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Is a global coupled-channel dispersive optical model potential for actinides feasible?
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An isospin-dependent coupled-channel optical model potential containing a dispersive term with a nonlocal
contribution is used to simultaneously fit the available experimental database (including strength functions and
scattering radius) for neutron and proton scattering on strongly deformed 238U and 232Th nuclei. The energy range
0.001–200 MeV is covered. A dispersive coupled-channel optical model (DCCOM) potential with parameters
that show a smooth energy dependence and energy-independent geometry are determined from fits to the entire
data set. Calculations using the obtained DCCOM potential reproduce measured total cross-section differences
between 232Th and 238U within experimental uncertainty. The isovector terms and the observed very weak
dependence of the geometrical parameters on mass number A allow us to extend the derived potential parameters
to neighboring actinide nuclei with great confidence.
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I. INTRODUCTION

It is generally accepted that differences of neutron total
cross sections among neighboring nuclei provide an unusually
stringent test of optical models [1–4]. At the same time it has
been shown that the standard optical model treatment fails
to reproduce the observed differences of total cross sections
both for tungsten isotopes [4] and Th-U nuclei [5]. Based on
these findings it was stated that the prediction of the global
optical model potential for actinides with A � 232 still needs
extensive experimental and theoretical investigations [5]. We
show that an isospin-dependent coupled-channel (CC) optical
model potential (OMP) containing a dispersive term including
nonlocal contribution is a very good candidate to be used as a
global actinide optical model potential.

Recent high-precision measurements of the neutron to-
tal cross sections for 232Th and 238U nuclei at energies
from 5 up to 560 MeV were published by a Livermore-
Los Alamos-Ohio University collaboration [6]. The cross-
section difference data are presented as the ratio of the
measured difference to the average of the individual cross sec-
tions: i.e., as R238U−232Th = [σ (238U) − σ (232Th)]/{[σ (238U) +
σ (232Th)]/2}. We use these data as a test of a newly derived
dispersive coupled-channel optical model (DCCOM), based
on all available nucleon-scattering information for both nuclei.

It has been shown that consideration of dispersion effects
allows us to describe both bound and scattering states by
the same nuclear mean field [7–12]. Pioneering works on
dispersive optical model (DOM) analysis for nucleon scat-
tering were done by Lipperheide [13,14], Passatore [15], and
Lipperheide and Schmidt [16]. Recently a global dispersive
spherical potential for neutron-induced reactions was derived
by Morillon and Romain [17]. However, very few studies
have been devoted to dispersive OPMs for strongly deformed

∗Electronic address: R.CapoteNoy@iaea.org

nuclei, in which CC formalism should include dynamical
potential corrections arising from dispersion effects [18–22].
Most of the CC potentials suggested for actinides are based
on the potentials determined by Lagrange [23]. A new global
parametrization using nondispersive CC OMPs for actinide
nuclei valid from 1 keV to 200 MeV was recently proposed
by Soukhovitskiĩ and co-workers [24] (in the following text
we refer to this work as NDOMP04). CC OMPs describing
nucleon scattering on 238U nucleus up to 150–200 MeV
became recently available [25,26]. During the past year,
several new OMPs for thorium are being discussed within
the framework of the on going International Atomic Energy
Agency Coordinated Research Program [27], including those
derived by Maslov [5] and Ignatyuk and co-workers [28].

We construct a deformed complex mean field felt by
neutrons and protons in 232Th and 238U theoretically valid from
the Fermi energy up to 200-MeV energy. The methodology was
outlined in our previous contribution devoted to the study of the
232Th nucleus [22]. The real and imaginary parts of the mean
field are connected by a dispersion relation, and, moreover, the
mean field is required for closely reproducing the experimental
value of the Fermi energy EF both for neutrons and protons.
The Lane model [29,30], which assumes isospin symmetry
in nuclei, is employed so our nucleon-nucleus OMP can be
decomposed into isoscalar and isovector parts.

II. COUPLED-CHANNEL DISPERSIVE OPTICAL MODEL
FORMALISM

Actinides are expected to be well-deformed rigid rotors,
in which low-lying collective levels are strongly excited in
nucleon inelastic scattering. We performed the customary CC
calculations by coupling the first five states of the ground-state
Kπ = 0+ rotational band, Jπ = 0+, 2+, 4+, 6+, and 8+. Our
analysis spans an energy range from 0.001 up to 200 MeV. Both
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direct and statistical processes contribute to nucleon-nucleus
elastic scattering at these energies. However, according to our
estimation, the statistical processes are not important above
3 MeV so we neglect them in the OMP derivation. The direct
processes, increasingly dominant at higher energies, can be
described by the optical model.

