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Abstract

The line of research developed within the present work is the description of
the structure and the dynamics of weakly-bound systems with one or more
valence particles. Even considering inert cores, the problem is relatively easy
only with one valence particle (one-particle halo), and starts to be more com-
plex with two particles (two-particle halo), becoming extremely complicated
for systems with more active particles. For these reasons one typically re-
sorts to approximated schemes (coupled- channels, first order approximation,
space truncation, effective optical potentials and form factors, continuum
discretization, etc) that need to be tested, not only against experimental
data. So the main purpose of this work is the comparison between approx-
imate models and exact ones. However, mathematical complexities and the
high computational power required constitute a huge difficulty. Therefore,
to make feasible the solution of the problem, particles are assumed to move
just in one dimension and nuclei move according to a classical trajectory. In
spite of the drastic assumptions, the problem retains the main features and
properties of a full three-dimensional case. In addition, one could shed some
light on the reaction mechanism, namely, on the description of the process
in terms of single or repeated action of the external field in a perturbative
expansion. A typical example is provided by the two-particle transfer pro-
cess: is the pair transferred in a single step or in a correlated sequence of
two single-particle transfer through a number of intermediate states?

In the case of one-particle halo nuclei, the process involves one active neutron
initially sitting on a single-particle level of a one-body Woods-Saxon poten-
tial (target) and feeling the action of a second moving potential (projectile).
The target potential is assumed to be at rest in a fixed position, whereas
the projectile moves following a fixed classical trajectory. The choice of
the parameters entering the calculation will lead to various structural and

kinematical conditions, corresponding to rather different physical situations
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and simulating different bombarding energy regimes, impact parameters, and
Q-values for particle transfer. Essentially, one has to fix the parameters
characterizing the potential wells (energies of single-particle states in both
potentials), initial wavefunction (selecting one of the levels in target poten-
tial), distance of closest approach, and asymptotic energy of the collision.
The “exact” results can be obtained by directly solving the time-dependent
Schroedinger equation. The probability for populating the different channels
after the collision is determined by projecting the asymptotic wavefunction
(i.e. the solution for large values of ) onto the corresponding eigenstates of
the wells. The same equation is solved within the first order approximation
and standard coupled-channels formalism, thus testing the validity of the
necessary truncations and continuum discretization (that is obtained through
different methods). In particular, by this comparison, one might infer the
importance of including the continuum to obtain the proper result expected
from the “exact” calculation, even if the system is not very weakly-bound.

In the case of two-particle halo nuclei, as in previous case, the initial two-
particle state is generated by the fixed well and the time evolution of the
two-particle wave function is due to the action of two moving one-body
potentials along a classical trajectory. In addition, one can include a resid-
ual short-range pairing interaction between the two valence particles. For
simplicity the pairing interaction is taken to be a density-dependent zero-
range potential, and hence it acts only when the two particles are both inside
the same well. Again, the solution is obtained by solving the time-dependent
two-particle Schroedinger equation. At the end of the process one can single
out the population of the different final channels: elastic/inelastic (both
particles still in the initial well), one-particle transfer (one particle in the
initial well and one in the moving one), one-particle breakup (one particle
in the continuum outside the wells and one in the initial or final well), two-
particle transfer (both particles in the moving well), and breakup (one or
both particles outside the wells). For the two-body process one can study the
reaction mechanism by switching on or off the pairing interaction. Due to the
absence of correlations the transfer process is induced by the one-body mean-
field generated by the moving wells and, in terms of reaction mechanism, the
two-particle transfer can only be interpreted as produced by the successive
transfer of single particles. In the correlated case the probability of finding

both particles on the same side is clearly favored, and the effect of this
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initial correlation will propagate during the scattering process. In fact one
finds a final probability larger than that for the uncorrelated estimate. This
rapresents therefore the enhancement factor due to the pairing correlation.
In conclusion, despite its simplicity, the model provides a framework for
the understanding of direct reactions mechanisms involving one- and two-
particle halo nuclei. In particular, it permits to test in a simple way the role
of continuum and usual approximate approaches. It also allows to prove the

role of pairing interaction between the two valence particles.
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Chapter 1

Introduction






One of the most relevant research lines in nowadays nuclear physics is
the investigation, both experimentally and theoretically, of nuclei under
extreme conditions and, in particular, nuclei far from the stability line
(nuclei highligted in black in figure 1.1). Nuclei that do not bind more
neutrons define on the isotope chart the neutron drip line (solid line on the
left indicates proton drip line and solid line on the right marks neutron drip
line in figure 1.1). Along this line truly enticing and striking novel nuclear
structure phenomena are being observed. In particular, these so-called
exotic nuclei present low proton or neutron separation energy, short lifetime,
and a radius which noticeably deviates from the A'/3 dependence of stable

nuclei, a fact that is related to a skin or a halo structure |1, 2]. The excess of

g =]
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Figure 1.1: The nuclear chart mapping the existing nuclei. The black squares
in central zone are stable nuclei. The outer lines denote the theoretical
estimate for the proton and neutron drip lines.

neutrons or protons also leads to a different rearrangement which is generally
described as deformation: this is indicated by new single-particle character
of states and new magic numbers related to new shell closure |3, 4]. Because
of the large spatial separation between the centre-of-mass and the centre-

of-charge, in presence of an extenal electric field low energy electric dipole
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oscillations can result, as well as very clear cluster effects [5]. Nowadays
measuring the properties of such nuclei is the goal of the main experimental
nuclear facilities around the world [6, 7]. Due to their short lifetimes targets
of such nuclei are impossible to be constructed, so they can not be studied
by usual spectroscopic tecniques. Thus, the challenge to measure nuclei
on the drip lines has made possible the development of radioactive nuclear
beams. From a theoretical point of view, the conventional theories valid for
the description of stable nuclei are no longer able to describe exotic systems,
thus indicating the necessity to improve them and include the description of
the new phenomena taking place at the limits of stability, taking into account
the new features. An advantage of nuclear physics is the communication
and cooperation of both experimental and theoretical sides to go forward in

the knowledge of nuclei.

As we have seen, examples of exotic systems are nuclei with large neutron
excess, with the barely bound outermost ones creating an extended density
distribution, named as halo. There can be different kinds of halo systems, as
shown in figure 1.2. A nucleus with one valence neutron is for example ' Be,

on the other side ®B is a nucleus presenting a one proton halo'. Particular

I

12 14
. stable

In=hala

e
So An=sysiem

-
i

Figure 1.2: The nuclear chart, zoom on the light nuclei area. Black cells
indicate stable nuclei, halo nuclei are highlighted by striped cells.

halo systems, the two-neutron halo nuclei, are the so-called Borromean.

Borromean nuclei are three-body systems? with at least one bound state but

"Due to the Coulomb barrier the proton halo is suppressend, for this reason proton
drip line is closer to the stability valley than the neutron drip line
?We consider here those systems composed by an inert core plus two particles.
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with no bound binary sub-systems. The best known examples of Borromean
nuclei are YHe and 'Li, but other Borromean nuclear systems have been
proposed, e.g. Be and 22C [8]. The pairing interaction, which tends to
couple the nucleons to spin 0, seems to play an important role in binding
those systems and in the reaction mechanism involving Borromean nuclei
[9].

The theoretical description of halo nuclei is strongly characterized by its
weakly-bound nature. To understand this point let us consider a schematic
picture in which the nucleus is modeled with a mean field potential filled with
nucleons (protons and neutrons). Bound nuclei in the vicinity of the stability
valley partially occupy the available bound states, as it is schematically
depicted in figure 1.3a. In this configuration the lowest nuclear excitations
can be obtained by promoting one or more nucleons to the still bound higher
energy states, as shown in figure 1.3b. How is this simplified picture affected
as nuclei get close to the neutron drip line? In this case the neutrons occupy
all the bound levels so that the neutron Fermi energy approaches to zero,
as shown in figure 1.3c, and the corresponding neutron excited states must
involve the promotion of a neutron to continuum states (figure 1.3d). The
last nucleons are so weakly-bound that the addition of any correlation to the
simple mean field model inevitably involves the inclusion of the continuum
in the system description. For this reason the description of their structure
or dynamics is more involved (above all for more than two valence particles),

even considering inert cores.

1.1 Nuclear reactions

Most of our present knowledge of stable and exotic nuclei stems from the
analysis of nuclear reactions. As schematically shown in figure 1.4, these
processes are traditionally separated into two groups: compound nucleus
and direct reactions [10].

Compound nucleus reactions are those processes in which the colliding
elements fuse to form an intermediate system, the compound nucleus, which
successively decays by evaporating nucleons or y-rays to different final nuclei.
In this case the final systems do not have any “memory” of the initial reacting
nuclei (a + A — C — b + B). On the other hand, direct reactions refer

to collisions in which the nuclei make “glancing” contact and immediately
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=

P n

(a)
A E

A d
r

—>

p n p n
(c) (d)

Figure 1.3: Schematic single-particle configuration of the ground-state (a)
and its particle-hole excitation (b) for a nucleus close to the stability valley.
Corresponding situation for a system close to the neutron drip line, with
ground-state (c) and its excitation of a nucleon to the continuum (d). Note
that the dominant interaction is n-p interaction, but in configurations (c)
and (d), characterized by an excess of neutrons, the result is a less bound
neutron well.
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Figure 1.4: Schematic representation of compound nucleus and direct reac-
tions.



