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ABSTRACT

The Gould Belt (GB) is a system of gas and young, bright stars distributed along a plane that is inclined with
respect to the main plane of theMilkyWay. Observational evidence suggests that the GB is our closest star formation
complex, but its true nature and origin remain rather controversial. In this work we analyze the fractal structure of the
stellar component of theGB. In order to do this, we tailor and apply an algorithm that estimates the fractal dimension in a
precise and accurate way, avoiding both boundary and smallYdata set problems.We find that early OB stars (of spectral
types earlier than B4) in the GB have a fractal dimension very similar to that of the gas clouds in our Galaxy. On the
contrary, stars in the GB of later spectral types show a larger fractal dimension, similar to that found for OB stars of both
age groups in the local Galactic disk (LGD). This result seems to indicate that while the younger OB stars in the GB
preserve the memory of the spatial structure of the cloud where they were born, older stars are distributed following a
similar morphology as that found for the LGD stars. The possible causes for these differences are discussed.

Subject headinggs: methods: numerical — solar neighborhood — stars: early-type

1. INTRODUCTION

The brightest stars near the Sun are mainly distributed along
two great circles over the sky: the Milky Way plane and another
strip of bright stars known as the Gould Belt (GB), which is in-
clined with respect to the Galactic plane (Gould 1879; Stothers &
Frogel 1974). Although the existence of the GB was formally
reported as soon as in 1847 by Sir John F. W. Herschel (1847)
from naked-eye observations of the southern sky, its nature and
origin are still poorly understood. The GB is a complex system
of gas and stars composed not only by single massive stars but
also by OB associations and an interstellar medium (dust, neutral
hydrogen, andmolecular clouds) that shows some kinetic features
which have been considered by several authors as connected to the
stellar population (Lindblad et al. 1973). The GB was first in-
terpreted as an apparently expanding ring (or torus) of youngmas-
sive stars, but later, with the detection of young low-mass stars, its
structure seemed to be better represented by an inhomogeneous
disk (Guillout et al. 1998). Recent studies characterize it as a stel-
lar disk having elliptical shape, with a semimajor axis of �600 pc
and semiminor axis of �400 pc, which is inclined around 18� to
the Galactic plane (Elias et al. 2006b). The stellar component
exhibits a range of ages lesser than 100 million years (Torra et al.
2000). Given its size (�1 kpc), age range, and relationship with
the gas in different phases, it has been suggested that the GB
would be our closest star formation complex (Elmegreen et al.
2000), in the sense given to this concept by Efremov (1995), i.e.,
the largest region of a galaxy showing a coherent star formation
process, where the term ‘‘coherent’’ should be interpreted as orig-
inated from the same, monoparental, giant gas cloud.

However, there exist both theoretical and observational results
showing inconsistencies with this scenario: the age pattern of
OB associations is irregular, with the youngest ones located well
outside the expanding gas ring (Perrot & Grenier 2003); the ki-

nematics of the gas does not seem to be in agreement with the
velocity field of the stellar component; and the modelization of
gas dynamics is not compatible with the estimated radius of the
stellar component, as well as with its range of ages (Perrot &
Grenier 2003;Moreno et al. 1999). Moreover, the analysis of the
stellar spatial velocity diagram in the U -V plane shows a clear
bimodal distribution (Elias et al. 2006a). All these results make it
difficult to imagine a single monoparental origin for the GB and
suggest a GB formed by a spurious concatenation of different
stellar subsystems whose formation processes were not neces-
sarily connected among them. This point is particularly im-
portant for a full understanding of the mechanisms involved in
the formation of the Milky Way. Can we design some kind of
experiment able to answer this question? Here we propose to
analyze the fractal structure of the stellar component of the GB
in order to go deeper into its nature and origin. The base of this
approach lies in the fact that the interstellar medium seems to
show a fractal structure when observed at the scale of clouds
(Bergin & Tafalla 2007 and references therein) and a multi-
scaling behavior (Chappell & Scalo 2001) when galactic scales
are considered. Thus, stars forming from the same cloud should
exhibit fractal patterns too if their birth places uniformly follow
the densest regions (Elmegreen&Elmegreen 2001). In this work
we first develop a ‘‘reliable’’ algorithm to compute fractal dimen-
sions of a sample of discrete points (x 2), and then we use it to
study the distribution of stars in the GB (x 3). The main con-
clusions are summarized in x 4.

