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Relativistic Coulomb excitation of the giant dipole resonance in nuclei: How to calculate transition
probabilities without invoking the Liénard-Wiechert relativistic scalar and vector potentials
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The conclusions extracted from a recent study of the excitation of giant dipole resonances in nuclei at relativistic
bombarding energies open the way for a further simplification of the problem. It consists in the elimination of
the relativistic scalar and vector electromagnetic potentials and the familiar numerical difficulties associated with
their presence in the calculation scheme. The inherent advantage of a reformulation of the problem of relativistic
Coulomb excitation of giant dipole resonances along these lines is discussed.
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I. INTRODUCTION

In a recent article [1] it was shown how it is possible
to calculate accurate probabilities of excitation of the giant
dipole resonance at the one- and two-phonon levels (GDR and
DGDR, respectively) in very simple terms. A key conclusion
of this reference was that the results obtained following the
standard formalism of Winther and Alder [2,3] are—for those
partial waves where they can be considered reliable—much
less dependent on the specific structural details provided by a
microscopic description of the collective mode than previously
assumed.

In fact, for bombarding energies up to at least 5–10 GeV
per nucleon and for situations that are compatible with a
truncation of the model space at the level of the DGDR it is
not compelling to have an elaborate picture of the distribution
of charges and currents within the nucleus. The relevant
information is contained in their lowest moments, namely the
position of the center of charge and its velocity. A variety of
structural models may share these features and this realization
makes the investment of a significant effort in this direction
rather impractical. For the concrete task of understanding the
main features exhibited by the data obtained within present
experimental conditions the simplest, familiar model of an
oscillation of the proton density against the neutron density
does suffice. Let us here recall that the basic parameters that
are necessary to implement such picture are inferred from the
known excitation energy of the mode and the mass and charge
of the nucleus in question.

With this backround in mind we propose in this contribution
to go a step further and eliminate from the calculation scheme
of Ref. [1] the presence of the scalar Liénard-Wiechert
potential for a pointlike projectile [4]

�(x, y, z, t) = γZ
P
e√

(x − b)2 + y2 + γ 2(z − v
P
t)2

, (1)

and, even more desiderably, its vector counterpart

�A = �v
P

c
�. (2)

To this end we suggest to cast the problem in the reference
system of the projectile, where the electric and magnetic fields

in the whole space and at any instant of time are simply

�E(�r) = Z
P
e

r2

�r
r
, �B(�r) = 0, (3)

that is, the same expressions that are normally used at
nonrelativistic energies.

The price to be paid for such simplicity and the absence
of vector potentials in the problem is that we must, of course,
transform the restoring forces associated with the giant dipole
resonance from a system in which the “spring” is at rest
to another in which it moves with a speed v ≈ c. This, as
we shall see, is not that difficult to do. We would like to
stress, however, that the reason for posing this problem is not
entirely “academic.” Notice that if one manages to incorporate
successfully such transformation laws in the formalism it
should be possible to compute the excitation probability of
the mode via any other field whose expression in a system at
rest is known.

Let us expand on the previous statement. The electromag-
netic potentials are specifically easy to transform between
relativistically moving systems of reference because the
combination ( �A,�) forms a four-vector whose change is
governed by the four-by-four Lorentz transformation matrix.
In fact, the Liénard-Wiechert expressions quoted above are
no more than the Lorentz-transformed version of the electric
and magnetic potentials generated by a point charge at rest.
It is well known, however, that the transformation law for
practically any other interaction is not that straightforward
to obtain. It is because of this recurrent difficulty that it
appears promising to incorporate in the formalism, once and
for all, the transformation properties of the intrinsic forces that
account for the response of the giant dipole resonance. Upon
a successful completion of this program one would be able to
test the effects of a variety of excitation couplings (for instance,
nuclear) without having to worry about their properties under
Lorentz transformations.

In this contribution we set out to explore the practical
implementation of these ideas. In Sec. II we work out the
formal aspects of solving the problem of excitation of the
GDR as seen from the frame of reference of the projectile.
The problem of the target recoil, already treated in detail
in Ref. [1], is briefly reviewed in Sec. III. A comparison
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FIG. 1. (Color online) Reference frames used in the text. The
projectile frame is S and the target frame (the nucleus whose giant
dipole mode is excited) is S ′. The latter moves toward the left in the
z direction with a velocity v comparable to the speed of light. The
origin of the two systems coincide for t = 0 and the target-projectile
relative coordinate �R in the system S has components (Rx, Ry, Rz) =
(−b, 0, −vt), where b is the impact parameter.

of the results obtained with the procedures presented in the
previous Sec. with results extracted following the conventional
formalism of Alder and Winther is the subject of Sec. IV. A
summary of the article and some closing remarks are left for
Sec. V.