1.1. Nuclear reactions 7

separate, they are said to be peripheral or surface processes. The colliding
nuclei preserve their “identity” (a + A — a* + A*). Direct reactions are
characterized by different channels: elastic and inelastic scattering, transfer
of nucleons between the colliding nuclei, breakup (i.e. excitation to positive
energy states).

It is possible to have direct and compound-nucleus processes both contribute
to a given reaction, but usually each one corresponds to a precise regime.
For example, direct processes occur very rapidly in a time of the order of
10710 ps, while a compound process tipically takes much longer, perhaps
107* to 1079 ps. Another threashold is the de Broglie wavelength \ =
2mhe/ E [11]: as the energy of the incident particle is increased, its de Broglie
wavelength decreases, until it becomes more likely to interact with a nucleon-
sized object than with a nucleus-sized object. So a 1 MeV incident nucleon
has a de Broglie wavelength of about A = 4 fm, and thus does not “see”
individual nucleons; it is more likely to interact through a compound-nucleus
reaction. Meanwhile, a 20 MeV nucleon has a de Broglie wavelength of about
A = 1 fm and therefore may be able to partecipate in direct processes. Direct
processes are most likely to involve one nucleon or very few valence nucleons
near the surface of the projectile or target nuclei, in a one-step process. The
emphasis on a simple, one-step process means a tendency for only small
amounts of momentum to be transferred in a direct reaction [10], hence
the angular distribution of the reaction products tends to be asymmetric
about 90° and to be peaked at forward angles. The angular dependence of a
direct reaction is forward peaked, since the interaction is restricted mainly
to peripheral collisions from which the outgoing particle will carry most of
the incident energy and momentum of the projectile, and this allows the
angular distribution peak to be narrow (localized in scattering angle). The
characteristic angular distribution of particles evaporated from a compound
nucleus is generally more isotropic and symmetric around 90°. Furthermore,
direct reactions are expected to vary slowly as the bombarding energy is
changed.

As we mentioned, direct nuclear reactions are useful tools to investigate
nuclear structure, because a direct reaction will feed a particular channel
in a way that depends sensitively on its character. In particular, inelastic
scattering excites collective states strongly; one-neutron transfer probes the

single-particle character of states; two-nucleon transfer goes preferentially to
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states that exhibit strong pairing correlations; pairing could also be tested
via multi-nucleon transfer, as well as clustering; the role of continuum is
investigated through breakup reactions. This is of particular value in probing

different aspects of nuclear structure.

1.2 Direct reactions models

In this thesis we focus our attention on direct reactions involving nuclei with
one valence neutron and in Borromean nuclei. For that, we need to apply
a scattering theory. The final goal of the scattering theory is to develop
appropriate models to which compare the measured observables, with the
aim of extracting information on the structure of the colliding nuclei as well
as understanding the dynamics governing these processes. The measured
quantities are typically total or partial cross sections with respect to angle
and/or energy of the outgoing nuclei. Therefore, the challenge of reaction
theory is to obtain these cross sections by solving the dynamical equations
of the system (at non-relativistic energies, the Schoroedinger equation) with
a realistic but amenable structure model of the colliding nuclei. By solving
the Shroedinger equation, one obtains the wavefunction of the system. This
wavefunction will be a function of the degrees of freedom (e.g. internal co-
ordinates) of the projectile and target, denoted generically as £p and &7, as
well as of the relative coordinate between them (R). Thus we will express

the total wavefunction as ¥(R,&p,&r). The system Hamiltonian is

H=Tr + Hp(Ep) + Hr(ér) + V(R, Ep, 1), (1.1)

where Tg = —%Vz , Hp(&p) (Hr(ér)) denotes the projectile (target) inter-
nal Hamiltonian, and V (R, {p,&r) is the projectile-target interaction. After
the collision, the projectile and the target may excange some nucleons, or
even break up, so the Hamiltonian (1.1) corresponds actually to the entrance
channel. To denote the possible mass partitions that may arise in a reaction,
we will denote o as the initial partition and S as the final one. So the

previous Hamiltonian is rewritten as

H:Ta'i‘?'[a(fa)‘i‘va(Raafa)? (1'2)
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where £, denotes the projectile and target internal coordinates in partition
a. The total energy of the system is given by the sum of the kinetic energy
(E,) and the internal energy of projectile and target (e,)
R2k2
E:Ea+ea:2 2+ €q (1.3)

«

where ik, is the linear momentum. The wavefunction ¥(R,¢) will be a

solution of the time dependent Schroedinger equation
[H — E] ¥ =0. (1.4)

This is a second order differential equation that must be solved subject to
the appropriate boundary conditions, which must reflect the nature of a

scattering process.
In a time-independent picture, typical of the quantum approach, the

incident beam is represented by a plane wave3. After the collision with the

target, a set of outgoing spherical waves will be formed. The situation is

Q)ﬂ[ﬂc[ﬂr

schematically depicted in figure 1.5.

i

Source

Figure 1.5: Schematic representation of a scattering process.

3This is true only for the case of short-range potentials; in presence of Coulomb poten-
tial the incient wavefunction is represented by a Coulomb wave.
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So, asymptotically
\Ifl((—g)(R, £€) = @ (€)™ R 1 outgoing spherical waves, (1.5)

with ®¢(¢) = ®%(£p) D% (E7), and where the superscript “+” indicates that
this corresponds to the solution with outgoing boundary conditions (math-
ematically, one may construct also the solution with incoming boundary
conditions).

During the collision, the incident wave will be highly distorted by the
projectile-target interaction but, after the collision, at sufficiently large
distances (that is, when V becomes negligible), the projectile and target
will manifest any of the kinematically allowed eigenstates of the system. So,

asymptotically, we may write?

ik Ra
Ra K- e
\IJI(:;) oD, (Eq)eaRa 4 @a(ga)fw(e)T
¢k Ra
+(§X¢a’(£a)fa’,a(9) Ra (16)
Rg> etksRg
e 5 a6 faal0)

B

First, second, and third lines correspond to elastic, inelastic, and trans-
fer channels, respectively. The angle 0 is the CM scattering angle, and

corresponds to the angle between the incident and final momenta (k, and

kg). Note that kg and Rg are parallel. The function ezig:ﬁ is a spherical
outgoing wave. The function multiplying this outgoing wave is the scattering
amplitude for channel 5. The differential cross section for particles scattering
in the direction 6 in channel 8 is defined as the flux of scattered particles
through the area dA = r2dS, per unit incident flux. This quantity is directly
related to the scattering amplitude as

do Ha 2
— = — . 1.7

k
éfﬁ,a (9)

“Note that we distinguish between R, and Rp since, for a riarrangement process, the
coordinate will be different.
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1.2.1 Semiclassical solution to the scattering problem

When the de Broglie wave length associated to the projectile motion is
small compared to the size of the scatterer, one may solve the scattering
problem making use of a semiclassical picture, in which the projectile-
target relative distance is described by means of a classical trajectory, but
keeping the quantum-mechanical description of the projectile and target
internal motion. This approach is possible when the cross sections of the
reactions involving heavy nuclei does not present the typical oscillations
of the interference patterns of a quantum interaction. An andvantage of
semiclassical methods is that, from a computational point of view, they are
less demanding as compared to fully quantum-mechanical methods.
In the semiclassical theory the target-projectile interaction is time-dependent,
because the distance R between target and projectile is changing with time;
for a given impact parameter b the projectile-target relative motion is
given by a classical trajectory R(t), and the intrinsic dynamics is treated
as a time-dependent quantum mechanics problem [12].  Therefore for
the semiclassical calculation, the coupling interaction is time-dependent
V(R,¢p,ér) = V(R(t),Ep,&r). The problem is traditionally solved in the
so-called coupled-channels approach (or in its lower order approximations in
presence of strong transitions) in which the wavefunction of the system is
expressed as an expansion in a basis of internal states of the system, with
some time-dependent coefficients
N
[U(0)) =D i (b, 1)|B5)e™ " 4 [V (1)), (1.8)
j=1

where |¥(t)) is the component of the wavefunction in the continuum, and
N is the number of bound states |®;) of the system. The solution of the
problem moves to the study of the evolution in time of the coefficients ¢; (b, t)
corresponding to each reaction channel i given the impact parameter b.
The time evolution of these coefficients is obtained from the time-dependent

Schroedinger equation with Hamiltonian

H =Tr +Hp(Ep) + Hr(ér) + V(R(t),Ep, 7). (1.9)
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As the collision proceeds the amplitudes ¢;(b, t) evolve, and their final values
contain the relevant information on the probability of the corresponding
channels, e.g. the final probability to excite the i-th channel for an impact

paramenter b is P; = |¢;(b, t5)|%.

The application of scattering theory to weakly-bound systems has lead
to the development and extension of reactions formalisms to account for
the effects of the coupling to breakup channels on reaction observables.
These methods must take into account the new features of exotic nuclei.
In particular one has to deal with continuum, and this usually involves a
procedure of defining, discretizing and truncating continuum states. Many
approaches have been developed: continuum-discretized coupled-channels
(CDCC) method [13, 14|, the adiabatic approximation |15, 16|, and a variety
of semiclassical approximations [12, 17-19].