2. ESTIMATING THE FRACTAL DIMENSION

Strictly speaking, a fractal is defined as an object whose
Hausdorff dimension is larger than its topological dimension
(Mandelbrot 1983). To estimate the Hausdorff dimension, au-
thors use different working definitions that fit their methods and
needs, and thus, there is not a unique definition of fractal dimen-
sion.When dealing with a distribution of points in space, it is very
useful to use the so-called correlation dimension (Grassberger &
Procaccia 1983). This is a widely used method because of its
robustness and because it is relatively easy to implement on real
(experimental or observational) data.

1 Instituto deAstrofı́sica deAndalucı́a, CSIC,Apartado 3004, E-18080,Granada,
Spain; nestor@iaa.es, emilio@iaa.es, delgado@iaa.es.

2 Instituto de Astronomı́a, Universidad Nacional Autónoma de México, C. P.
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Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain; jcc-famn@us.es.

213

The Astrophysical Journal, 667:213Y218, 2007 September 20

# 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.



Let us consider a distribution of N points in space with po-
sitions x. The number of other points within a sphere of radius r
centered on the ith point is given by the expression

ni(r) ¼
XN

j¼1; j6¼i

H r � jxi � xjj
� �

; ð1Þ

where H(x) is the Heaviside step function. This number can be
evaluated by choosing M different points as centers and then
averaging to obtain the probability of finding a point within a
sphere of radius r centered on another point. This probability is
expressed in the form

C(r) ¼ 1

M (N � 1)

XM
i¼1

ni(r): ð2Þ

For a fractal set, this quantity, called the correlation integral, scales
at small r as

C(r) � rDc ; ð3Þ

where Dc is the correlation dimension, which in practice can be
identified with the slope of the best fit in a log C(r)-log r plot. In
other words, the correlation dimension tells us how it changes (as
r increases) the probability that two points chosen randomly are
separated by a distance smaller than r. For a homogeneous dis-
tribution of points in space we expectDc ¼ 3, whereas in a plane
Dc ¼ 2. If points are distributed obeying a fractal geometry, then
Dc < 3 (in three-dimensional space) or Dc < 2 (in a plane).

Typically, when evaluating Dc for real data (and not for in-
finite, perfect fractals) the power-law scaling relation (eq. [3]) is
valid only within a limited range of r values (Smith 1988). At
very small scales (of the order of the mean distance to the nearest
neighbor), the distribution looks like a set of isolated points, and
Dc tends to zero. On the other hand, the finite size of the set also
results in decreasedDc values at large r values (of the order of the
set size), because near the edge each point is surrounded by other
points only on one side and thenC(r) tends to be underestimated.
It has been proved that these and many other effects can lead
to bad estimations of Dc, mainly when too few data are avail-
able (Smith 1988; Kitoh et al. 2000; Ciccotti & Mulargia 2002).

In order to assess how the limited number of data points would
alter our estimation of Dc for the GB, we have done some nu-
merical experiments. Figure 1 shows log (C )-log (r) plots for
random distributions of points within disklike structures. Bound-
ary effects were avoided by keeping the condition that sampling
spheres always are inside the volume occupied by the disk. For the
three-dimensional case (Fig. 1a), the expected linear behavior is
observed at high-r values for a relatively high number of pointsN,
but at low-r values we see departures from the linear behavior
arising from the lack of statistics of finite samples (Smith 1988).
This tendency becomesmore evident asN decreases, because the
mean distance between the nearest neighbors increases. For the
case N ¼ 200 points, it is very difficult to infer a linear behavior
at all. This is an important problem because many times the
number of available data points is rather small. In these cases, the
estimated fractal dimension depends strongly on the spatial
range used to calculate the slope in the log (C )- log (r) plot
(Pisarenko& Pisarenko 1995). However, when the calculation is
done on the projected distributions (Fig. 1b), the range of r val-
ues used to estimate the integral correlation can be extended to
higher values, while still keeping the spheres (that actually be-
come circles in the two-dimensional projection) inside the sam-
ple. In this case, the linear behavior is clearly appreciated—at
relatively high r values—even when only N ¼ 200 points are
used. The averageDc values for 10 random realizations, calculated
by doing linear fits in the range log r � 1:5, are shown in Table 1.
The results are always close to the theoretical values (3 or 2), but the
standard deviations become quite high in the three-dimensional

Fig. 1.—Correlation integral C(r) for points distributed randomly within a disk of radius Rd ¼ 2500 pc and half-height Zmax ¼ 100 pc. The number of points is
N ¼ 2000 (squares), 1000 (circles), 500 (triangles), and 200 (rhombuses). All the lines have been arbitrarily shifted downward (except the top one) for clarity. (a) The
calculation is done in the three-dimensional space using spheres with radius ranging from the minimal distance between two points to a maximum of rmax ¼ Zmax. As a
reference, the dashed lines show the expected slopes of 3 for these cases. For the case N ¼ 200 points, it is difficult to infer the expected linear behavior. (b) Results when
the calculation is done over the distributions projected on the Z ¼ 0 plane and using circles with different radii r up to a maximum of rmax ¼ Rd /2. In these cases, the
expected value of the slopes (dashed lines) is 2. The linear behaviors are clearly observed even for a relatively low number of points.

