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Continuum description with pseudostate wave functions
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Benchmark calculations are performed aiming to test the use of two different pseudostate bases on the multiple
scattering expansion of the total transition amplitude scattering framework. Calculated differential cross sections
for p-6He inelastic scattering at 717 MeV/nucleon show a good agreement between the observables calculated
in the two bases. This result gives extra confidence on the pseudostate representation of continuum states to
describe inelastic/breakup scattering.
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Inelastic scattering at intermediate energies can be a useful
tool to study multipole excitations of Borromean nuclei (such
as 11Li and 6He). Because of their loosely bound nature, to
properly understand and interpret such reactions, it is crucial
to take into account the few-body degrees of freedom. At
high energies, the multiple scattering expansion of the total
transition amplitude (MST) is a convenient framework that has
already been applied to analyze such reactions for elastic [1,2]
as well as for inelastic [3,4] scattering. In the latter case, the
method can take into account spin excitations that occur when
scattering from a spin target such as a proton. In these calcu-
lations, it is formal and numerically advantageous to represent
the continuum states in terms of a basis of square-integrable
functions, also known as pseudostates (PSs). Unlike the
true scattering states, the PSs vanish at large distances and
hence the method will be only useful if the calculated observ-
ables are not sensitive to the asymptotic region. Moreover,
calculations performed with different families of states should
converge to the same results, provided that enough states are
included and that the basis is complete within the radial region
relevant for the process under study.

Guided by this motivation, in this Brief Report we present
benchmark calculations of proton inelastic scattering from
6He within the MST framework, making use of two different
PS bases to describe the 6He continuum. We aim to check to
what extent the calculated breakup observables depend on the
choice of the PS functions.

For a Borromean system, such as 6He, the wave function for
a total angular momentum J (with projection M) and energy
ε, ϕJM

ε , can be expressed in terms of the Jacobi coordinates �r

*Electronic address: moro@us.es
†Electronic address: mrodri@cii.fc.ul.pt; present address: Centro de

Fı́sica Nuclear, Universidade de Lisboa, Avenida Prof. Gama Pinto 2,
P-1649-003 Lisboa, Portugal.

‡Electronic address: Raquel.Crespo@tagus.ist.utl.pt
§Electronic address: I.Thompson@surrey.ac.uk

(the relative coordinate between the valence nucleons) and �R
(the relative coordinate from the center of mass of the neutron
pair to the core).

It is also convenient to introduce a set of hyperspherical
coordinates: the hyper-radius ρ and five hyperspherical polar
angles �5 = {α, θx, φx, θy, φy}. The former is defined as
ρ =

√
x2 + y2 with scaled coordinates �x = 2−1/2�r and �y =

(2/
√

3) �R. The angle α = arctan(x/y) is the hyperangle and
θx, φx, θy, φy are the angles associated with the unit spatial
vectors x̂ and ŷ.

Within the PS method, the eigenstates ϕJM
ε (�r, �R) are

obtained by diagonalization of the Hamiltonian in a basis of
normalizable states. These states are conveniently expanded in
a basis of hyperspherical harmonics of the form

ψJM
nβ (�r, �R) = Rnβ(ρ)ϒJM

β (�5), (1)

where ϒJM
β (�5) is the generalized angle-spin basis [5]

ϒJM
β (�5) = {

YK�x�yL(�5) ⊗ [
χs2 ⊗ χs3

]
S

}
JM

, (2)

with χsi
the neutron spin functions and YK�x�yL(�5) the

hyperspherical harmonics,

YK�x�yLML
(�5) = ψK�x�y

(α)
[
Y�x

(x̂) ⊗ Y�y
(ŷ)

]
LML

. (3)

The functions ψK�x�y
(α) have an explicit form in terms of

Jacobi polynomials of the hyperangle α [5]. The set of quantum
numbers β = {K�x�yLS} defines a channel, with �x and
�y the orbital angular momenta associated with the Jacobi
coordinates �x and �y,K = �x + �y + 2ν (ν = 0, 1, 2, . . .) the
hyperangular momentum, �L = ��x + ��y the total orbital angu-
lar momentum, and S the spin of the particles related by the
coordinate �x. In Eq. (1), Rnβ(ρ) are the hyper-radial functions
and n is an index that labels the basis states within a given
channel β. These functions are orthogonalized such that∫ ∞

