhere EMA, EMA-noLS and factorized results coincide
nonlinear set of SharmeNLSH) [24-27 and the outgoing oy gpin-orbit dependent bound statps;, and psj,), factor-
nucleon wave function has been derived using the energy ,iion emerges only when there is no spin-orbit coupling in
dependent-independent relativistic optical potential fitted ihe final statdEMA-noLS coincides with factorized resujts
to '°0 (EDAIO) parametrization[28]. As in the previous Also note that the oscillatory behavior shown By, in
figure, the selected kinematics corresponds to the experimegp\wwiA and in RDWIA-noLS is almost entirely lost within
tal conditions of the experiments E89003 and E89033 perg\a even when there is no factorization. This reflects the
formed at Jlab[29-31. This is (q, ) constant kinematics ¢cial role played by the dynamical enhancement of the
with g=1 GeV/lc, »=440 MeV and the electron beam en- |ower components of the nucleon wave functions for this
ergy fixed tog;=2.445 GeV. Coplanar kinematics, With-  opservable. The spin dependence in the final nucleon state
=0°, are chosen for computing the polarization asymmetriesnodifies significantly the values @, even at low missing
momentum, but preserves its general oscillatory structure,
compare for instance RDWIA vs RDWIA-noLS or EMA vs
EMA-noLS.

The electron analyzing poweXk is presented in Fig. 3.
This observable is zero in coplanar kinematics so the azi-
muthal angle is fixed t@:=225° in Fig. 3, but the remarks
that follow also apply to othegpe # 0°, 180° values. As we
demonstrated in Sec. I, the fifth resporRHr' involved in
A only factorizes if there is no spin-orbit contribution in the

%0 1pyp, 10 1y, “Ca 254y

1L rowiioats — 11 q= 1000 movie initial and final nucleon wave functions. Moreover, in such
EMA . . ’
EMA-nolLS @ = 440 MeV situation R™ =0 and henceA=0, as occurs fois;;, shell
factorized ----- £i=244.5 MeV

within EMA-noLS in Fig. 3. From a careful inspection of
Fig. 3 we also observe that the main differences between the
various approaches come from the spin-orbit term in the final
FIG. 4. Induced polarizatiorP, at coplanar kinematics with state. Note that the discrepancy between RDWIA and EMA
¢e=0°. Kinematics and labeling as in Fig. 2. Only the EMA-noLS (or likewise between RDWIA-noLS and EMA-nol).$ sig-
calculation for asy;, shell factorizes. nificantly smaller than the discrepancy between RDWIA and

0 200 400 O 200 400 O 200 400
Pm (MeVic) Pm (MeV/c) Pm (MeV/ic)
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%01y %0 1pg “cazsy, from a RDWIA analysis, we have reformulated the EMA
y T . - approach and studied the conditions which are needed to get
05} o 4 F N . . .
7% o factorization. In this context, we have explored the role of

0.0}

the spin-orbit coupling in the initial and/or final nucleon
states and its influence on the breakdown of factorization.

RN i RDWIA \ '
4 o e ROWIA-noLS W From our general study we conclude that exact factoriza-
EMA-noLS tion only emerges within the EMA approach, i.e., neglecting

-0.5 | & =2445MeV ;
factorized -----

the dynamical enhancement of the lower components in the
nucleon wave functions by using E@.3). Furthermore, ad-
ditional restrictions on the spin dependence in the problem
are necessary to get factorization in the case of polarized
observables.

Within the EMA approach, the factorization properties of
various (€,e'p) responses and asymmetries are as follows
(see also Table)l The unpolarizedR® responses factorize to
a single, polarization independent, momentum distribution
when the initial or the final nucleon wave functions are in-
dependent on spin-orbit couplinge., depend o but not
onj). As a consequence, tqu,_ asymmetry is in these cases
jgiven by the bare- nucleoATare asymmetry.