The deformed nuclear optical potential arises from de-
formed instant nuclear shapes,

Ri(θ
′, ϕ′) = R0

i

[
1 +

∑
λ=2,4,6,8

βλ0Yλ0(θ ′, ϕ′)

]
,

i = HF, v, s, so, c, (1)

where Yλ0 means spherical harmonics, θ ′ and ϕ′ are angular
coordinates in the body-fixed system, v, s, so, and c are the
volume, surface, spin-orbit, and Coulomb terms, respectively
and R0

i = riA
1/3, where A is the target mass number. The HF

index corresponds to the smooth real volume potential (usually
called the Hartree-Fock term).

The OMP is taken to be a standard Woods-Saxon form, but
with account of the deformed nuclear shapes. A more general
formulation than the one used in our previous work [22] is
described below. The OMP potential may be written as

V [r, R(θ ′, ϕ′), E]

= −[
VHF(E) + �V Coul

HF (E)
]
fWS [r, RHF(θ ′, ϕ′)]

− [
�Vv(E) + �V Coul

v (E) + iWv(E)
]
fWS [r, Rv(θ ′, ϕ′)]

− [
�Vs(E) + �V Coul

s (E) + iWs(E)
]
gWS [r, Rs(θ

′, ϕ′)]

+
(

h̄

mπc

)2 [
Vso(E) + �Vso(E) + iWso(E)

]
× 1

r

d

dr
fWS [r, Rso(θ ′, ϕ′)](σ̂ · L̂) + VCoul[r, Rc(θ ′, ϕ′)]

(2)

where the first term is the real smooth volume potential VHF(E)
and its corresponding Coulomb correction �V Coul

HF (E) =
−CCoul

ZZ′e2

A1/3
d

dE
[VHF(E)]. Similar Coulomb correction terms

�V Coul
v (E) and �V Coul

s (E) are also calculated for volume
�Vv(E) and surface �Vs(E) dispersive contributions to
the real potential. Successive complex-valued terms are the
volume, surface, and spin-orbit potentials, all containing the
corresponding dispersive contributions �Vv(E),�Vs(E), and
�Vso(E). The geometrical form factors are given as

fWS [r, Ri(θ
′, ϕ′)] = {1 + exp[r − Ri(θ

′, ϕ′)]/ai}−1,

i = HF, v, so,
(3)

gWS [r, Rs(θ
′, ϕ′)] = −4as

d

dr
f [r, Rs(θ

′, ϕ′)]

where deformed radii Ri(θ ′, ϕ′) are described in Eq. (1). The
Coulomb potential VCoul[r, Rc(θ ′, ϕ′)] was calculated with a
multipole expansion of charged ellipsoid with a uniform charge
density within the Coulomb radius Rc and zero outside, as
suggested by Bassel et al. [31]. We calculated the spherical
term of the Coulomb potential, taking into account the
diffuseness of the charge-density distribution of the form
fc = [1 + exp(r − R0

c )/ac]−1 [32].

In our formulation of the OMP in Eq. (2) the geometri-
cal parameters of the Hartree-Fock (HF) potential rHF and
aHF are in general different from geometrical parameters
rv, av, rs, and as of the volume and surface absorptive poten-
tials; however the real and imaginary spin-orbit terms share the
same rso and aso parameters. Therefore the volume-dispersive
contribution has different geometry (determined by rv and av)
from the real smooth volume potential (determined by rHF and
aHF). As a result we have two separate volume contributions
to the potential [as can be seen in the first and second line
of the Eq. (2)], effectively giving us more flexibility than that
allowed by the OMP used in our previous work [22].

It is known that the energy dependence of the depth VHF(E)
is due to the replacement of a microscopic nonlocal HF
potential by a local equivalent. For a Gaussian nonlocality
VHF(E) is a linear function of E for large-negative E and is
an exponential for large-positive E. From Mahaux and Sartor
[11], the energy dependence of the HF part of the nuclear mean
field is taken as that found by Lipperheide [14]:

VHF(E) = AHF exp[−λHF (E − EF )] (4)

where AHF and λHF are undetermined constants with the latter
associated with nuclear matter nonlocality range. Equation (4)
can be used to describe HF potential in the scattering
regime [11]. The present optical potential includes relativistic
corrections as discussed by Elton [33] and explained in our
recent paper [22].