0
dρρ5Rnβ(ρ)Rn′β(ρ) = δnn′ . (4)
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The aim of the present work is to compare two different
choices for the functions Rnβ(ρ) in the calculation of breakup
observables within the MST framework. First, we consider
the Gauss-Laguerre (GL) basis [6], whose hyper-radial part,
RGL

n (ρ), is given by

RGL
n (ρ) = ρ0

−3[n!/(n + 5)!]1/2L5
n(z) exp(−z/2) , (5)

with z = ρ/ρ0, L
5
n the generalized Laguerre polynomials, and

ρ0 a parameter that sets the radial scale of the basis.
The second choice is the transformed harmonic oscillator

(THO) basis, recently introduced in Ref. [7] for a three-body
system. The THO method is based on the idea of transforming
the bound ground-state wave function of the system into the
ground-state wave function of the harmonic oscillator (HO),
defining a local scale transformation (LST). The ground-state
wave function can be written as a linear combination of the
basis functions (1),

ϕ
J0M0
0 (�r, �R) =

∑
β

R
ε0
β (ρ)ϒJ0M

β (�5), (6)

where we have introduced the abbreviated notation ϕ
J0M0
0 ≡

ϕJ0M0
ε0

. Then, the equation that defines the LST for each channel
β is ∫ ρ

0
dρ ′ρ ′5∣∣Rε0

β (ρ ′)
∣∣2 =

∫ s

0
ds ′s ′5∣∣RHO

0K (s ′)
∣∣2

, (7)

where RHO
0K (s) is the hyper-radial part of the HO ground state

for the hyperangular momentum K. Then, the THO basis is
constructed for each channel by applying the LST, sβ(ρ), to
the HO basis

RTHO
nβ (ρ) = R

ε0
β (ρ)LK+2

n

(
s2
β(ρ)

)
, (8)

where LK+2
n are generalized Laguerre polynomials of degree

n. For channels not included in the ground state, information
from one of the known (ground-state) channels with the closest
quantum labels to the channel of interest is used to construct
the LST, as explained in Ref. [7].

Neither the GL nor the THO functions are eigenstates of
the Hamiltonian, but they provide a complete and orthonormal
set in which the Hamiltonian can be diagonalized. For
this purpose, the basis is truncated by setting a maximum
value of the index n (n = 0, . . . , N ) as well as a maximum
hyperangular momentum Kmax. Upon diagonalization in the
truncated basis, the eigenstates are obtained as

ϕJM
εi

(�r, �R) =
∑
nβ

C
Jεi

nβ ψJM
nβ (�r, �R), (9)

where {εi} are their associated eigenvalues.
From this derivation, it becomes apparent that the GL basis

is obtained in a more straightforward way than the THO
basis. However, the latter has some appealing properties that
could make it more suitable in some situations. In particular,
the THO basis has the advantage of being constructed from
the ground-state wave function of the system. Thus, when
we diagonalize the Hamiltonian in a finite THO basis, the
ground state is recovered for any size of the basis. By contrast,
in the GL representation a large basis may be required to
obtain a good description of the ground state. Also, note that

the hyper-radial part of the GL basis is the same for all the
channels β whereas in the THO basis a different hyper-radial
part is calculated for each channel, with the correct behavior
at the origin (ρK).

For a meaningful comparison between the two bases, we
use the same three-body Hamiltonian to generate the GL and
THO eigenstates for 6He. In particular, we use the n-n potential
of Gogny, Pires, and de Tourreil [8] with spin-orbit and tensor
components and we take the n-4He potential from Ref. [9].
Besides the pairwise interactions, an effective three-body
potential is included, with matrix elements of the form [5]

V 3B
β ′β(ρ) = δβ ′βV 3B

J

1 + (ρ/5)3
. (10)

The J = 0 strength of this effective potential is tuned to
reproduce the experimental three-body separation energy and
the J > 0 strength is adjusted to obtain the 2+

1 resonance at
the experimental energy.

We now consider the scattering process of 6He, originally
in its ground state, |ϕJ0M0

0 〉, to a final continuum state |ϕJM
ε 〉,

at excitation energy ε and with total angular momentum
J (projection M), by means of its interaction with a proton,
with initial (final) linear momentum �k1(�k ′

1) in the nucleon-
nucleus c.m. frame and spin S1 = 1/2 with projection σ (σ ′).