TABLE 1

The Fractal Dimension for Random Point Distributions

N Dc(3D) �(3D) Dc(2D) �(2D)

2000.......................... 3.04 0.10 2.00 0.01

1000.......................... 3.05 0.27 2.00 0.03

500............................ 3.13 0.59 1.98 0.04

200............................ 3.12 1.32 2.08 0.14

Notes.—The results are the average of 10 random realizations. Here we show
( left to right columns) the number of points in each test distribution (N ) and the
correlation dimension (Dc) with its standard deviation (�) calculated both in the
three-dimensional space (3D) and in the projected two-dimensional space (2D).
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case for a relatively low number of points. In any case, the
‘‘problematic’’ region of relatively low r values has to be excluded
from the linear fit. In order to do this, we impose the condition that
the standard deviation of each C(r) value must be smaller than the
corresponding C(r) value. This simple criterion eliminates poorly
estimated data (i.e., bad sampling) occurring mainly at r values
that are too low.

As an example, Figure 2 shows a random distribution of 100
points in a square region of side 1000. In order to take into ac-
count edge effects, we first determine which points of the sample
are vertices of the convex hull, i.e., we determine the minimum-
area convex polygon containing the whole set of data points
(square symbols connected by lines in Fig. 2). For this we use the
algorithm proposed by Eddy (1977). Now we can place circles
of different radii r to evaluateC(r) according to equation (2). The
result is plotted in Figure 3. The calculations were carried out

both taking (open circles) and not taking (asterisks) into account
boundary effects. If circles are allowed to cross boundaries, C(r)
tends to be underestimated, and this effect is higher the higher the
radius r. For this reason, Dc would tend to be smaller than the
expected value if this effect is not considered (for comparison,
the solid line in Fig. 3 shows the expected Dc ¼ 2 result). The
range of r values that fulfill the condition that the standard de-
viation of C(r) is smaller than C(r) is indicated in Figure 3 by
vertical arrows. For r values below this range, the departures
from the linear behavior become more evident.

The algorithm we have developed follows the next steps.
First, the three-dimensional distribution of points is projected on
its mean plane; the boundary is determined by finding the con-
vex hull of the sample; the correlation C(r) is calculated using
equations (1) and (2) but always keeping the circles inside the
sample boundary; and then the correlation dimension is deter-
mined as the slope of the best log C(r)-log r linear fit. Very low r
values [and consequently poorly estimated C(r) values] are ex-
cluded from the fit. Finally,we use bootstrap techniques to estimate
the uncertainty of the calculated value: we repeat the calculation of
Dc on a series of random resamplings of the data, and the standard
deviation of the obtained set of fractal dimensions is taken as the
error in our estimation. When working with relatively thin disks,
the situation is practically the same as taking a two-dimensional
slice of a spherical, three-dimensional distribution of points
within a sphere. In this case, the fractal dimension of the three-
dimensional distribution of pointsDc(3D) and the two-dimensional
dimension Dc(2D) are related through the simple expression
(Falconer 1990)

Dc(2D) ¼ Dc(3D)� 1: ð4Þ

Wehave simulated two-dimensional fractal distributions of points
in order to test the algorithm performance. The fractals were simu-
lated by placing four squares of radius R /L (with L � 2) inside a
square of radiusR (we place one square in each quadrant). The pro-
cedure is repeated successively 10 times to obtain 410 (�106) points
distributed according to a fractal pattern with dimension Dc ¼
log 4/ log L. Finally, we randomly removed points from the fractal
until reaching a given sample sizeN. Figure 4 shows some exam-
ple results for the casesDc ¼ 1:5 (L ’ 2:5) andDc ¼ 2 (L ¼ 2).

Fig. 2.—Example of random distribution of 100 points in a square region of
side 1000. The vertices of the convex hull (see text) are indicated by squares con-
nected by lines. The circles (with radius 200) illustrate how the sampling is done
by keeping them inside the boundary defined by the convex hull.