It is useful to represent the variation of surface Ws(E)
and volume absorption potential Wv(E) depth with energy
in functional forms suitable for the DOM analysis. An energy
dependence for the imaginary-surface term has been suggested
by Delaroche et al. [9] to be:

Ws(E) = As

(E − EF )2

(E − EF )2 + (Bs)2
exp(−Cs |E − EF |), (5)

where As, Bs , and Cs are undetermined constants.
The isospin dependence of the potential (the Lane term

[29,30]) was considered in real-surface VHF(E) and imaginary-
surface Ws(E) potentials as follow,

AHF = V0

[
1 + (−1)Z

′+1 Cviso

V0

N − Z

A

]
, (6)

As = W0

[
1 + (−1)Z

′+1 Cwiso

W0

N − Z

A

]
, (7)

where V0, Cviso,W0 and Cwiso are undetermined constants.
An energy dependence for the imaginary volume term has

been suggested in studies of nuclear matter theory by Brown
and Rho [34]:

Wv(E) = Av

(E − EF )2

(E − EF )2 + (Bv)2
, (8)

where Av and Bv are undetermined constants. The assumption
that the imaginary potential Wv(E) is symmetric about E′ =
EF is plausible for small values of |E′ − EF |; however, as
was pointed out by Mahaux and Sartor [11], this approximate
symmetry no longer holds for large values of |E′ − EF |. In
fact, the influence of the nonlocality of the imaginary part
of the microscopic mean field will produce an increase of
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the empirical imaginary part W (r, E′) at large-positive E′ and
approaches zero at large-negative E′ [7,35]. The DOM analysis
of neutron scattering on 27Al [36] and 232Th [22] showed
the importance of the dispersive contribution to describe σT

data for energies above 100 MeV by use of the nonsymmetric
version of the volume absorptive potential for large-positive
and large-negative energies. Following Mahaux and Sartor
[11], we assume that the absorption strengths are modified only
outside some fixed energy interval around the Fermi energy
[EF − Ea,EF + Ea]. They used Ea = 60 MeV; however, this
value is fairly arbitrary [11] and we use it as a fitting parameter.
Let us assume that the nonlocal imaginary potential to be used
in the dispersive integral is denoted by W̃v(E); then we can
write [12]

W̃v(E) = Wv(E) − Wv(E)
(EF − E − Ea)2

(EF − E − Ea)2 + E2
a

,

for E < EF − Ea, (9)

W̃v(E) = Wv(E) + α

[√
E + (EF + Ea)3/2

2E

− 3

2

√
(EF + Ea)

]
, for E > EF + Ea. (10)

These functional forms are chosen in such a way that the
function and its first derivative are continuous at E′ = |EF −
Ea|. At large-positive energies nucleons sense the “hard-core”
repulsive region of the nucleon-nucleon interaction and W̃v(E)
diverges like α

√
E. Using a model of a dilute Fermi gas

hard sphere we can estimate the coefficient α to be equal to
1.65 MeV1/2 [35], assuming that the Fermi impulse kF is equal
to 1.36 fm−1and the radius of the repulsive hard core is equal to
0.4 fm. On the contrary, at large-negative energies the volume
absorption decreases and goes asymptotically to zero.

In a dispersion relation treatment, the real potential strength
consists of a term that varies slowly with energy, the so-called
HF term, VHF(r, E), plus a correction term, �V (r, E), which
is calculated with a dispersion relation. Under favorable
conditions of analiticity in the complex E plane the real part
�V can be constructed from the knowledge of the imaginary
part W on the real axis through the dispersion relation

�V (r, E) = P
π

∫ ∞

−∞

W (r, E′)
E′ − E

dE′, (11)

where we have now explicitely indicated the radial and energy
dependences of these quantities andP means that the principal
value of the integral should be taken. To simplify the problem,
the geometry of the imaginary terms of the OMP are usually
assumed to be energy independent and they are expressed
in terms of a Woods-Saxon function fWS [r, Ri(θ ′, ϕ′)] or its
derivative gWS [r, Ri(θ ′, ϕ′)]. In such a case the radial functions
factorize out of the integrals and the energy dependence
is completely accounted for by two overall multiplicative
strenghts �V (E) and W (E). Both of these factors contain,
we note, volume and surface contributions. The dispersive
treatment employed in this work to calculate dispersive
contributions �Vv(E),�Vs(E), and �Vso(E) was described
in detail before [22], so we refer interested readers to that
contribution.