Typically, these approaches make use of a few-body description of the weakly-
bound systems, which, in the case of halo nuclei, consists of a core plus one
or two weakly bound valence particles.

Extensions of existing formalisms to include excitations of the involved
clusters is also an intense topic being currently addressed by several groups
[20-25].

1.3 Why a one dimensional model?

As we have seen many models to describe these processes are available and
usually compared to experimental data. But since these models are based
on approximations, not always the exact solution can be obtained, e.g. for
problems related to basis choice, uniqueness or convergence. The different
approximations and subsequent limitations should be tested. In particular,
in this thesis we are interested in understanding the role of continuum in
direct reactions mechanism and how to include it properly in a CDCC cal-
culation. As example, let us consider the ''Be + p — n + p +'9 Be breakup
reaction. In CDCC, this process would be treated as an inelastic excitation of
HBe to its two-body continuum, i.e. 1* Be+p — (1* Be4n)+p. This approach
will be valid to describe final situations in which the outgoing n and °Be
fragments are detected with a small relative energy and angular momentum,

thus populating low-lying states of the ''Be continuum. For large energy
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and/or angular-momentum transfer, the CDCC expansion may require a very
large model space, and the convergence of the reaction observables as the
model space increases can be very slow. In this case, an expansion in terms of
p — n states (including deuteron continuum) may be more apropriate. Each
basis selection tends to emphasize the properties of a given binary system,
partially neglecting correlations on the other binary systems. This will give
rise to some limitations of the CDCC model, for example, when both transfer
and breakup are important [26-28].

A more complete reaction theory which incorporates on equal footing the
correlations between the different binary sub-systems is provided by the
Faddeev formalism. Recently, it has become possible to solve the Faddeev
equations for nuclear reactions involving light systems, thus providing a very
useful benchmark for more approximate theories, like CDCC |29, 30]. How-
ever, these calculations are sometimes bias by numerical and convergence
difficulties. Moreover, the complexity of the Faddeev method limits so far
its applicability to relatively light systems.

Since we would like to face the problem in the simplest framework possible,
we move to one dimension (1D) where, despite the drastic assumption, the
model encompasses many features found in the three-dimensional case. In
particular, the influence of the positive energy states on the scattering ob-
servables can be studied in this framework.

Within this assumption, we model the reaction following the time evolution

of the wave function of the system
N .
Wie,t) = 3 (02 ()P, (1.10)
j=1

where N is the number of basis states including bound and discretized
continuum states. In the frame of a semiclassical approach, we start from
an initial wavefunction W(x,t;) describing system at ¢; = —oo, we let the
system evolve in time by solving the time-dependent Schroedinger equation
to obtain at ¢y = 4oo the final wavefunction W(z,t¢). In this simplified
case it is possible to follow easily the time evolution for both the exact total
wavefunction U(z,t) and the set of coefficients ¢;(¢): the exact solution can
be compared with the results obtained by expanding the wavefunction in a

basis that includes discretization of the positive energy part of the spectrum
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as in the CDCC approach. We can thus check the validity of the different

approximations connected to the different discretization methods.

Although the simplification achieved devising our 1D model precludes us
from comparing directly to real nuclei, we expect that the present model,
notwithstanding its simplicity, contains the basic physical ingredients for a
correct description of the problem under study. A solution of a simplified
model frequently sheds light upon a physical problem whose full solution is
hindered by mathematical complexities or is simply not possible.

Different aspects of the one dimensional problem have been already de-
veloped and discussed in many papers. Reduced dimensionality models of
application in nuclear physics can be found e. g. in [31-33|. In [34] the
authors discuss the problem of the excitation to the continuum (breakup)
of a particle, initially moving in a single-particle orbit of a one-dimensional
well, due to the action of an external perturbation (simulating the interaction
with a reaction partner). In [35] the exact solution for the same scattering
problem we proposed here is compared to the results of a CDCC model, but
without including the continuum. In [36-38] the structure of a two-particle
Borromean system, bound to the action of a residual pairing interaction, is
investigated. In |39] the autors investigate the break-up of such Borromean
systems due to the action of an external one-body field, pointing out the role
of the residual pairing interaction in enhancing the correlated two-particle
breakup in comparison with the single-particle breakup. In particular, some
results for the model investigated in the present thesis can already be found
in [40] with regard to the structure aspects, and in [41-43] and [44] for the

one- and two-neutron systems dynamics.

1.4 Summary

In accordance with this picture we present in this dissertation results for a
one-dimensional (1D) model of two particular kinds of halo nuclei: the one-
neutron halo nuclei, and the so-called Borromean two-neutron halo nuclei.
First of all we present a description of the structure of one-neutron systems
in chapter 2, and then we use those results for the dynamical description in
chapters 3. In the case of one valence neutron, the structure is identified by a

a mean field 1D Woods-Saxon potential, where the core occupies the lowest
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well-bound states and the one-body halo is identified with a last weakly-
bound level.

It is clear that the description of such systems requires an adequate consid-
eration of the role of the continuum. In order to do so we study different
methods to deal with continuum in sections 2.1 and 2.2: we select a set
of Woods-Saxon potential parameter values that qualitatively model a nu-
clear structure problem and discretize the system continuum, using a finite
set of normalizable (square-integrable) functions (known as pseudostates);
three different approaches have been followed. The first one consists in
diagonalizing the Woods-Saxon potential Hamiltonian matrix in a truncated
Harmonic Oscillator (HO, section 2.2.1) basis; the second makes use of a
local scale transformation, applied to the HO basis, to construct a truncated
Transformed Harmonic Oscillator (THO, section 2.2.2) basis; the third one
uses a rigid wall box (BOX, section 2.1.2) to achieve continuum discretiza-
tion. Another way to treat continuum, simple in the one-body case, is the
determination of the “exact” continuum wavefunction by applying a finite
difference method (we used the Numerov method); this results are presented
in section 2.1.3.

We present in sections 2.3 and 2.4 results obtained for the one-neutron
system: eigenvalues, eigenfunctions, and other quantities of interest (single-
particle transition of z and z? operators, total strength, and sum rules),
studying and comparing the convergence properties of the different ap-
proaches. Once the pseudostate description of the model Woods-Saxon
potential for the one-body systems has been set up, we proceed to the
dynamical part.

We present the exact (section 3.1) and the approximate (sections 3.2 and
3.3) solutions for the scattering of one-particle in the field of two potential
wells. We study the influence on the Q-value and the distance of closest
approach on the exact solutions in section 3.4, and we present results for
different model cases in section 3.5.

In chapter 4 we describe both the structure and dynamics of the Bor-
romean systems. The main ingredients of the Borromean system are the
mean field 1D Woods-Saxon potential, with all bound levels supposed to be
totally filled by inert core, plus two extra neutrons. The resulting system,
unbound at the mean-field level, is bound due the action of a residual point

contact density-dependent interaction, which models the pairing interaction.
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To specify the two-body problem, in section 4.1 we introduce an appro-
priate basis and construct bound and excited states by diagonalizing the
system Hamiltonian with the different continuum discretization procedures
described previously in chapter 2. Besides the discussion on the convergence
of eigenvalues and eigenfunctions (section 4.1.1), we compute other quanti-
ties of interest as anomalous density and transition intensities of z and 22
operators in sections 4.1.2 and 4.1.3. Then, these results are compared with
those obtained describing the same system (core plus two neutrons) within
the “popular” di-neutron cluster model. Once we have the description of
the structure of Borromean nuclei, in section 4.2 we develop the scattering
process of the two-body system in the field of two potential wells. Finally,
we study the influence of the binding energy and pairing interaction in the
reaction mechanism (4.2.1 and 4.2.2).

In conclusion, we summarize the main results of this work in chapter
5, where we present some concluding remarks and suggestions of future
investigations along the present line of research.

The document ends with some appendixes which complete the discussion.
We deepen the study of continuum structure giving a more detailed compar-
ison between HO and THO discretization methods (A), and investigating
resonances and virtual states (B). We also give some hints on the non-
covariance of Schroedinger equation in non-inertial frame of reference (C),
as well as some demonstrations supporting the calculations presented in the
thesis (D).

As a last remark we would like to mention that the calculations presented
in this thesis have been carried out using FORTRAN9(, GNU-Octave, and

PERL codes ® 6.

SWe have also made use of NAG, ATLAS, LAPACK95, and LAPACK libraries.
In these programs the following values of the relevant physical constants are used:
fic = 197.32858 MeV-fm, amu = 938.92635 MeV /c?, 2 /amu = 41.4713768 MeV2fm?.