Fig. 3.—Correlation integralC(r) for the same point set shown in Fig. 2, when
the calculations are performed by taking (open circles) and not taking (asterisks)
into account boundary effects. The solid line indicates the expected slope for a
random distribution of points (Dc ¼ 2), and the vertical arrows indicate the range
for which the standard deviation of C(r) is smaller than C(r).

Fig. 4.—Correlation dimension Dc as a function of the sample size N for
fractal distributions of points. Each result is the average of 10 different realiza-
tions, and the bars are the average of the uncertainties calculated using boot-
strapping (see text). The horizontal lines indicate the fractal dimension used to
generate the distribution of points (1.5 and 2).
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Even for relatively small sample sizes (N � 100), the algorithm
is able to estimate Dc in a reliable way.

3. THE FRACTAL DIMENSION OF THE GOULD BELT

The first problem that arises when studying the GB is how to
select the stars belonging to this system. Elias et al. (2006b)
developed a new method to perform a three-dimensional spatial
classification that was applied to a sample of 553 OB stars from
the Hipparcos catalog with precise distances of less than 1 kpc.
This allowed them to separate and estimate the spatial structure
of the stars belonging to the GB and to the LGD. The distri-
butions of MK spectral types for the sample of stars used (Elias
et al. 2006b) are shown in Figure 5. We see two populations
clearly differentiated, one with spectral types earlier than B4
(which we call ‘‘early’’ stars) and another one with spectral types
B4YB6 (‘‘late’’ stars), that can be associated with two age groups
centered at �20 and �70 Myr, respectively. The spatial distri-
bution of these stars is shown in Figure 6. The projections on
each of the mean planes clearly reveal a clumpy, filamentary

structure for the GB (Fig. 6a), whereas the stars in the LGD seem
to be distributed more homogeneously (Fig. 6b). The gap almost
free of stars seen in Figure 6 corresponds to the line of nodes in
which both the GB and the LGD coexist. Close to this line, the
probability of belonging to the GB has a high uncertainty, be-
cause the Bayesian probability in this region depends only on the
‘‘a priori’’ probability (i.e., the relative frequencies of both sys-
tems) and not on the probability conditioned to the spatial position
(see Elias et al. 2006b). This gap is almost imperceptible for the
GB and notorious for the LGD, simply because in the sample of
stars used, there are more stars in the GB than in the LGD. What
we have done in this work is to quantify the degree of inho-
mogeneity by calculating the fractal dimension4 for the GB and
LGD (both early and late stars). The results are shown in Figure 7.
For all cases, the behavior is almost perfectly linear in this log-log
plot, with correlation coefficients ’0.99. The number of circles
used to evaluateC(r) for each r (i.e.,M in eq. [2]) is usually of the
order of 102. However, strictly speaking, M depends on r in the
sense that larger r allows fewer circles within the borders. For
the largest r values considered,M is of the order of 10. The slopes
of the linear fits give the following fractal dimension values:

GB-early; Dc(3D) ¼ 2:68 � 0:04;

GB-late; Dc(3D) ¼ 2:85 � 0:04;

LGD-early; Dc(3D) ¼ 2:89 � 0:06;

LGD-late; Dc(3D) ¼ 2:84 � 0:06:

8>>><
>>>:

If the empty gap mentioned above was producing some bias in
the determination of Dc for the LGD, then the unbiased values
should be even higher than the obtained ones.
We see that the distribution of stars in the solar neighborhood

exhibits a certain degree of fractality, with 2:7PDf P2:9. Sta-
tistical tests show that there is a difference between early stars in
the GB and the other subsets that is, in the worst of the cases,

Fig. 5.—Distribution of spectral types for the sample of stars taken from Elias
et al. (2006b). The solid-line histogram refers to stars belonging to the GB,
whereas the dashed-line histogram refers to the LGD.

Fig. 6.—Positions of the stars in our sample. Stars are represented as circles (for the GB) or squares (for the LGD). The blue symbols refer to the spectral range OYB3,
and red symbols refer to the range B4YB6. The panels show the projections on the mean planes for each distribution, both for the GB (a) and for the LGD (b).