The double differential cross section for this process can be
formally expressed as

d2σJJ0

d�dε
= 1

(Ŝ1)2

1

(Ĵ0)2

[
h̄2

4π2µNA

]2

×
∑
σσ ′

∑
MM0

∣∣〈�k′
1χ

σ ′
S1

; ϕJM
ε

∣∣T ∣∣�k1χ
σ
S1

; ϕJ0M0
0

〉∣∣2
, (11)

where T denotes the transition amplitude operator [10]. This
operator can be expressed as a multiple expansion series in
the transition amplitudes t̂I for proton scattering from each
projectile subsystem I [11]. At high energies and for small
momentum transfers, this expansion is expected to converge
quickly. If only the leading term of the series is retained, the
single scattering approximation (SSA) is obtained [3,12]:

T SSA =
4∑

I=2

t̂1I (12)

with I = 2, 3 for the halo neutrons, and I = 4 for the core.
The proton-I subsystem transition amplitude satisfies the
Lippmann-Schwinger equation

t̂1I = v1I + v1IG0 t̂1I , (13)

with v1I the interaction between the nucleon and I subsystem.
Within the impulse approximation, the propagator G0 =(
E+ − K

)−1
contains the kinetic energy operators of the

proton and all the projectile subsystems. Here E is the kinetic
energy, E = h̄2k2

1/2µNA in the overall c.m. frame, and µNA is
the proton-projectile reduced mass.

Within the PS method, the scattering states ϕJM
ε in Eq. (11)

are approximated by the pseudostates ϕJM
εi

. Hence, the double
differential cross section (11) becomes a single differential
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cross section for each pseudostate,

dσ i
JJ0

d�
= 1

(Ŝ1)2

1

(Ĵ0)2

[
h̄2

4π2µNA

]2

×
∑
σσ ′

∑
MM0

∣∣〈�k′
1χ

σ ′
S1

; ϕJM
εi

∣∣ 4∑
I=2

t̂1I
∣∣�k1χ

σ
S1

; ϕJ0M0
0

〉∣∣2
,

(14)

where we have replaced the T matrix operator by its single
scattering approximation. By making use of the impulse
approximation [2], the matrix elements for the scattering
for each constituent can be further simplified, leading to the
following factorized form for the scattering from one valence
nucleon (I = 2):〈�k′

1χ
σ ′
S1

; ϕJM
εi

∣∣t̂12

∣∣�k1χ
σ
S1

; ϕJ0M0
0

〉
=

∑
bβ

t[bβSpS ′
p](ω12,�) × ρ[bβ;ST S ′

T εi ]

(
m3

M23

��,
m4

M234

��
)

,

(15)

with M23 = m2 + m3 and M234 = m2 + m3 + m4 and where
we have introduced the momentum transfer �� = �k ′

1 − �k1 and
the energy parameter ω12 [2] and where Sp = {S1σ }(S ′

p =
{S1σ

′}) are the incoming (outgoing) spin of the nucleon
and its projection and ST = {J0M0}(S ′

T = {JM}) the initial
(final) total spin of the halo valence pair. The amplitude
t[bβSpS ′

p] is given in terms of the tensor components of the
nucleon-nucleon transition amplitude [2,13]. The transition
density form factors, ρ[bβ;ST S ′

T εi ], depend exclusively on the
structure of the composite system. Its explicit expression as a
function of the hyper-radial parts of the wave functions of the
initial and final states can be found in Ref. [2].

The scattering from the core, assumed here as spinless, can
equivalently be written as〈�k′

1χ
σ ′
S1

; ϕJM
εi

∣∣t̂14

∣∣�k1χ
σ
S1

; ϕJ0M0
0

〉
= t[00SpS ′

p](ω14,�) × ρ[00;ST S ′
T εi ]

(
0,

M23

M234

��
)

, (16)

where, as before, ω14 is the appropriate energy parameter
[2]. The angular differential cross section for 6He inelastic
scattering (breakup) is then obtained by summing all excited-
state contributions,

dσ inel
JJ0

d�
=

εmax
i∑
εi

dσ i
JJ0

d�
. (17)

For the evaluation of Eqs. (15) and (16) one needs
the (free) transition amplitudes for proton scattering from
the valence nucleons and the core. For the former, we
used the NN Paris interaction. The transition amplitude for
the α core was generated from a phenomenological optical
potential, of Woods Saxon form, with parameters obtained
by fitting existing data for the elastic scattering of p+4He at
Ep = 700 and 800 MeV, as detailed in Ref. [2].