II. FORMALISM

Because in relativistic heavy-ion collisions the excitation
energies that enter into play (≈10–20 MeV) are much smaller
than the bombarding energies, we can consider the relative
motion between projectile and target to be uniform and assume
that the classical trajectories are well approximated by straight
lines. Without loss of generality we take that direction to
be along the z axis. The problem we intend to approach is
illustrated in Fig. 1. Here we see two systems of reference,
S and S ′, which move with respect to each other at a very
large speed �v. The system S is chosen so that the projectile
is always at rest in the position (b, 0, 0), where b plays the
role of the classical impact parameter. It is in this frame of
reference that we would like to write down the equations
of motion that describe the externally driven oscillation of
protons against neutrons in the target. We exploit in this
section the same assumption made at the beginning of Ref. [1],
namely that the center of mass of the proton and neutron
distributions—i.e., the original “target”—remains at rest at the
coordinates (x ′, y ′, z′) ≡ (0, 0, 0), the origin of system S ′. We
verify in Sec. III that, although a priori unjustified, the use of
this no-recoil approximation does not affect the conclusions of
the analysis in any significant way. The time scales are chosen
so that the x axes in S and S ′ overlap at t = t ′ = 0.

Under the conditions specified above, the coordinates in
S and S ′ are connected by the following:

x ′ = x,

y ′ = y,
(4)

z′ = γ (z + vt),

t ′ = γ
(
t + vz

c2

)
,

where v is positive and the factor γ associated with the Lorentz
transformation between the two reference systems is

γ = 1/
√

1 − (v/c)2. (5)

The set of equations (4) can be supplemented with the one
relating the spacelike velocities in the two systems, namely

ẋ ′ = ẋ

γ (1 + żv/c2)
,

ẏ ′ = ẏ

γ (1 + żv/c2)
, (6)

ż′ = ż + v

(1 + żv/c2)
.

It is useful to recall a couple of formal relationships
involving the γ factors for the motion of particles in S
and S ′ (important at relativistic speeds in either system).
We use them, below, to arrive at our final results. Calling
u2 = (ẋ2 + ẏ2 + ż2) and u′2 = (ẋ ′2 + ẏ ′2 + ż′2) we introduce

γ̃ = 1/
√

1 − (u/c)2,
(7)

γ̃ ′ = 1/
√

1 − (u′/c)2.

With these definitions it is possible to show that the three
quantities γ, γ̃ , and γ̃ ′ satisfy

γ γ̃ = γ̃ ′/(1 + żv/c2),

γ γ̃ ′ = γ̃ /(1 − ż′v/c2), (8)

γ 2 = 1

(1 + żv/c2)(1 − ż′v/c2)
.

We can ignore from now on equations involving one of
the spatial orientations because the motion is constrained to
take place on the [x, z] (or [x ′, z′]) plane and y = y ′ = 0
throughout. Keeping this in mind, we write the spacelike
components of the force acting at the end of the elongated
spring in the system S ′. They are as follows:

F ′ HO

x ′ = −Cx ′,

F ′ HO

y ′ = 0, (9)

F ′ HO

z′ = −Cz′.

Here we use the same notation as in Ref. [1]. The value of
the restoring force parameter C = D(h̄ω)2 is derived from the
excitation energy h̄ω of the mode and the reduced mass D =
(Z

T
N

T
/A

T
)m, where m is a nucleon mass. Starting from these

expressions we construct the components of Minkowski’s four-
vector force in S ′ [8],

K ′
1 = −γ̃ ′Cx ′,

K ′
2 = 0,

(10)
K ′

3 = −γ̃ ′Cz′,

K ′
4 = − i

c
γ̃ ′C(x ′ẋ ′ + z′ż′),
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which, Lorentz-transformed into S, yield

K1 = −γ̃ ′Cx,

K2 = 0,

K3 = −Cγ γ̃ ′
{
γ (z + vt) − v

c2

[
x

ẋ

γ (1 + żv/c2)
(11)

+ γ (z + vt)
ż + v

(1 + żv/c2)

]}
,

K4 = −iCγ γ̃ ′
{

v

c
γ (z + vt) +

[
x

ẋ

γ (1 + żv/c2)

+ γ (z + vt)
ż + v

(1 + żv/c2)

]}
.

From the previous expressions it is easy to identify the
intrinsic restoring forces that should be used to construct
the relativistic equations of motion for the collective variable
(x, y, z) in the system of coordinates S and follow its evolution
with respect to the variable t,

F
HO

x = −Cγ (1 + żv/c2)x,

F
HO

y = 0, (12)

F
HO

z = −Cγ (z + vt) + Cγ
v

c2
xẋ.