Chapter 2

Bound and unbound states of a

particle in a potential well

In this chapter we start considering the problem of a particle moving in a
potential well. This can be considered as a toy model for the more realistic
problem of a two-body nucleus consisting of a tighly bound core plus one
weakly bound nucleon, such as a halo nucleus. We discuss several numerical
and approximate methods to obtain the states of this system and the corre-
sponding wave functions in sections 2.1 and 2.2; we then compare them in
section 2.3. Moreover, the quality of the description of the excited states is
investigated by means of the calculation of several sum rules, which will be

introduced in section 2.4.
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To study the structure of one particle! bound in a potential well, we
have to calculate the single-particle eigenvalues and the corresponding wave-
functions. The model potential we use is the one dimensional Woods-Saxon

potential® Viys(z),
Vo
Vws(z) = —— = (2.1)

14+e @
with potential parameters chosen for the tests presented in next sections:
Vo = —50.00 MeV, R = 2.00 fm, a = 0.40 fm, and p = 0.975 amu. This
particular set of parameters has been chosen to set up a 1D toy model
representative of a light-mass weakly-bound nucleus. With this choice of
parameters the system has in fact three single-particle bound states whose
energies are presented in figure 2.1, with a weakly-bound third energy level
(-0.51 MeV binding energy). A potential like the Woods-Saxon mean field

I
0
-0.51 MeV |
10+ _
S
[0}
= -20r -17.87 MeV|
>
5 |
L“ﬁ’ -30F -
-40F - 39.57 MeV |
_ | . | . . | . |
50— 10 0 10 20

energy.pdf

Figure 2.1: The Woods-Saxon 1D potential with the bound states. They
have been computed diagonalizing the Hamiltonian in a HO basis with N=50
functions.

of equation (2.1), will give two kinds of results: a set of bound levels with
negative energy and a continuum associeted to the positive part of the spec-

trum. The bound states are square-integrable wavefunctions, which decay

'"Note that, since we do not simulate Coulomb barriers, we assume the valence particle
to be a neutron.

In this thesis only the results obtained with a Woods-Saxon potential are presented,
but other potentials have also been tested in order to check the developed computational
tools for the resonant states: Woods-Saxon with different parameters and with barriers,
Hazi-Taylor, and Ginocchio potentials. See Appendix B.1 for further details.
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exponentially to zero. In one dimension, the ground state does not present
nodes and is a even function, while the excited states present an increasing
number of nodes (e.g. the first excited state has one node and is an odd
function, the second excited state has two nodes and is even function, etc.).
The continuum functions are asympthotically oscillating to infinity, and for
each positive energy, in one dimension, there are two associated functions:
one incoming from the left and one from the right. To properly describe the
case of a weakly-bound system close to neutron drip-line, it is mandatory to
include continuum effects in the system description, therefore our model must
include the positive energy part of the spectrum. To treat the continuum
consistently we should discretize it by choosing only certain energies and
convert this set into square-integrable functions.

To solve this problem we will apply different methods. We can calculate
numerically the bound levels energies and wavefunctions by applying a finite-
difference method (we employ the so-called Numerov method [45] in section
2.1.1); and we can also construct a discretized continuum spectrum using a
large rigid wall box (BOX), as we do in section 2.1.2. Otherwise, we can
apply an approximate method as we show in section 2.2: the pseudostate
methods in wich continuum wave functions are obtained as eigenstates of the
system Hamiltonian matrix in a truncated basis of square-integrable wave
functions, such as Harmonic Oscillator (HO, section 2.2.1) and Transformed
Harmonic Oscillator (THO, section 2.2.2) bases. In addition, since we use
a one dimensional model space, we can also calculate and treat the “exact”
continuum wavefunctions and use their combination to build a basis of nor-

malized bin functions, as presented in section 2.1.3.

2.1 Numerical calculation of stationary states

The problem of a neutron moving in a 1D Woods-Saxon mean field can be
solved exactly, by direct integration of the 1D time-independent Schroedinger
equation (TISE)

h? d?

Hipp(z) = Eyp(x) — Touda?

+ Vs ()| (x) = E(x). (2.2)

Let us show in the next sections different ways to obtain numerically bound

and continuum states.
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2.1.1 Bound states: the Numerov method

In this section we follow the solution of the eigenvalue problem of equation
(2.2) for the bound levels of Woods-Saxon potential, according to the Nu-
merov method presented in [45].

An acceptable solution ¥g(x) of the eigenvalue problem must be a continu-
ous bounded functions of z, conditions that generally occur only for special
values of the particle energy E. The eigenvalues are these allowed energies E.
For simplicity, by defining y(x) = Ug(z) and g(z) = 2m [E — Viys(x)] /R,

we can recast the problem as

d?y

T2 + g(x)y(z) = 0. (2.3)

The discrete version of this equation follows by writing * — x, = nh and
f(z) — f(x,) = f, for any function f(z), where n is an integer and h is the
size of the spatial grid. The procedure would be straightforward except for
the second derivative, which requires some approximations. If we start with

the simple definition of second derivative
Aanfl = f(xn + h) + f(ajn - h) - Qf(xn)’ (2'4)

and expand the first two terms on the right in a Taylor series, we obtain
ht
A2fyy = h2f" () + Ef@”)(g;n) + O(h%). (2.5)

The simplest approximation A%f, 1 ~ h%f”(z,) gives the central differ-
ence approximation to the second derivative and yields a discrete version of
equation (2.3) that is accurate to O(h3):

A%y 1 + h2gnyn = 0. (2.6)

The Numerov method improves on this by using the original differential
equation for y(x) to write h2f)(z,) = —h3(gy)” ~ —A%(gp_1Yn_1). This

gives the Numerov discretization of equation (2.3)

h2
Az |:<1 + 129n—1> yn—1:| + hQQnyn = 07 (27)
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which is accurate to O(h®).

Interestingly, the Numerov version is identical to equation (2.6), with the

replacements
h? g
Yn — <1 + gn> Yns Gn = — 55— (2.8)
12 1+ 129n

so the Numerov method improved accuracy comes at negligible computa-
tional cost. In the following, we will adopt equation (2.6) as the discrete
equation of interest, with the assurance that the results apply equally well
to the Numerov version after suitably redefining the terms.

If the computational domain corresponds to N; < n < Ny, then —oo < n <
N1 and Ns < n < oo define the exterior regions. Our task is to find suitable
analytic solutions to equation (2.6) in these exterior regions, from which we
will infer the proper boundary conditions to be imposed at the limits of the
actual (finite) computational interval. Because the exterior regions include
the asymptotic realm n — 400, solutions here can not diverge for large |n|
if they’re to be physically acceptable.

If we define p,, = Ayy/yn+1 the logarithmic derivative of y(z), whose deriva-

tive is Apip—1 = fin — fin—1, €quation (2.6) becomes
12+ (h%gn + Apn—1) (1 — 1) = 0. (2.9)

Throughout each exterior region, according to our definition, g, is unchanged
from its value at the inner boundary, gy, or gn,. But if g, does not change,
then neither does p,, so Ap,—1 vanishes identically, and equation (2.9)

reduces to a quadratic form that we can solve to give the root pair

1
iy = 3 <h29n + higZ — 4h29n) (2.10)

with the property
(=) (1 —p,) =1 (2.11)

For g, < 0 (or h%g, > 4), both roots of equation (2.10) are real. Because
(1 = pn)Ynt1 = Yn, we must select the root that makes |y,t1| > |yn| over
the left exterior region (—oco < n < Nj) and |ynt1| < |yn| on the right
(N2 < n < oc0) to generate solutions that approach zero as n — +oo, i.e.
the bound states of the potential. If 0 < h%g, < 4, then p are complex
conjugates, and equation (2.11) implies |1 — p;5| = 1. It follows that the
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exterior solutions have constant modulus, |yn+1| = |yn|, and are oscillatory;
these solutions correspond to the continuum.
Now, we select? different values of negative energy E and construct the

corresponding stationary state y(z) = Wg(x), following this algorithm:

e If gy, <0, take yn, 11 = (1—pn, ) "Ly, and calculate yn, 1o, Yn, 13, -
recursively from equation (2.6). Calculate py, as the root of equation
(2.10) for which |1 — up,| < 1.

o If gn, < 07 take YNy—1 = (1 - Nszl)yNz and calculate YNy—2;, YN>-3,
. recursively from equation (2.6). With g assumed constant in the
right exterior region, uy,—1 is indistinguishable from ppy, and can be

found from equation (2.10) as the root for which |1 — pn,| > 1.

If gy, > 0, the solution corresponds to a continuum wave and we should
follow a different prescription (see section 2.1.3).

In all cases, the values for yy, and yy, are arbitrary, reflecting an overall
choice of normalization, and we can set them equal to unity. If the two
steps both apply, the recursive solutions we obtain must be joined at some
intermediate point*, say, n = M. We first match the slopes at ya; by
adjusting the start value yp,. Then, whenever the corresponding energy
FE of the wavefunction under study is an eigenvalue, both recursions will also
give identical values for yys. Otherwise, the solution is discontinuous at ys
and physically unacceptable. We can find slopes at yy; accurate to O(h3)

using the centered difference
y(xar + ) —y(za — h) = 2hy' (zar) + O(R?). (2.12)

However, the Numerov implementation is more demanding and requires two

steps to calculate the slopes y/(z)s) to the desired accuracy:

1 1 3
y(xy +h) —ylen —h) — gy@M +2h) + gy(fUM —2h) = §hy/($M) +O(°).
(2.13)
At the end of this calculation we obtain a set of bound state wavefunctions

U p(z) with the corresponding energies E.

3To choose the energy values we should care to fix a small energy interval not to loose
precision. For our calculations we used a AE = 0.4MeV.