4 The term ‘‘fractal dimension’’ alone may be ambiguous, because there exist
several different definitions of this quantity.We indifferently use the term ‘‘fractal
dimension’’ or ‘‘correlation dimension’’ to refer to Dc.
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statistically significant. Therefore, interestingly, the fractal dimen-
sion of early stars in the GB (Df � 2:7) is significantly smaller
than that of the rest of the sample. Thus, these early stars have
similar ages and are distributed following fractal patterns anal-
ogous to those observed in the gas of star-forming regions in the
Galaxy (Sánchez et al. 2005, 2007). Therefore, it seems very
likely that this group of starswas born from the same parent cloud.
In contrast, later stars in the GB have a somewhat different, more
homogeneous type of distributionwith a fractal dimension similar
to that obtained for the LGD (Df k 2:85).

What is the origin of this difference? First, we have to point
out that, in principle, different global properties are expected for
the interstellar medium (ISM) at different spatial and/or tempo-
ral scales, because the main physical mechanisms acting at each
scale are not necessarily the same. Amonolithic gas cloud can be
characterized as a turbulent medium, and this turbulence can be
driven by many energy sources (Elmegreen & Scalo 2004).
However, at larger spatial scales, the ISM in a spiral arm is in-
fluenced by other disturbances (gravitational, magnetic, etc.) that
modify the gas distribution. The fractal analysis gives us a simple
but objective measurement of such structure through the degree
of smoothness or clumpyness. This kind of analysis has been
applied extensively to evaluate the structure of interstellar gas
from parsec to kiloparsec scales, as well as the distribution of
stars, star clusters, and star-forming sites (see Cartwright et al.
2006; Khalil et al. 2004; Westpfahl et al. 1999; Elmegreen et al.
2006; Cartwright & Whitworth 2004; de la Fuente Marcos & de
la Fuente Marcos 2006a, 2006b, 2006c; Odekon 2006 for some
recent examples). But often the analysis techniques are so diverse
that it is not quite easy to extract robust conclusions. It seems that
the average fractal dimension of single gas clouds is around
Df � 2:7 (Sánchez et al. 2005, 2007), although it may vary when
the spatial scale is increased and when the distribution of gas
clouds in the galactic disk is analyzed (Chappell & Scalo 2001).
But what about the stars? Young, newborn stars will reflect the
conditions of the ISM from which they were formed. Therefore,
a group of stars born from the same monolithic cloud, i.e., born
at almost the same place and time, should have a fractal dimen-
sion similar to that of the parent cloud. This is exactly what we
find for early-type stars in the GB: we obtain a fractal dimension
very similar to the ISM value. Otherwise, if the star sample is
representative of a population born from various clouds and/or

with different star formation histories, then the fractal dimension
will represent the gas distribution at different spatial or temporal
scales according to a multiscale structure of the ISM (Chappell
& Scalo 2001). At a galactic level, the fractal dimension of the
distribution of stars and/or star-forming regions exhibits a very
wide range of values, but until now no correlation has been
clearly found between fractal patterns at the galactic level and
other galactic properties (Odekon 2006; Feitzinger & Galinski
1987; Parodi & Binggeli 2003). There are, however, some sug-
gestions that the fractal dimension of the distribution of stars
and star-forming sites increases with time after the star for-
mation process (de la Fuente Marcos & de la Fuente Marcos
2006a, 2006b, 2006c; Odekon 2006; Schmeja & Klessen 2006),
probably due to the action of some physical mechanisms which
tend to reorganize/destroy the original structure.