Notice the word relativistic in the previous paragraph. It
is quite clear that typical velocities in the system S will be
close to the speed of light and therefore the classical (meaning
in this context “not quantal”) equations we need to solve are
Einstein’s set

d

dt

[
Dẋ√

1 − (ẋ2 + ż2)/c2

]
= Fx = F

HO

x + Z
P
Z

T
e2δ

R2

(
b

R

)
,

d

dt

[
Dż√

1 − (ẋ2 + ż2)/c2

]
= Fz = F

HO

z + Z
P
Z

T
e2δ

R2

(
vt

R

)
.

(13)

To define the components of the total force Fx, Fz we
have added to the restoring force [Eq. (12)] the (now trivial)
contribution from the Coulomb interaction. Within the dipole
approximation one can use the value of the field at any point
in the neighborhood of the origin of S ′ and we specifically
take R = √

b2 + v2t2. Notice the factor δ = N
T
/(N

T
+ Z

T
)

in the expression of the electric force. It appears (cf. Ref. [1])
because we set up here equations of motion for the collective
variable �r = (x, y, z) and ignore the overall acceleration of
the center of mass of the target. It should not enter in the
formulation (and in fact it does not) if one integrates separately
for the proton and neutron components, as it is later done in
Sec. III.

The expressions (13) are not yet cast in a convenient form to
be solved by standard integration methods. For this purpose we
need to isolate the second time derivatives of x, z. Introducing
the auxiliary quantities

A(ż) = 1 − ż2

c2
,

B(ẋ, ż) = ẋż

c2
, (14)

C(ẋ) = 1 − ẋ2

c2
,

we arrive to a very compact set of time-dependent, first-order
coupled differential equations in the variables x, z, ẋ, ż to be
numerically propagated from their initial values, namely

dx

dt
= ẋ,

dz

dt
= ż,

(15)
dẋ

dt
= 1

D γ̃ 3

Fx C − Fz B
AC − B2

,

dż

dt
= 1

D γ̃ 3

Fz A − Fx B
AC − B2

.

The final excitation energy of the dipole mode is calculated
after integration of [Eq. (15)] and—dividing by h̄ω—converted
into an average number of phonons N∞. In turn, this number is
converted into excitation probabilities for the ground state and
the one- and two-phonon levels, just as it was done in Ref. [1]
for situations where N∞ � 1.

A computer code called REVRCE has been written to imple-
ment this prescription. To illustrate the outmost simplicity of
this approach we show in Fig. 2 an overview of the complete
listing of this Fortran program. The inset identifies the only
piece of the program where the Coulomb interaction appears
[cf. Eq. (13)].

We compare in Sec. IV the results obtained using the
REVRCE code with state-of-the-art calculations following the
formulation of Alder and Winther.

III. TARGET RECOIL

In Ref. [1] it was discussed in detail the impact of the
common practice of calculating the excitation of the dipole
mode in a coordinate system attached to the target. Being this
a nucleus with a net positive charge it is actually accelerated
during the collision process and the presence of inertial forces
should not be ignored without a proper investigation. It is
not necessary here to adapt the entire line of arguments to
the present situation. Rather, we limit ourselves to quote the
equations of motion that should be solved in system S to follow
the separate motion of the charged and neutral components of
the nuclear density.

In terms of the two independent collective variables
�r p = (xp, yp, zp) (p for protons) and �r n = (xn, yn, zn)
(n for neutrons) the set of equations, now eight in total, is
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FIG. 2. An overview of the fortran program REVRCE that cal-
culates the excitation probabilities for the GDR and the DGDR
according to the formalism presented in Sec. II. The program is
complete and self-contained with the exception of a single call to a
standard integration routine D02BAF [9]. The boxes are included to
draw attention to the only part of the program where the electro-
magnetic interaction enters in the equations of motion, assuming the
simple form generated by a charge at rest in a neighborhood of the
target (dipole approximation).

as follows:

dxp

dt
= ẋp,

dzp

dt
= żp,

(16)
dẋp

dt
= 1

Z
T
m γ̃ 3

p

F
p
x Cp − F

p
z Bp

ApCp − Bp 2
,

dżp

dt
= 1

Z
T
m γ̃ 3

p

F
p
z Ap − F

p
x Bp

ApCp − Bp 2
.

and

dxn

dt
= ẋn,

dzn

dt
= żn,

(17)
dẋn

dt
= 1

N
T
m γ̃ 3

n

F n
x Cn − Fn

z B
AnCn − Bn 2

,

dżn

dt
= 1

N
T
m γ̃ 3

n

F n
z An − Fn

x Bn

AnCn − Bn 2
.

In these expressions

Ap(żp) = 1 − żp 2

c2
,

Bp(ẋp, żp) = ẋpżp

c2
,

Cp(ẋp) = 1 − ẋp 2

c2
,

(18)

An(żn) = 1 − żn 2

c2
,

Bn(ẋn, żn) = ẋnżn

c2
,

Cn(ẋn) = 1 − ẋn 2

c2
.