4The matching point zs should not be close to the possible nodes of the wavefunctions,
but on their tails.
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2.1.2 Bound and unbound states: Woods-Saxon in a BOX

w A procedure to authomatically calculate bound and continuum square-
integrable discretized states is the so-called BOX method, which consists in
confining the system in a box defined by a radius xy

V() =

{ VWS Zf |a;\ < Ty, (2 14)

oo if |z] > my.

With z; chosen large enough compared to the potential range. This problem
can be solved using standard numerical techniques for the solution of differ-
ential equations, as for example the Numerov approach we have just shown in
section 2.1.1. Once the 1D TISE for the mean field Woods-Saxon potential
(2.1) is solved, we obtain the eigenenergies EZBOX and the corresponding

eigenfunctions 20X ().

2.1.3 Unbound states: the “exact” continuum

In a one-body problem it is rather easy to construct “exact” continuum
states. Let us consider, therefore, the problem of the scattering in a Woods-
Saxon symmetric 1D potential V(X)) (2.1). We divide the real axes in two
asymptotic regions labeled (I) and (III) and the potential region (II), as
shown schematically in figure 2.2.

The continuum wave functions are those solutions of the Schroedinger

I 1 I

Figure 2.2: A potential V(x) divided in three regions, the one above the
potential (IT) and the asymptotic regions (I and III).
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equation (3.4) with positive energy (F > 0). In this case all energies are
allowed and levels are doubly degenerate. We compute the “exact” wave-
function for a chosen mesh of continuum energies, each one corresponding
to two degenerate solutions. A possible choice for these degenerate solutions
are the scattering states calculated as an incident plane wave coming either
from the right (region I) or from the left (region III) of the well. In the

asymptotic region the solutions are

eﬂ:ik:v
xr) = ——. 2.15
P4k(2) Jn (2.15)
These continuum waves ¢y (z) are momentum-normalized, thus
1 +oo ,
Onlon) = o [ s = 5(k v (2.16)
™ —0o0
2k‘2
Since p = hk and E = = we can define also energy normalized states
1
(on(E)ow (E) = 6(E — E) (2.17)
and
m 1/2 .
E)=|—— R 2.18
6s28) = (o) © (219

The left incoming wave will have the asymptotic behaviors

1 4 .

ol (z) = N (em + reflk’”) — incident + reflected  (2.19a)
1 .

I () = tethe — transmitted ~ (2.19b)

V2r

where, in general, t,r € C and |t|?> + |r|> = 1.
We define oy, as the logarithmic derivative of the numerical solution ¢ (z)
with initial conditions (2.19)

(2.20)

and A as a complex normalization constant

1 , - 1 .
Adg(xm) = oz (e’kmm + re_”mm> and Ap(xpy) = Ete’k’w (2.21)
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where z,,, and z,; are the minimum and maximum x values. Using equations
(2.20) and (2.21) we obtain

e
L+ig o2k

= : (2.22a)
1 1 . .

A= —— ikTom + —ikxm , 2.99h
5 o) <e re ) ( )

t = V2mAp(xyy)e kM (2.22¢)

The degenerate partner is obtained imposing the asymptotic behavior

I —ikx
() = —te , 2.23a
1 . )
U@ = o= (7 4 peitr), (2.23b)
s
and in this case
1—14% )
k —2ikx
= —" m 2.24
Tyt ’ (2.242)
1 1 . .
A= Tz o) (e_kaM + reZkzM) , (2.24b)
s M
t = V2 Ap () eFom. (2.24c)

Now we consider as independent degenerate solutions at a given momentum

the symmetric and antisymmetric combinations

1
() = — )+ o_r(x 2.25a
$iu() = = [Bak(a) + 6-i(x)] (2250)

1
¢ (r) = — z) — d_r(x 2.25b
S (x) = = [b44(a) — -4(@) (2:25)

such that

(¢h|dh ) = orrd(k — k'), (2.26)
where I' = s,a, and the solutions are still momentum-normalized. So, for
each momentum k = % we obtain a set of exact wavefunctions for the

continuum

p(k,x) = ¢y (2) + oLy (2). (2.27)
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2.2 Approximate description of stationary states

As we have mentioned at the beginning of this chapter, to deal with weakly-
bound systems it is mandatory to include the continuum. The positive
part of the spectrum is represented by a continuous of solutions, whose
associated wave functions are oscillatory at large distances, reflecting the
unbound character of these states. Consequently, these functions are not
square-integrable. These properties make these functions unsuitable for
some applications, such as the study of dynamics with coupled-channels
calculation. In these situations, it is convenient to resort to an approximate
description of the continuum in terms of a finite set of square-integrable
functions, usually referred to as pseudostates (PS).

We can construct a set of PS by diagonalizing the Hamiltonian

h? d?

P = "5 e

+ Vivs(z) (2.28)
in a chosen basis of normalizable functions. The negative eigenvalues
obtained upon diagonalization represent the bound states of the systems,
whereas the positive ones can be regarded as a discrete representation of
the continuum spectrum. The pseudostates will have an oscillatory trend
up to a certain spatial region in which they asympthotically decay at zero.
They will also be associated to certain positive energies, therefore we will
not treat anymore with a continuum, but with a discrete set of functions.
As the number of basis functions grows, the density of PS’s increases and
their corresponding wavefunctions extend to larger distances, thus recovering
the structure of the continuum. So, from a computational point of view, we
should take care of defining a proper spatial range which includes the whole
potential region, and of including an adequate number of basis states in
order to obtain the convergence of the main feature of the system (such as
energy of bound levels and sum rules for electric transitions between bound
and continuum states).

In the next sections we present the different bases considered here for
continuum discretization.
We will compare the results of these methods, also with the other calculation
previously presented, in sections 2.3 and 2.4. In addition, in appendix A we

study a more detailed comparison between the two pseudostates approaches.
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2.2.1 The pseudostates method with a Harmonic Oscillator
basis

The most popular approach in Quantum Mechanics to construct a basis of
pseudostates is provided by the Harmonic Oscillator [46]. To solve the TISE
(2.2) in a 1D HO basis, the starting point is to generate a truncated N

dimensional basis set of 1D HO wave functions

o0 (z) = Myv/aH;(az)e /% i=0, ..., N—1. (2.29)

K
a= {‘/‘;T2 (2.30)

is the inverse of the oscillator length, with K equal to the force constant

The parameter

of the Harmonic Oscillator. The inverse oscillator length determination is
described in appendix D.1. H;(ax) is the i-th Hermite polynomial, and M;

is a normalization constant

1
M= ——u (2.31)

NCEING
The HO basis can be easily constructed and the necessary integral cal-

culations are simplified making use of the Hermite polynomial recurrence
relation [47].

%Hn(.%) =2nH, 1(z) ,
Hpii(x) =22H,(x) — 2nHy—1(2) , (2.32)

1 .
zHj(x) = §Hj+1(90) +jHj-a(z),
1 2j +1
PHj(2) = Hypale) + -

Hj(x) + 5 — 1) Hja(x).
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The resulting basis is
a 22
6§0@) = || el
H0(2) = ﬁ@amewm ,
HO [\ _ a 1 (—aa?/2)
- 7Hn ’
50 =\ gt 7= 7 H(an)e
HO a —a?z?
O (x) = \/2“+1(n f 1)!ﬁ[2amHn(ax) — 2nH,_1(az)]e! /2
HO 2 . HO k=1 no
o (x) = T ax ¢y (ax) — T¢k—2(a$)~ (2.33)
The 1D TISE for Harmonic Oscillator states is
A Vio@)| 680@) = he(n+ DO, (234
241 da? HO " N 27 ’ ’
where a is the inverse oscillator length (2.30) and
L. o
Vio(zx) = §K$ , (2.35)
K 2.2
b =y |1 = 0 (2.36)
M K

In order to obtain solutions of equation (2.28) for Viyg (2.1) the first step

is to compute the matrix elements of the kinetic energy in the HO basis. This

part is common to any potential.

(GHO1 71610y — " N, / T g D 0y C (el )
v A Y ! dx?"’

h2 9 +oc0 (—/2) d2
= —ﬂa N;N; /_OO dye'™ Hl(y)d—yzH
with y = ax.
Making use of the relations (2.32)
2j +1

d? B 1 .
— H;(y)e! v = {4Hj+z(y) +3( — 1) Hj-2(y) — 2

j()e v,

H;(y) e(—v2/2)
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Inserting this expression in the integral and taking into account the

orthogonality properties of the Hermite polynomials, one gets:

R oG+ 1) +2)

HO | tHO
(¢ ‘T|¢j ) =— ﬂa B 0ij+2
h? (-1
-
R 525 +1
+ ﬂa Téz"j

Note that an identical result is obtained taking into account that T =

H — Vo and thus (9[TO|T|6110) = (j + ) £ 5, ; — K (i]a?().

The second step is the calculation of the potential matrix elements in the
HO basis

A~ +0o0 *
(GHO[7|p110) = / dz 61" Vigs 670, (2.37)

—00

Due to symmetry reasons <¢ZHO|V|¢jHO> = 0 if the basis wave functions have
opposite parity (symmetric or antisymmetric).