We first study the convergence of the breakup observables
with respect to the basis size. For this purpose, we consider the
THO basis, truncated at different values of N . The maximum
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FIG. 1. (Color online) Angular differential cross section for the
breakup of 6He on protons at 717 MeV per nucleon, leading to J π =
0+ continuum states of the 6He nucleus. The three lines represent the
calculation with the THO basis, for several values of N (indicated by
the labels). Each curve includes the contribution from eigeinstates up
to 10 MeV in excitation energy, according to Eq. (17).

hyperangular momentum was set to Kmax = 20. This yields
the three-body force parameters V 3B

0 = −2.4 MeV, for J = 0,
and V 3B

J = −0.85 MeV, for J > 0.
In Fig. 1 we show the angular distribution of the calculated

inelastic differential cross sections. For simplicity, only the
Jπ = 0+ continuum is included, and the Coulomb interaction
between the proton and the α core is ignored. The three lines
represent the SSA calculation for different values of the basis
size, according to the choice of the parameter N . The three
cases are in almost perfect agreement, indicating that in this
reaction the convergence with the basis size is very fast.

Next, we study the dependence of the breakup observables
on the choice of the basis, by comparing the calculations in
the GL and THO representations. As before, the maximum
hyperangular momentum was set to Kmax = 20, and only
eigenstates below 10 MeV are considered. The index n

was truncated to N = 20 and N = 4 for the GL and THO
bases, respectively. With this model space, the number of
pseudostates in the GL (THO) basis is 31 (30) for 0+, 63(86)
for 1−, 53(49) for 1+, and 79 (81) for 2+. For the GL
basis, the range parameter was set to ρ0 = 0.25 fm, which
provides a basis that extends up to about 20 fm in the
hyper-radius. With these parameters, the ground state obtained
after diagonalization of the Hamiltonian appears at −0.9781
and −0.9549 MeV, for the GL and THO bases, respectively.

In Fig. 2 we compare the inelastic angular distributions
calculated in the GL and THO bases. The separate
contributions for Jπ = 0+, 1−, 1+, and 2+ final states are
also shown. As before, the Coulomb interaction is neglected.
The thick lines are the incoherent sum of all these Jπ

contributions. Solid and dashed lines correspond, respectively,
to the calculations with the GL and THO bases. For each
curve, the contribution of eigenstates up to εmax = 10 MeV are
added incoherently, according to Eq. (17). We consider only
the forward angles θc.m. < 30◦ since the SSA is not expected
to work well at large momentum transfers [2]. We see that, at
these angles, the dominant contribution to the breakup cross
section comes from the 1− states, whereas for θc.m. > 25◦,
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FIG. 2. (Color online) Calculated contributions for breakup dif-
ferential cross section leading to final states with J π = 0+, 1−, 1+,
and 2+, using the SSA. Solid and dashed lines refer to the GL and
THO basis, respectively.

the 2+ excitation becomes dominant. Finally, the population
of the unnatural parity 1+ states is almost negligible at all
angles. We notice that this excitation mode requires spin-flip
transitions, which, according to these calculations, are very
small in this reaction.

For all these contributions, the GL and THO bases provide
very similar results, suggesting that the calculated observables

do not depend on the choice of the continuum representation,
provided that enough states are included.

In summary, in this Brief Report we have calculated proton
inelastic scattering from 6He at 717 MeV/nucleon, using
as scattering framework the single-scattering approximation
and two different pseudostate representations of the 6He
continuum: the GL and the THO. Provided that enough states
are included, both bases predict essentially the same inelastic
differential cross section. Furthermore, the studied observables
converge very quickly with the size of the basis. These results
support the reliability of the pseudostate method as a useful
and convenient tool to treat scattering problems dealing with
continuum states. This analysis could be extended to other
PS bases and reactions. Furthermore, it could be applied to
other scattering frameworks, for which the PS method has also
been implemented, such as the continuum discretized coupled
channels method [14,15].
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