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Analytical expressions for the dispersive contributions to the nucleon-nucleus optical potential
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Analytical solutions of dispersion relations in the nucleon-nucleus optical model have been found for both
volume and surface potentials. For the energy dependence a standard Brown-Rho function has been assumed
for both the volume and surface imaginary contributions multiplied in this later case by a decreasing expo-
nential function. The solutions are valid for any even value of the powers appearing in these functional forms.
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Mahaux and co-workers@1–5# have shown how the stud
of the nuclear mean field may benefit from the use of disp
sion relations. These are mathematical expressions that
certain contributions to the real and imaginary compone
of the optical model potential~OMP!. The constraint im-
posed by these dispersion relations helps in reducing am
guities in the construction of phenomenological potenti
from fits to the experimental data. We refer specifically to
so-called dispersive contributionDV, which adds dynamica
content to the otherwise static~and real! Hartree-Fock poten-
tial term VHF .

Under favorable conditions of analyticity in the comple
E plane, the real partDV can be constructed from the know
edge of the imaginary partW of the mean field on the rea
axis through the dispersion relation

DV~r ,E!5
P
pE2`

` W~r ,E8!

E82E
dE8, ~1!

where we have explicitly indicated the radial and energy
pendence of these quantities. Assuming thatDV(r ,E5E

F
)

50, whereE
F

is the Fermi energy, Eq.~1! can also be writ-
ten in the subtracted form

DV~r ,E!5
P
pE2`

`

W~r ,E8!S 1

E82E
2

1

E82EF
D dE8.

~2!

This transformation is difficult to implement in practice if th
geometry of the dispersive potential depends on the ene
To simplify the problem, however, the shapes of the differ
components of the OMP are usually assumed to be en
independent and they are expressed in terms of a Wo
Saxon functionf WS or its derivative. In such case the radi
functions factorize out of the integrals and the energy dep
dence is completely accounted for by two overall multiplic
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tive strengthsDV(E) andW(E). Both of these factors con
tain, we note, volume and surface contributions.

It is customary to represent the variation with energy
the volume and surface components of the imaginary po
tial by functional forms that are suitable for an optical mod
analysis that exploits dispersion relations. An energy dep
dence for the imaginary volume term has been suggeste
Brown and Rho in studies of nuclear matter@6#,

WV~E!5AV

~E2EF!n

~E2EF!n1~BV!n
, ~3!

whereAV and BV are constants. Brown and Rho propos
n52, while Mahaux and Sartor@2# suggest, for the same
expression,n54. An energy dependence for the imaginar
surface term has also been investigated by Delarocheet al
@7#, who use the form

WS~E!5AS

~E2EF!m

~E2EF!m1~BS!m
exp~2CSuE2EFu!, ~4!

wherem52,4 andAS ,BS , CS are constants.
According to Eqs.~3! and ~4! the imaginary part of the

OMP turns out to be zero atE5EF and nonzero elsewhere
A more realistic parametrization ofWV(E) and WS(E)
forces these quantities to be zero in some interval around
Fermi energy. A reasonable range for such a region is m
sured by the average energy of the single-particle statesEp
@4# and a new definition for the imaginary volume part of t
OMP can thus be written as

WV~E!5H 0, EF,E,EP

AV

~E2EP!n

~E2EP!n1~BV!n
, E>EP .

~5!

Likewise, for the surface term we have

WS~E!5H 0, EF,E,EP

ASe2CSuE2EPu ~E2EP!m

~E2EP!m1~BS!m
, E>EP .

~6!
llo
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The symmetry condition

W~2EF2E!5W~E! ~7!

defines the imaginary part of the OMP for energies below
Fermi energy.

In a recent work we have presented a numerical solu
of the dispersion integral relations between the real and
imaginary parts of the nuclear optical potential@8#. In this
contribution we obtain analytic solutions of Eq.~2! for the
particular functional form of the imaginary potentialW(E)
given above by Eqs.~5!–~7!. Following Ref.@9#, we adopt a
notation where the offset energy isE05EP2EF , the excita-
tion energyEx5E2EF and introduce the convenient qua
tities E15Ex1E0 , E25Ex2E0.

For the surface potentialWS(E) given by Eqs.~4! and~7!,
we can write the dispersive integral~2! for evenm as

DVS~E!5
Ex

p
PE

2`

` WS~E8!

~E82E!~E82EF!
dE8

5AS

Ex

p
PE

0

` Umexp~2CSU !

~Um1BS
m!~U2E2!~U1E0!

dU

1AS

Ex

p
PE

0

` Umexp~2CSU !