Once the matrix is diagonalized, we obtain a set of one-body eigenvalues,
EHO

7%, and eigenfunctions, wzﬂo(x). The eigenstates are linear combinations

of the basis elements

N—
HO(2) =N " oflO¢HO (1), i=0, ..., N—1. (2.38)
k=0

—_

2.2.2 The pseudostates method with a Transformed Har-
monic Oscillator basis

A disadvantage of the HO basis when used as a basis in variational methods
to model bound states is the Gaussian asymptotic behavior, compared to
the exponential behavior of the bound states of a finite potential. This can
be avoided only using a huge number of basis states, thus increasing the
computational power required. This fact explains the success of the THO
basis.

A Transformed HO (THO) basis consists of a HO basis to which a local scale
transformation (LST) s(x) has been applied. The aim of this transformation

is to correct the HO wave functions asymptotic behavior. See, e. g., references
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[48-50].
To solve the problem in a 1D THO basis the starting point is a truncated N
dimensional basis set ¢//°(z) of 1D HO wave functions (see section 2.2.1),
which has to be transformed into the new basis as follows

ds(x)

oI HO () = . oHO(s(x)i=0,...,N -1, (2.39)

according to the analytical LST function (see [50, 51])

s(z) = (@™ + (Wa) ™) (2.40)

that is valid for > 0; for negative x values we impose that s(z) is an odd
function: s(—z) = —s(z). The quantity 7 is an adjustable parameter of the
LST, b is the oscillator length determined using the algorithm presented in
appendix D.1, and the power m, according to [49], is set to m = 4, although
the results depend very weakly on this parameter.

The matrix elements of the kinetic energy operator in this THO basis

can be computed as

o) =~ [ ae T etOlso] LT o0l
i j on ) o ¢ dx? J '
(2.41)

Making use of the relations

o(z) = 2@ _ ‘Sém) [1 + (S‘r))m} : (2.42)

dx x x
and
") = dz.;(;:) _Slii) yﬁ:? {1+(m—|—1) <(;)>m] (2.43)
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it can be finally evaluated as

(67 MOIT|g710) =

1 ﬁQ +oo

dx s"(x)? (s'(:n)) pHO (s (:v))qbe(s(x))

2 ) o
2 +o0
_’_;Zua /Oo dx 8//($) s/(a:) [\/>¢ ¢]+1( ( ))

2 +o00 1 ]
+;§M / (@) () 00 s() [ﬂ@ﬂ?(s(x TR s )
2 +oo ]

+Zua2/ dms [\/7(;5 ¢z+1( s(x))

+Zza,2 /jood:c s'( [\/7¢ ¢g+1( s(z ))] )

where, following the notation of the previous subsection, a = b~! is the
inverse oscillator length. The second step is the calculation of the potential
matrix elements <¢?HO]V]¢fHO).

Once the TISE for the 1D mean field Woods-Saxon potential (2.1) is solved

EZ'(THO)

using the basis (2.39), we obtain a set of discrete eigenvalues and

THO)( )

eigenfunctions 1/)§ x) that can be written as a linear combinations of the

THO basis states

N-1
THO () = Y afO¢[MO); i=0, ..., N-1. (2.44)
k=0

2.3 Convergence of eigenvalues and eigenfunctions

We now show the results obtained by applying the methods explained in the
previous sections. In particular we study the convergence of bound states
energies and the behaviour of the wavefunctions.

The obtained results of the differernt methods depend on the basis dimension
for HO and THO methods, and on the box radius x; for the BOX method.
We proceed to study the convergence of eigenvalues and eigenfunctions when
these parameters are varied. We focus not only on the energies, but also on

the wavefunctions, paying particular attention to their asymptotic behavior.
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A proper description of the wave functions at large distances, well beyond
the range of the potential, is, in fact, crucial to reasonably describe the
reaction properties of our system. This is even more important when, as
in our chosen specific case, the Woods-Saxon potential has a very weakly-
bound state (F2 = —0.51 MeV), as shown in figure 2.3. In the HO case the

0.6

0.4

0.2

0.0

Energy (MeV)

-0.2

-0.4

06 20 40

Figure 2.3: The Woods-Saxon model potential (thin blue), the square of

the least bound state wave function (thick red) and the first squared contin-
uum PSs (green) obtained with the Hamiltonian matrix diagonalization (in
particular BOX with z; = 100 fm).

key parameter is the basis dimension N; so we check the results convergence
with a varying basis size. In addition to the value of N, a second model
parameter is the inverse oscillator length a. The inverse oscillator length
determines the curvature of the HO potential at the origin and thus how
wide the potential is (see appendix D.1).

In the THO case the results depend mainly on the basis dimension N and the
ratio v/b, where b = 1/a is the oscillator length. The ratio v/b = (%)1/4
gives an extra degree of freedom compared to the HO case. As discussed

2
in [48, 50], the value of Ji; can be considered as an effective momentum

value, k.r¢, and the asymptotic value of the basis functions is efgm. As
/b increases (decreases) the basis spatial extension decreases (increases).
Also, this ratio dictates the density of PS’s as a function of the excitation
energy. For small values of /b, the positive eigenvalues tend to concentrate
at lower energies. This useful property of THO basis makes this approach an
appealing alternative to HO [50]. For large /b values the THO reaches the

HO limit. The improved asymptotic wavefunction behavior is ascertained
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computing the bound states energy convergence. If we fix the value of 5 keV
as the energy convergence goal, a basis with N = 50 functions is needed
for v/b = 2.4 fm~/2 (as in the HO case) while it is enough with N = 20
for /b = 1.2 fm~/2. All THO results have been calculated for /b = 1.2
fm—1/2.

The third option considered for obtaining pseudostates is enclosing the
system in a rigid wall box (see section 2.1.2). The main parameter in this

case is the box width, xp.

In the left panels of figure 2.4 we depict the eigenvalues of the adopted
Woods-Saxon potential as a function of the basis dimension N or the box
radius zp, depending on the method. Negative energy levels converge to the
bound state energies quite fast. We consider that an energy level is converged
when AFE < 5 keV for a dimension increment AN = 10. As expected, the
convergence is much faster for the ground and first excited states than for
the weakly-bound second excited state.

In the right panels of figure 2.4 we show for different parameter values
the weakly-bound state wave function tails, where the major differences can
be found. Large N values (in HO and THO cases) are required to extend
towards large = values, reproducing the exponential behaviour. Note that the
THO approach leads to a faster convergence than the original HO approach.

For the BOX case we show the wave function tail for different box sizes.

As an example, we show the convergence of the bound level energy with
a small number of basis states in figure 2.5. In this example we used the HO
calculation applied to a Woods-Saxon potential 2.1 of parameters V) = —2.5
MeV, R = 3.0 fm, o = 0.6 fm, and a reduced mass of u = 0.975 amu.
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Figure 2.4: Left panels: Eigenvalues of the Woods-Saxon model potential as
a function of the number of basis states (in the HO and THO case) and as
a function of the box radius (in the BOX case). Right panels: asymptotic
spatial dependence of the weakly-bound state wave function (in logarithmic
scale) as a function of x for different parameters values.
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Figure 2.5: Example of the convergence of the bound energy for a HO calcu-
lation (red starred line), including a small numebr of basis states Ngo. The
value of the bound state energy for this case is indicated by the green dotted
line. This calculation has been made with a potential 2.1 of parameters
Vo = —2.5 MeV, R = 3.0 fm, o = 0.6 fm, and a reduced mass of p = 0.975
amu.

2.4 Matrix elements between ground state and con-

tinuum states

In this section we present results for the transition probabilities for the z
and 22 operators from a bound state to excited states at positive energies.
To enhance the value of this matrix element, we choose the least bound
state of our Woods-Saxon well. These are the 1D equivalent of the dipole
and quadrupole transition strengths to the continuum in 3D. As it is well
known, the low binding energy of weakly-bound systems strongly affects the
response to the continuum and, therefore, the convergence of these matrix
elements is a crucial test for the discretization procedures.

The transition probability between bound states or between a bound
state and a continuum pseudostate (see the discussion in |52]) can be written
as

Ba(b = i) = (W3] On ()| W) 2. (2.45)

with O, (z) =  and 22 for n= 1 and 2, respectively. Therefore we need to
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compute the integrals

“+o0o
@Ou(@)|8) = [ W ()0 (a)Wi(a). (2.46)
—o0
By changing the parameters N or x; we expect a difference in the density
of continuum levels (as previously shown in the left panels of figure 2.4). For
example, in figure 2.6 we present the different distributions of B intensities
obtained with the THO procedure for N — 35 and N — 85, where this effect

can be clearly appreciated.

12— ; ; ; ‘

“‘|||| ||\I I P T L s
3 6 9

Energy (MeV)

Figure 2.6: B; transition intensities calculated for the first excited (b = 2)
of the Woods-Saxon potential of Figure 2.1, using a THO basis with N—35
(dark bars) and N = 85 (red light bars).