The forces acting on the charged and neutral components are,
respectively

Fp
x = −Cγ (1 + żpv/c2)(xp − xn) + Z

P
Z

T
e2

R2

(
b

R

)
,

F p
z = −Cγ (zp − zn) + Cγ

v

c2
(xp − xn)ẋp + Z

P
Z

T
e2

R2

(
vt

R

)
,

(19)

and

Fn
x = −Cγ (1 + żnv/c2) (xn − xp),

(20)
Fn

z = −Cγ (zn − zp) + Cγ
v

c2
(xn − xp)ẋn.

Notice that the factor δ does not—as anticipated—scale the
Coulomb interaction term acting now only on the charged
density.

A computer program called REVRCE2c (also very simple)
has been written to implement this prescription. We compare
in the following section the results obtained using this code
with those of calculations performed acording to the standard
approach.

IV. COMPARISON WITH THE STANDARD FORMALISM

In this brief section we compare results for the probability of
excitation of the giant dipole resonance of 40Ca in the reaction
208Pb+40Ca at the relativistic bombarding energies of 500,
1000, and 4000 MeV per nucleon. On the one hand, we have
the predictions of the codes REVRCE and REVRCE2c according
to the prescriptions discussed in Sec. II and III, respectively.
On the other hand, the results of Bayman and Zardi obtained
with high computational precision following the approach of
Alder and Winther [5,6].

Results for a large number of impact parameters are
collected in Fig. 3. The lower limit in the range of partial
waves represented in the drawing is determined—as it was
already mentioned in Ref. [1]—excluding from the set those
values that are incompatible with a “safe” truncation of
the model Hamiltonian at the two-phonon level. This is,
equivalently, the regime of validity of perturbation theory
where P0 ≈ 1 throughout. On the large impact-paramater side
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FIG. 3. Probabilities for the excitation of the GDR (P1) and the
double GDR (P2) in 40Ca in the reaction 208Pb+40Ca at bombarding
energies of 500, 1000, and 4000 MeV per nucleon. The energy of the
GDR was assumed to be 11.6 MeV. In the first row the probability
P0 for remaining in the elastic channel is also shown. The three sets
of results give the predictions obtained from the simplest classical
model (REVRCE), with the inclusion of target recoil (REVRCE2c) and
in the conventional approach (Bayman-Zardi).

the practical limit is set by the reliability of the traditional cal-
culations, whose accuracy is, naturally, much more difficult to
mantain.

We can see that the different methods yield, in all circum-
stances, very similar results. The agreement obtained with the
codes REVRCE and REVRCE2c should not come as a surprise,
though, because the validity of the no-recoil approximation
had been established in Ref. [1] and is not affected by a
reformulation of the problem through Lorentz transformations.

V. SUMMARY AND CONCLUSIONS

In this manuscript we set out to verify that an alternative
approach to the problem of relativistic Coulomb excitation of
giant dipole resonances is possible. Our aim was the evaluation
of transition probabilities at relativistic bombarding energies
avoiding the introduction in the calculation scheme of the
Liénard-Wiechert potentials.

Such project could have not been contemplated without
having available the results previously obtained in Ref. [1].
There we learned that—within the range of impact parameters
where the active reaction channels involve only the ground
state and the first two excited states—the intrinsic motion
can be satisfactorily modelled by a collective oscillation of
the charged and neutral components of the total nuclear
density against each other. The problem is then technically
formulated in terms of a macroscopic variable �r that represents
the displacement of centers of each distribution density with
respect to their equilibrium position. This is, of course, one
of the oldest visualizations of the intrinsic motion associated
with a giant dipole resonance in nuclei. What was not obvious,
perhaps, is that such simple scheme could yield accurate
excitation probabilities and handle so well the current trend
to push bombading energies up into the relativistic regime.

Describing the intrinsic mode in terms of an harmonic
vibration it has been relatively straightforward to recast the
solution of the problem through a new set of equations of
motion where the electric interaction enters in the simplest
possible form indicated in Eqs. (13) and (19). The practical
advantage of the formulation can be appreciated in the
remarkable simplicity of the calculation tool shown in Fig. 2
and the excellent agreements displayed in Fig. 3. Notice, also,
that in the right-hand sides of Eqs. (13) and (19) one could
easily add additional terms to consider the effect of other types
of couplings.

In the case of the GDR the analogy with a classical
three-dimensional spring can be exploited to its fullest extent.
Let us mention, however, that there are well-established
techniques that employ a similar semiclassical language for
handling the excitation of collective harmonic vibrations of
other multipolarities in reactions with heavy ions [7] that can
be a source of inspiration for future developments.
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