III. SUMMARY OF THE EXPERIMENTAL DATABASES
AND PARAMETER FITTING

A survey of the experimental data for the nucleon interac-
tion on 232Th and 238U nuclei spanning from 0.001 to 200 MeV
used in the DCCOM analyses coincides with the data used
by Soukhovitskii and co-workers [24]. Additional average
total cross-section data for 232Th in the unresolved resonance
region from 1 up to 140 keV were recently obtained by Geel’s
group [37]. The total cross-section data considered cover all
the critical energy points that are necessary for revealing the
structure that is due to the Ramsauer effect. Energy-averaged
total cross sections σT for both nuclei obtained from Abfalterer
et al. [6] from 5 to 200 MeV were used to calculate R232Th−238U

and its associated experimental error.
The potential parameters were searched to reproduce avail-

able neutron- and proton-induced cross section data for 232Th
and 238U. At incident energies above several mega-electron-
volts, it is almost impossible to separate neutron-inelastic-
scattering data into each excitation level experimentally for
actinide nucleus. Thus experimental proton-scattering data,
which can be done with much higher resolution, were highly
relevant for determining the optical potential parameters
uniquely. Evaluated neutron strength functions for 232Th and
238U, S0 and S1, and potential scattering radius R′ [37,38] were
used in parameter search.

We searched for the optical potential parameters by mini-
mizing the quantity χ2 defined by

χ2 = 1

N + M + 3

[∑
i=0,1

(
Si,calc − Si,eval

�Si,eval

)2

+
(
R′

calc −R′
eval

�R′
eval

)2

+
N∑

i=1

1

Ki

Ki∑
j=1

(
dσij /d
calc − dσij /d
exp

�dσij /d
exp

)2

+
M∑
i=1

(
σtotcalci

− σtotevali

�σtotevali

)2
 , (12)

where N denotes number of experimental scattering data sets,
Ki is the number of angular points in each scattering data set,
and M is the number of energies for which the experimental
(evaluated) neutron total cross section is involved.

The optical model code OPTMAN [39,40] was used for
OMP parameter fitting. Originally the code did not include
dispersion terms, so numerical [41] and analytical solutions
[42,43] of dispersion relations were implemented within the
OPTMAN code. We used symmetric surface and nonsymmetric
volume imaginary absorptive potentials; therefore we initially
adjusted 16 parameters, namely V0, λHF , and Cviso, which
define the smooth energy dependence of the real volume
potential; W0, Cwiso, Bs, Cs and Av,Bv,Ea , which define the
surface and volume absorptive potentials, respectively; and six
geometrical parameters (rHF, aHF, rv, av, rs, as). After proper
values were obtained by these global minimization spin-orbit
parameters Vso, λso, Aso, Bso, rso, and aso, parameters of the
Coulomb interaction, CCoul, rc, and ac and multipolar defor-
mation parameters βi (for both nuclei) were also optimized.
The final iteration involved a free variation of all parameters
by use of the best-fit search option of the OPTMAN code.
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TABLE I. Dispersive coupled-channel OMP parameters for 238U (232Th). We used the following deformation parameters: β2 =
0.228, β4 = 0.062, β6 = −0.0056 for 238U and β2 = 0.213, β4 = 0.069, β6 = 0.0017 for 232Th.

VOLUME SURFACE SPIN-ORBIT COULOMB

Real depth V0 = 48.62 Vso = 6.03 CCoul = 1.62
(MeV) λHF = 0.01037 Dispersive λso = 0.005

Cviso = 10.0

Imaginary depth Av = 12.53 W0 = 17.73 Wso = −3.1
(MeV) Bv = 80.94 Bs = 11.56 Bso = 160

Ea = 350 Cs = 0.01328
Cwiso = 23.5

Geometry rHF = 1.2516(1.2598) rs = 1.1808 rso = 1.1214 rc = 1.2174
(fm) aHF = 0.636(0.624) as = 0.603(0.600) aso = 0.59 ac = 0.551

rv = 1.253
av = 0.680(0.678)

All parameters but deformation and geometrical ones were
exactly the same for both 232Th and 238U nuclei fitting. The
derived DCCOM potential parameters are listed in Table I.
The attained minimum χ2 value, as defined by Eq. (12)
for all the available 238U (232Th) experimental data is 2.10
(2.55), with 2.00 (2.21) for the neutron database, and for
the proton angular data description the corresponding χ2

minimum is 2.39 (3.52). These values compared favorably
with the NDOMP04 values, which are 1.66 (2.55) and 1.90
(3.8) for neutron and proton databases, respectively. One
can see that the χ2 value is slightly increased for 238U and
decreased for 232Th, probably because a new accurate Geel’s
group data [37] was used in the optical parameter search for
the latter.