The B; and Bg distributions for HO, THO, and BOX cases are shown
in figure 2.7 for the calculations starting from the weakly-bound second
excited state Wy(x). For a better comparison of the convergence proper-
ties, in the last row of panels of figure 2.7 we also display the summed
Tot(B1)asi = Yorey | (Wala|Ws) [ and Tot(Ba)a i = v, | (Uala?[Wy) |2
transition intensities as a function of the excitation energy. These should be
calculated including in the {U;} set only those states above the initial state
Wy, i.e. only the continuum states in our case. However, in the calculation
of the summed strength we have included also the transition to lower energy
bound states, which in principle are occupied by the core particles and thus
Pauli forbidden. In this way we can compare the results with the sum rules,

that encompass all the states.
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Figure 2.7: B; (upper four panels) and By (lower four panels) energy distri-
butions calculated starting from the third bound state with the HO, THO
and BOX methods (using Ngo = 250, Nyrgo = 85, and z;, = 100 fm). In
the last rows the cumulative strengths (T'ot(B) and Tot(Bz)) for each case
are shown as a function of the excitation energy and compared to the sum
rule expected value (green dotted lines).
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For our one-body problem, the Total Strength Sum Rule (TSSR) for a

operator O is

N—-1
SPON) =S [ (W,]0()| ) 2, (2.47)
=0

where |W) is the bound state wave function (|¥2) in our case) and {|¥;)}
is the set of bound states plus pseudostates. This quantity can be written

in closed-form, making use of the completeness of the basis. This yields
lim SP(0,N) = (1,|0%(z)| W) (2.48)
N—oo

and can be easily calculated numerically from the bound state wave func-
tions. These values are depicted in figure 2.7 as green horizontal dotted
lines and, as one can see, we find a good agreement for all discretization
procedures.

Another useful quantity to assess the goodness of a continuum discretiza-
tion is the Energy Weighted Sum Rule (EWSR)

N-1
EV(O,N) = Y (B — By) | (W,]O(x)[ W) |2, (2.49)
1=0

where, again, |¥}) is the bound state wave function and {|¥;)}Y, is the set
of bound states plus pseudostates. The EWSR can be also written in closed-
form, making use again of the completeness of the intermediate states. This

gives

2
(®) _ 1w dOy ()
Jim 00,3 = 5w (0 . (2.50)

Thus in the case of 07 = z, as demonstrated in appendix D.2, it results

b 1 2
while for Oy = 22
EW (22 N = o0) = 2712@1/ |22 | W 2.52
W (@7 =2 (Wl |Wy). (2.52)

These values are compared in table 2.1 with those calculated for different
values of N for the HO and THO discretization procedures and in table 2.2

for different values of x; for the BOX procedure, summing the contributions



40 2. Bound and unbound states of a particle in a potential well

of the different pseudostates. As one can see from the convergence of the
different sum rules, smaller N values are required in the THO than in the

HO case. In the BOX case a rather large value of x; is necessary.

HO THO
N TSSR EWSR | N TSSR EWSR
(fm?) (L) (fm?) (L)

15 16.26  0.500 | 8 15.34  0.508
100 34.38  0.500 |20 3343  0.500
150 34.44 0499 |35 3442 0.500
200 3444 0500 |55 3444  0.500
250 3444 0500 | 8 3444  0.500

34.44 0.500 34.44 0.500
(a) B1
HO THO
N TSSR EWSR | N TSSR EWSR
(fm?) (L) (fm®) (L)

15 242.7 3159 |8 2003 -1.592
100 3137  68.80 | 20 2576 72.11
150 3205  68.89 | 35 3187  68.85
200 3212 68.90 |55 3212  68.95
250 3213 6891 | 8 3212  68.91

3213 68.91 3213 68.91

(b) B>

Table 2.1: The B1(O = z) (a) and B2(O = z?) (b) expected sum rules values
in bold are compared with those calculated for different values of N for the
HO and THO bases summing the contributions of the different pseudostates.

As it is apparent from figure 2.7 the distribution of transition matrix
elements to continuum states follows the expected threshold shape of the

multipole strength for weakly-bound systems.

We can provide a comparison of excitation matrix elements results pre-
sented in panel a of figure 2.7 with an “exact” calculation.
As we have seen in the previous section, for each positive energy there are
two degenerate continuum wave functions with momentum k = + 22‘—2]5, one

of them corresponding to a wave incident from the left, and the other to a
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B1 B2

Tp TSSR EWSR | TSSR EWSR
(fm)  (fm?) () | (fm?) (%)
15.00 23.61 0.499 | 733.3 67.23
35.00 34.18 0.500 | 2990 68.37
55.00 34.45 0.500 | 3211 68.91
85.00 34.45 0.499 | 3214 68.90
100.0 34.44 0.499 | 3213 68.90

34.44 0.500 | 3213 68.91

Table 2.2: The B1(O = z) (left) and B2(O = ?) (right) “exact” sum rules
values in bold are compared with those calculated for different values of x for
the BOX procedure, summing the contributions of the different pseudostates.

wave incident from the right. For each energy one could take the symmetric
and antysimmetric combinations of the momentum normalized continuum

wave functions

S = ¢1§ W4 4(2) + T_y()],
L= 5
(WP WL} = 6,0k — k),

[V ik(z) = V_p(2)], (2.53)

where p = s,a. Since our weakly-bound state is symmetric, only antisym-
metric states are connected by the x operator. So the Bj distribution for

the “exact” case is given by

dB +o0 2
dikl x ’/ de Vi (z) v Ui,(z)| . (2.54)

To emphasize this point it is interesting to compare the result obtained
using the discretized pseudostates and exact continuum with an analytic
expression. This formula is obtained by approximating the weakly-bound
wave function by a decaying exponential and the continuum state by a free

plane wave. In this case, in fact, aside from a normalization factor and as a



42 2. Bound and unbound states of a particle in a potential well

function of the momentum k, the result is

dBl '/Jroo L ' 2 k‘2k‘2
— X I oL R Qe Ak— (2.55)
dk oo (k2 + k:g)‘l

where k is the momentum in the continuum and kp = %]25”‘ is the mo-

mentum associated to the weakly-bound second state.
The comparison (in the BOX case) between analytical, exact, and pseu-

dostates results for dBy/dk is shown in figure (2.8). In particular, for the

pseudostates calculation

dk i = ki1 — ki1

The alternative methods are in good agreement.

200 ——
— Exact result
- - - Analytical approximation
150 I BOX pseudostates N

100}

dB1/dk (fm°)

0 025 050 075  1.00
Momentum k (fm'1)

Figure 2.8: %, as a function of momentum, calculated in the BOX case
(with z, = 120 fm, green bars) compared with analytical (dashed blue line)
and “exact” results (solid red line).



Chapter 3

Scattering of one-particle in

the field of two potential wells

In this chapter we study the collision of the system investigated in chapter
2 by another well, which can be regarded as a toy model for the problem
of the scattering of a halo nucleus by another nucleus. This constitutes an
effective three-body problem, whose solution in three dimensions is extremely
complicated, particularly when breakup and rearrangement channels are to
be considered. Our one-dimensional model provides the essential three-body
nature of this problem, and allows for a much simpler application and assess-
ment of different methods of solution. To simplify further the problem, we
assume that the potential well representing the projectile moves according
to a predetermined classical trajectory, although the internal motion of the
“valence” particle is treated fully quantum-mechanically. This corresponds
to a semiclassical approach of the scattering problem.

Different approaches are investigated for the dynamics involving one-body
systems: the “exact” time-dependent solution is presented in section 3.1,
while two aproximate solutions (the coupled-channels method and a pertur-
bative calculation) are presented in sections 3.2 and 3.3. We then study
the dependence of our results on the distance of closest approach and the
influence of the Q-value in section 3.4. Finally, in section 3.5 we compare
exact and approximate methods presenting various model cases including

different reaction channels. The role of continuum is also discussed.
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We consider the problem of one particle!, initially bound in a one-
dimensional potential well (the “target”), subject to an external field, which
is also represented by a potential well (the “projectile”), and which moves in
one dimension according to a predetermined classical equations of motion.
This situation describes schematically the collision between two nuclei,
each one modeled by a potential well, and it permits to understand the
mechanisms which govern a nuclear reaction by following the evolution of
the wavefunction associated to the particle. In particular, we intend to
simulate direct reactions, which are characterized by grazing collisions with
a small overlap between the projectile and target. To simulate this situation
in our one-dimensional model, the distance of closest approach is chosen
in such a way that the two well only barely overlap. Initially, since we
assume the particle to be a target valence nucleon, it coincides with an
eigenstate of the target potential well. During the reaction the particle will
feel the interaction with the colliding nucleus, i.e. the projectile potential
well. Depending on the initial parameters of the reaction, the particle will
more likely remain in its initial state (elastic scattering), jump to an excited
bound level of the target (inelastic scattering), transfer to a bound level
of the other nucleus, or it could leave the initial nucleus and escape to
the continuum (breakup). As a consequence, the particle wavefunction will

change, according to the probability to excite the different reaction channels.

Let us start the model description by specifying the Hamiltonian and the

initial conditions. The system is described with the Hamiltonian

h? 9

+ Vr(z) + Vp(z — x,(t), 1), (3.1)
where we include two potentials Vp and Vp, chosen with a Woods-Saxons
shape (2.1) and associated to target and to projectile respectively. In our
“semiclassical” model the target is at rest and only the projectile potential
moves according to a classical trajectory. We can use the classical uniformly
accelerated motion

1
z,(t) = 20 + vt + iatQ, (3.2)

where x,,(t) is the position of the center of the projectile well at each instant

'Note that, since we do not simulate Coulomb barriers, we assume the valence particle
to be a neutron.