~Um1BS
m!~U1E1!~U1E0!

dU.

~8!

The integrand can then be replaced by its expression in te
of poles and residues@10#, and therefore we can also write

AS

Ex

p

Um

~Um1BS
m!~U7E7!~U1E0!

5AS

1

p H (
j 51

m
Res~pj !

U2pj
1

Res~7E6!

U7E7
1

Res~E0!

U1E0
J .

~9!

In the previous expressionpj are them zeros ofUm1BS
m and

Res(pj ) represent their corresponding residues,

pj5BS expS i
2 j 21

m
p D , ~10!

Res~pj !5
Ex

m

pj

~pj7E7!~pj1E0!
. ~11!

Here 6E7 and 2E0 are the poles ofU7E7 and U1E0,
whereas Res(6E7) and Res(2E0) are their residues,

Res~6E7!56
~E7!m

~E7!m1BS
m

, ~12!

Res~2E0!57
~E0!m

~E0!m1BS
m

. ~13!
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As was pointed out by Raynal@10#, the contribution of
each complex polepj to the surface dispersive integral~8! is

E
0

`Res~pj !e
2CSU

U2pj
dU5Res~pj !e

2CSpjE
2CSpj

` exp~2z!

z
dz

[Res~pj !e
2CSpjE1~2CSpj !, ~14!

whereE1(z) is theexponential integral function E1 @11#. The
contribution of the real poles corresponding to the seco
term in the right-hand side of Eq.~9! is

E
0

`Res~7E6!e2CSU

U7E7
dU

5Res~7E6!e7CSE7PE
7CSE7

` exp~2x!

x
dx

[2Res~7E6!e7CSE7Ei~6CSE7!, ~15!

whereEi(x) is theexponential integral function Ei @11#. Fi-
nally, the contributions from the third term on the right-ha
side of Eq.~9! in integral ~8! cancel.

For the volume potentialWV(E) given by Eqs.~5! and
~7!, the dispersive integral for evenn can be written as

DVV~E!5
Ex

p
PE

2`

` WV~E8!

~E82E!~E82EF!
dE8

5AV

Ex

p
PE

0

` Um

~Um1BV
m!~U2E2!~U1E0!

dU

1AV

Ex

p
PE

0

` Um

~Um1BV
m!~U1E1!~U1E0!

dU.

~16!

According to Eq.~9!, the contribution of each polep ~either
real or imaginary! in integral ~16! diverges as

E
0

` dU

U2p
5 lim

U→`

ln~U2p!2 ln~2p!. ~17!

Obviously, their sum is a finite quantity, which is calculat
by taking its limit.

We quote, below, exact expressions for the surface and
volume dispersive integrals for any even value ofm andn in
the potentials. These forms have no limitations regard
their range of validity. The dispersive contribution of th
surface imaginary potentialWS(E), according to Eqs.~6!
and ~7!, is

DVS~E!5
AS

p H (
j 51

m

Zje
2pjCSE1~2pjCS!

2Res~2E1!eCSE1Ei~2CSE1!

2Res~E2!e2CSE2Ei~CSE2!J , ~18!
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whereZj comes from the sum of the residues Res(pj ) in the
two integrals~8! and is given by

Zj5
Ex

m

pj~2pj1E12E2!

~pj1E0!~pj1E1!~pj2E2!
. ~19!

For the dispersion relation corresponding to the volu
imaginary potentialWV(E), calculated with Eqs.~5! and~7!,
the real contribution yields

DVV~E!52
AV

p H (
j 51

n

Zj ln~2pj !1Res~2E1!lnE1

1Res~E2!lnuE2uJ , ~20!

wherepj is calculated according to Eq.~10! usingBV andn
instead ofBS andm andZj is calculated by Eq.~19! usingn
instead ofm.

A computer code to calculate the analytical expressi
06760
e

s

~18! and ~20! has been recently published by the autho
@12#.

In conclusion, we have found analytical solutions of t
dispersion relations for the volume and surface terms of
OMP when they are parametrized in the form given by e
pressions~5!–~7!. The formulas are compact and easy
implement in current codes for the optimum parame
search defining the nucleon-nucleus OMP. Usually th
searches for elastic scattering data are performed by ad
ing simultaneously the real and imaginary parts of the OM
In particular, the fact of having available a functional form
DV(E) in terms of the parameters that define the imagin
potentials, makes it possible to implement a convenient
ternative to the ordinary search procedures by adjusting o
volume and surface real parts of the OMP.
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