IV. RESULTS AND DISCUSSION

Optical model calculations of the total cross section for
232Th and 238U nuclei were carried out with the newly fitted
DCCOM potential, NDOMP04, and the OMPs of Ignatyuk
et al. [26,28], Maslov [5], and Maslov et al. [25]. The calcu-
lated total neutron cross-section data were used to obtain the
ratio R232Th−238U for each of employed potentials. Calculated
results were compared with the experimental data of Abfalterer
et al. [6] in Fig. 1. The experimental data was shifted up
by +0.002, well within the estimated uncertainty of the vertical
scale (0.02) [4], arising from uncertainties in the areal densities
of the uranium and thorium targets. The measurements are
well reproduced by the axial rigid-rotor DCCOM potential
calculations with the present optical potential parameters from
Table I. Conventional nondispersive CC potentials fail to
reproduce the experimental data; the NDOMP04 results are
closer to the data than results for the other two potentials.

The CC model also makes it possible to calculate the
angular distributions for scattering of neutrons and protons to
the low-lying collective levels belonging to the ground-state
rotational band of 232Th and 238U nuclei. We are not showing
pictures, but the quality of the agreement is excellent as
can be judged by the obtained χ2. Furthermore, calculated
average resonance parameters reproduce the evaluated values

for 232Th and 238U nuclei very well, as shown in Table II.
It is important to remark on the advantage of the dispersive
approach for average resonance parameters’ description. The
real potential of this work is almost flat toward the low
energies, by a combination of the increasing contribution of the
smooth exponential HF VHF(E) potential with the decreasing
dispersive contribution (which goes to zero at Fermi energy).
Such behavior allows for a good simultaneous description of
the average low-energy total cross sections, strength functions,
and scattering radius. This simultaneous description is a tough
challenge for conventional nondispersive potentials.

The derived optical potential energy dependence is very
simple. We do not need to introduce energy-dependent geom-
etry, and the potential parameters are unique for both neutron
and proton projectiles. The dispersion relations, coupled to
the smooth energy-dependent HF potential VHF(E), fully
determine the real part of the dispersive contribution once the
imaginary part of the mean field is fixed. Very few parameters
are required in comparison with a conventional nondispersive
CC OMP analysis.

FIG. 1. (Color online) Energy dependence of the measured ra-
tio [σ (238U) − σ (232Th)]/{[σ (232Th) + σ (238U)]/2} versus calculated
values obtained with different OMPs (the corresponding RIPL OMP
index [38] is indicated in parentheses).
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TABLE II. Comparison of predicted resonance parameters with experimental ones.

Present work (evaluated at 2 keV) Evaluated values

Nuclei S0, (eV)−1/210−4 S1, (eV)−1/210−4 R′(fm) S0, (eV)−1/210−4 S1, (eV)−1/210−4 R′(fm)

238U 0.918 1.72 9.59 1.03 (0.08) [38] 1.6 (0.4) [38] 9.6(0.1) [24]
232Th 0.859 1.72 9.62 0.935 (0.05) [37] 1.81 (0.03) [37] 9.53 (0.05) [37]

0.87 (0.07) [38]

V. CONCLUSIONS

In this work we have presented a dispersive isospin-
dependent relativistic CC optical model analysis of nucleon
scattering on 232Th and 238U nuclei from 1 keV to 200 MeV.
The use of proton- and neutron-scattering data simultaneously
made it possible to increase the accuracy of estimated
optical potential parameters, especially in the high-energy
region. The excellent overall agreement obtained between
predictions and experimental data would not have been
possible without including dispersive terms in the calculations
and nonlocality effects in the volume absorptive potential.
Very weak dependence of the geometrical parameters on
mass number is observed. Calculations that use the DCCOM
potential reproduce the experimental total cross-section differ-

ence between 232Th and 238U nuclei measured by Abfalterer
et al. [6] within experimental uncertainty. The isovector terms
and the very weak dependence of the geometrical parameters
on mass number A give the possibility of extending the derived
potential parameters to neighboring actinide nuclei with a great
confidence. This work is in progress.
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