The fifth respons&®™ (and consequentlp), depending
on electron beam polarization, never factorizes, but becomes
zero when both initial and final nucleon wave functions are

with A# 0, oscillations survive. The behavior &fcontrasts indgpgndent on Spin—.orpit coupling, as well as in the nonrel-
with the one observed for the asymmessy,. This is due to  2UViStic plane wave limi(PWIA).
the fact that factorization is broken down already at the EMA  The transferred polarization respons’s‘@s factorize when
level even in thes;, shell. the final nucleon wave function is independentjoiConse-
The induced polarizatio®, is presented in Fig. 4. Here quently the transferred polarizations are in this case given by
the discussion of results follows similar trends to the previ-the bare-nucleon ones, independent on whether the initial
ous one orA. Factorization requires no spin dependence instate may or may not depend on spin-orbit coupling.
any of the nucleon wave functions, being the induced polar- The induced polarized respondgdo not factorize even
ized responses equal to zero in such a ¢aséce thatP, is ~ when the final nucleon wave function is independentjpn
zero in the plane wave limit In any other situation factor- unless the initial wave function is also independentjpm
ization breaks down an@, shows strong oscillations in all Which caseR¢ become zero. If the final wave function de-
cases. Again, it is important to point out that the behavior ofoends on spin-orbit coupling but the initial wave function
the RDWIA calculation is qualitatively followed by the does not, the induced polarized responses factorize with a
EMA approach, differing much more from the RDWIA- polarization-dependent momentum distribution different
noLS or EMA-noLS. This reveals the important effects in- from the unpolarized one. Therefore, as stated in(B2), a
troduced by the spin-orbit coupling in the optical potentialnew factorization property emerges when there is no spin-
for polarized observables, contrary to what happens for th@rbit coupling in the initial state.
unpolarizedAy,. From our numerical calculations a clear difference in the
The comment above applies also to the transferred polaRehavior of polarized and unpolarized observables comes
izations P/ and P (Fig. 5 for which RDWIA and EMA  out. In the case of the unpolarizég, asymmetry, its general
approaches give rise to rather similar oscillatiumfactor- ~ structure is not substantially modified by the final spin-orbit
ized) results. On the contrary, RDWIA-noLS, which is also dependence, being much more affected by the lower compo-
unfactorized, deviates significantly from RDWIA due to the nents of the nucleon states. The strong oscillationgvin
crucial role of the spin-orbit dependence in the final stateWithin RDWIA practically vanish in EMA. On the contrary,
Finally, EMA-noLS coincides with the bare asymmetriesthe polarized asymmetried, P, and P/, present a very
showing a flat behavior without oscillations. This is in accordstrong sensitivity to the final spin dependence, while the gen-
with the findings in Sec. Il B, where we demonstrated thateral structure of the RDWIA resullts is preserved by the EMA
the unpolarizecR® and transferred polarizeB®, responses ~Calculations.

factorize with the same momentum distribution functjeae A$ a general conclusmn,_ we can say that observables that
Table I and Eq(34)]. require less extra assumptiotepart from EMA to factor-

ize, are more sensitive to any ingredient of the calculation
that breaks factorization. Such observables are good candi-
dates to test the elements of any model/calculation, as it is
the case of thé\; asymmetry.

A systematic study of the property of factorization in  In spite of the fact that factorization is not reached when
quasielastic(é,e’p) reactions has been presented. Startingealistic calculations are made, we show that the reduced

0 200 400 O 200 400 O 200 400

P (MeVic) pm (MeVic) P (MeVic)

FIG. 5. Longitudinal transferred polarizatié (top panelgand
sideways transferred polarizatid®, (bottom panels at coplanar
kinematics(¢=0°). In this case, factorization is obtained within
the EMA approach when there is no spin-orbit coupling in the final

state(EMA-noLS, dotted ling.