Here we have found quite different values for the fractal di-
mension of early-type stars in the GB and the LGD. This dif-
ference reflects the fact that most of the OB associations in the
solar neighborhood are located in the GB (de Zeeuw et al. 1999;
Elias et al. 2006b). That is, the distribution of OB stars in the
LGD does not seem to show any kind of ‘‘typical’’ stellar group-
ing, whereas young OB stars in the GB exhibit a more hierar-
chized distribution with multiple OB associations. In this sense,
we can say that the GB shows clear signatures of the internal struc-
ture of its parental cloud. This clustering in the young population
of the GB is quantified through the fractal dimension, whose
value is very close to the value characterizing gas clouds in the
Galaxy. Thus, the possible causes for different values for the
fractal dimension of early-type stars in the GB and the LGD can
be studied by analyzing the possible causes for the different
number of associations in both stellar systems. There are three
possible factors (or a combination of them) that can contribute
to this difference. First, the age difference between both groups
could be significant enough to explain this result. It is clear that
the separation according to the spectral type of the stars provides
only a gross age separation. The spectral types allow us to derive
an upper limit for the age, but they do not give the real lifetime of
a star that also depends on the initial chemical composition.
Although the earlier spectral groups of both the GB and the LGD
have similar mean values and variances (see Fig. 5), there exists
the possibility that one group is actually younger than the other
one. This age difference could be enough to allow the LGD group
to disperse showing a less structured distribution, whereas the GB
group would still trace the density peaks of the parental cloud.
Second, the difference in the degree of clustering among both
groups can be produced by different physical conditions of the
parental clouds.Much of stellar dispersal from active star-forming
regions occurs on timescales of 106Y107 yr, and there are several
possible scenarios to account for this dispersal of young stars
from their birthplaces (Mamajek & Feigelson 2001). The time-
scale for dispersal depends on the range of values of the density
peaks inside the cloud which, at the same time, should depend on
the local ISM pressure (Elmegreen 2006). Thus, clouds having dif-
ferent dynamical evolutions in different environmental conditions
would likely give rise to stellar groups with different lifetimes.
Depending on these critical values and on the age range of the
stellar sample, we can get either a complex of associations or a
uniform distribution of stars. Third, different gas distributions in
the parental clouds can be responsible for variations in the fractal
dimension among young stars in the GB and the LGD. For the
GB,Df agrees well with the range of values expected for the case
of single monoparental clouds in the Galaxy, i.e., Df ’ 2:5Y2:7
(Sánchez et al. 2005, 2007). On the other hand, the fact that the
fractal dimension of the LGD is higher than the expected for

Fig. 7.—Projected correlation integral for stars in the solar neighborhood. The
calculationswere done forGB-early stars (circles), GB-late stars (squares), LGD-
early stars (triangles), and LGD-late stars (rhombuses). Filled symbols indicate
the range used for the linear fits (shown as lines). All the lines have been arbi-
trarily shifted downward (except the top one) for clarity.
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individual clouds suggests that this population did not have a
monoparental origin. Even though the young stars in the LGD
were born in individual clouds, each one having internal fractal
dimensions around�2.6, the set of clouds that formed this group
were distributed following a spatial pattern with a higher fractal
dimension at a larger scale according to a multiscale scenario
(Chappell & Scalo 2001). In other words, even though the two
young stellar groups in theGB and the LGDwere born at the same
time, the structure of the parental gas at the birth time has likely
driven the final geometric structure of these stellar populations.

In order to restrict even more the problem under consider-
ation, we have selected subsamples of stars with spectral types
earlier than B2 both for the GB and for the LGD. Stars belonging
to these groups have ages younger than �10 Myr. The determi-
nation of the fractal dimension for these ‘‘very early’’ subsamples
yields similar results: Dc(3D) ¼ 2:62 � 0:08 for the GB and
Dc(3D) ¼ 2:84 � 0:08 for the LGD. The uncertainties are higher
than before because of the smaller number of stars in the samples.
Obviously, this result does not rule out the possibility that both
groups have different ages, but in this case, it is more difficult to
interpret these results in terms of age differences among groups.

With the available data we cannot unambiguously discriminate
the most likely explanation for the different fractal dimensions
found for the very early-type stars in the GB and the LGD.Maybe
all of these factors are contributing in some way to the problem.
However, we consider that themain factors are probably related to
different physical conditions in the parental clouds or different
internal structure for the gas associatedwith a multiscale scenario.
Finally, we want to mention that besides the different geometry
and kinematics shown by the GB and the LGD (see Elias et al.
2006a, 2006b and references therein) the internal distribution of

stars with spectral types earlier than B4 (quantified through the
fractal dimension) allows us clearly to differentiate both systems.
This difference could be explained in terms of a hierarchical star
formation scenario.

4. CONCLUSIONS

We have developed an algorithmwhich uses equations (1) and
(2) to estimate the correlation dimension of the stellar compo-
nent of the GB and the LGD. The novelty of the algorithm lies in
the implementation of objective criteria to avoid boundary ef-
fects and finite-data problems at small scales. We find that early
OB stars (of spectral types earlier than B4) in the GB have a frac-
tal dimension�2.7. This values is very similar to that of the gas
clouds in our Galaxy. This result seems to indicate that younger
OB stars in the GB ‘‘preserve the memory’’ of the spatial struc-
ture of the cloud where they were born. On the contrary, stars in
the GB of later spectral types show a larger fractal dimension,
very similar to the value found for stars of both age groups in the
LGD (�2.8Y2.9). Several factors (or a combination of them) can
contribute to these morphological differences: age differences
among the samples, different environmental conditions in the
birth places, or different internal structure of the gas in the pa-
rental clouds.
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