RDWIA-noLS (or EMA vs EMA-noLS. In all of the cases

VI. SUMMARY AND CONCLUSIONS
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cross sections extracted from fully unfactorized calculationghe diagonal case, i.epi=S*, the bare nucleon tensor reads
follow the factorized distorted momentum distribution quite 1 -

well for moderate values of the missing momentum, Wherq/\/g;f oy = —2Tr[JM(¢)F + M)Jv(psl + M)]sg Sy

the bulk of the cross section lies. Then, reduced cross sec-

tions and integrated quantities directly related to them, like

nuclear transparencies or inclusive cross sections, are reason-

ably predicted by the factorized scheme, as long as one re- 16M2
mains at quasielastic kinematics. We may conclude that the
unpolarized cross section follows closely the factorized cal-

culation that takes FSI into account. In other words, in spite

of the breakdown of factorization of the cross section intro-

duced by FSI and by negative energy components of the

Tr[JM(v5 + M)Iysbpy (P + M)]8sg

16]';/|2Tr[‘] 75¢SS'(PS + M)\]U(PS + M)]ﬁhh/

relativistic model, one may still extract a meaningful effec- — TH* Pr + M)J? (P +M
tive momentum distribution within this formalism. 16M2 [ Voo s ak
While the bulk of the cross section factorizes to a good (A3)

approximation, ratios of cross sections likg,_ or polariza-

tions are very sensitive to the ingredients of the calculationlhis result is expressed in a compact form in E2j).

that break factorization. This is why in particular tig, ]

observable is very sensitive to the negative energy compo- APPENDIES‘CNLEOS,\TIVI:‘/A\O/FEQE::ILL%I%iEJECTED

nents of the wave functions, and provides a plausible signa-

ture of the relativistic dynamics. Let us consider the case of no spin-orbit coupling in the
Contrary toAr, polarizations are much more sensitive to final nucleon wave function. This means that the radial func-

the spin-orbit properties of the upper components of theionsg, andds, depend only o but not onj. Then the upper

wave functions than to the dynamical enhancement of theomponent of the wave function is given by

lower components. Yet, RDWIA transferred polarizations

closely match the factorized results in certpjpranges. This S =4 e—lﬁer
suggests that measuring transferred polarizations in those v “p( P) 2 = 2 (pp)g| P
ranges may safely explore modifications of the nucleon form
factor ratios in the nuclear medium. x> <€m SF|JM>‘D“(P)
jn
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se EMA/ o —
yF —(p) \/E T C(PPRU(pESe). (BI)

Introducing this result into the expression of the current ma-
'Grix element, we get

APPENDIX A: HADRONIC BARE-NUCLEON TENSOR

In this appendix we present in more detail the hadroni
bare-nucleon tensa®5), which can be written using traces

in the form 1. =
- Fua= 2 <€bm€b§h|lb#«b>[ﬁ( Pr, SF) J4u( phh)]Uthb( Pr,d)
~ _ ~ _ my h
WES o = T3 #0( e, 9UCpe,s)3"u(pr,h Ul pr, )], N ©
(AL) .
being,
where we use the notatialt = 1°J#1°. " oM »
Making use of the following relatiofil 7,18 UK;b( P, Q) = (i)'

V(E; + M)(ER + M)

— Os¢ + Vsbss P+M
upSlps)= =T EEIE (A2) x f 4pG (p+ 0, PG, (MIYI(D). (BS)
with  ¢5, a pseudovector defined as ¢ We observe that the whole dependence on the spin polar-

=u(p,s')y*y°u(p,s) which reduces to the four spi in ization s¢ is contained in the Dirac spinar(pg,sg). From
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Eq. (B4) we can immediately construct the hadronic tensorthis situation the functiorG(p,pg) [Eq. (B5)] simply re-
WEL » Which can be written in the form of E@33) with the  duces to
momentum distribution function given by

— 1 1 Er+M
Nin (PR, Q) = 2jb+12 > <€bm€b5h|jbﬂb> GPM(p,pe) = ';EF 2m¥*(p-pr),  (BY)

Hp Mg Mg,

P x oy and the momentum distribution results
X<€bm€b§h |Jb/‘Lb>UTlfb UT:b (B6)

2
As a particular example, let us consider the case of the ’Nhi\{v( Pe,Q) = 5hh,M_(2W)3NEMA( D). (B8)

plane wave limit without dynamical relativistic effects. In 2E E;
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