46 3. Scattering of one-particle in the field of two potential wells

t, xg is the projectile position at ¢t = 0 ps which corresponds to the moment
of distance of closest approach, v is the asymptotic velocity of the projectile,
assumed to be constant until t = t;,;14 in which it starts to feel the inter-
action with the target and accelerates with constant acceleration a. In this
case we choose the spatial grid interval dr = 0.2 fm and the time interval

dt, Alternatively, we use the trajectory proposed in [35]
1p(t) = 0+ /22 F (D)2 p, (3.3)

that accounts for the projectile motion with fixed asymptotic velocity v at
large distance, corresponding to an asymptotic energy Ep = 1/2muv?, which
regulates the effective duration of the reaction (the higher the asymptotic
energy, the faster is the reaction), and a distance of closest approach
between the two centers of the potentials. This trajectory differs from the
previous one in the fact that the projectile is changing its acceleration over
the distance p, thus simulating the nuclear interaction with the target; in fact
at t = oo the trajectory tends to a uniform motion with zero acceleration.
It is also more intuitive, because it allows the use of standard parameters
of the scattering theory. Fixing a grid size equal to that in previous case,
here we determine the time interval as dt = dx/4v. The turning point of the
collision corresponds to t = 0 ps, as well.

Upon variation of these parameters, one can simulate different kinemati-
cal conditions due to different bombarding energies and impact parameters
(corresponding to partial waves in a quantum-mechanical description), while
the choice of the parameters of the two potentials accounts for the different
masses of the colliding nuclei, the Q-values of the different final channels as
well as the possibility of simulating weak binding conditions.

By solving separately the time independent Schroedinger equation for each

well
HyPy(v) = E;0, (), (3.4)
with the Hamiltonian
K2 d?

we obtain two sets of bound levels ® ;(z); depending to the kind of reaction

under study we will select one of these levels as the initial state of our single-
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particle wave function. For example, to describe a pick-up reaction we will
choose as initial state a single-particle level in the target. In the simulations
presented here we will always choose a target wavefunction as initial one.

In figure 3.1 we present the initial situation with the target and projectile

potentials in their initial positions on the spatial grid.

R0 0 20 40 60
. , . -
Target ' Projectile
10— _

-40 1 | L

X (Ifm)

Figure 3.1: Target and projectile potentials in their initial positions on the
spatial grid. The arrows schematically indicate the potential motion.

The problem can be solved in many different ways. On one hand, we can
get the exact solution of the problem by numerically solving the correspond-
ing time-dependent Schroedinger equation (section 3.1). On the other hand,
we can obtain an approximate solution using the methods usually applied in

solving three-dimensional scattering problems (sections 3.3 and 3.2).

3.1 Exact time-dependent solution

In the case of “exact” solution, we proceed to compute the time evolution
of the valence neutron wavefunction ¥(x,t) by numerically solving the time

dependent Schroedinger equation

e,
zhalll(x,t) = H(z,t)V(z,1), (3.6)
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with the Hamiltonian (3.1).

The wavefunction W is confined within an interval containing the two wells. It
is calculated at fixed points with coordinates x,, separated by dz. According
to |53], one can solve the problem by representing the system Hamiltonian

by a tridiagonal matrix

h2

Hyur = " 2mda?

(6,u1/+1 + 6;11/71 - 26#1/) + 5,uu [VT(x,u) + VP(:‘CM - xp(t))] )
(3.7)
and the time evolution of the wavefunction is governed by the so-called Padé

approximation of the evolution operator:

U(t+dt) = (1 + Z;Z%) B <1 - ZZ’H) U(t), (3.8)

where dt is a finite time step, and # is the matrix in equation (3.7) at the
intermediate time ¢ + dt/2. Note that this evolution operator is unitary.
An alternative approach is to integrate the differential equation using a finite-
diference method, such as the Runge-Kutta method. For that, in this work
we make use of the routines DO2PVF and D0O2PCF of the NAG library?.
Although this solution prevents us from a complete control of the code, it
was found to be faster than the Padé method. We have also verified that
both methods lead to identical results.

At the end of the time evolution, we can compute the final probabilities for
each reaction channel by projecting the final wavefunction |¥(z,t¢)) onto the
corresponding eigenstates of each well obtained by solving equation (3.5) for
each potential (target bound states <IJIT($) for elastic and inelastic, projectile

bound states ®’(z) for transfer channels)

Peitastic = \(‘I’g.s.(ﬂf)!‘l’(%tf)>|2a (3.9)
Pinelastic = |<(I)1T;£g.s. ($)’\I’(xatf)>|2v (3.10)
Piransfer = |<<I)ZP(33)]\I/(x7tf)>|2 (3.11)

We can also evaluate the breakup probability either by direct subtraction

Pbreakup =1- Pelastic — Finelastic — Ptransfer7 (312)

2 . . . . ..
We are also imposing vanishing boundary conditions.
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or by overlapping with the apropriate continuum states

2
Pbreakup = ‘/dd@(ajve”qj(xvtf» ) (313)

as we will show later in section 3.3.1.

3.2 Perturbative solution: first order approxima-

tion

The magnitude of the transition probability from |®;) to |®¢) depends on
the strength of the interaction V(x — zp(t)). A measure of this stregth is
given by the form factor [54]

Finetastic(zp(t)) = (9] (2)|Vp(z — 2p(1))| @} (),
FtransfeT(xp(t)) = (@?($)|VP(SL‘ - ‘TP(t))‘(I)]I”D(x - Ct?p(t))) (314)

As an example, we show in figure 3.2 the form factor for transfer and inelastic
processes. We simulate a transition from the target ground state to the first
and second excited states of the same potential well (blue dotted Inelastic 1
and dotted/dashed violet Inelastic 2), and the trasfer to the projectile ground
and first excited states (red dahed Transfer g.s. and solid orange Transfer
1). Note that the transfer form factor has a longer tail as compared to the
form factor of an inelastic scattering. This is due to the overlap between
the projectile wavefunction and the potential. Moreover, the transition to
states with the same parity as the initial state are favoured (Inelastic 2 with
respect to Inelastic 1 and Transfer g.s. with respect to Transfer 1).

The form factor measures the number of quanta which are exchanged during
the collision in the transition to the state [®). If it is a small number there
is only a small chance that a quantum is exchanged, and one may treat the
excitation of the state by first order perturbation theory [35, 55]. This means
assuming that the valence particle evolves from the initial to final state in
a single step. This solution is reliable only when the main channel of the
reaction is the elastic scattering (if this is not the case, as we will see later
in section 3.5, the results might also exceed 100%).

In first order, the probability Pf(tfmal) for the population of the j-th state
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(with energy E;) of the potential I =T, P is given by

i(Bj—E;)t 2
R

P = [ @t @it - syl @)

' i(Bj—E;)t 2
5 [ e @Velo — oy (0)]@f @~ a0 T | (315)

t
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Figure 3.2: An example of form factor for transfer (red dahed and solid
orange lines) and inelastic ((blue dotted and dotted/dashed violet lines)
processes as defined by equations (3.14), as a function of the relative distance
between target and projectile during the collision.

3.3 Approximate solution within the coupled-channels
method

The same problem can be solved with the so-called coupled-channels method,
which is a popular framework used to describe quantum collision problems
in atomic, molecular and nuclear physics. For this calculation we follow
the formulation of reference [35], and we take into account two finite sets
of wavefunctions, related to the target and the projectile potentials: <I>]T(x)
and @f(x), of Ny and Np states respectively. For collisions among tighly-
bound systems, the basis expansion is usually restricted to bound states of

the projectile and target systems. However, when one of them is weakly-
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bound, it is important to include also continuum states. For that, it is
convenient to use a discrete representation of square-integrable functions, as
those discussed in chapter 2 (we will discuss in more detail the inclusion of
continuum in coupled-channels method in section 3.3.1). Moreover, they are
defined in a one-dimensional spatial grid, whose origin corresponds to the
center of the target potential, which also corresponds to the laboratory frame.
A different choice, like the center of mass frame of reference in which the two
potentials are moving, would have implied a careful treatment of target and
projectile wavefunctions due to the non-covariance of Schoedinger equation
(see Appendix C). In addition, these two bases are non-orthogonal so we will
solve this problem introducing a dual basis, as explained below.

The wavefunction describing the entire system is expressed as a combination

of target and projectile states

Nr Np
U(z,t) =Y cl (2] (z)+ ) cf ()] (x), (3.16)
j=1 j=1

and the solution of the problem is reduced to the determination of the time

evolution of the coefficients C§T’P) (t) from the finite set of coupled differential
equations

~ 8CJT T/ TP 6T P, T\vTqP

Zhﬁ = ch (wj V7] 2) ‘|‘ch (wj V7123,

o T, PivPeT P PiyT 6P

ih— = Y lwl IVEIRE) +) el wl VT |ef). (3.17)
These equations are solved with the initial conditions cf(t = —o00) =0 and
CjT(t = —00) = d; j, where ¢ indicates one of the bound states in the target

potential well.
To derive equations (3.17), we first insert the equation (3.16) of the system
wavefunction W(z,t) into the time-dependent Schroedinger equation (3.6),

thus obtaining

30T 8CP
Ziha—zcbf + Ziha—iéf =" H - Hr)T +3 P (H - Hp)R!
(3.18)

where H ; is the Hamiltonian corresponding to the potential well J =T, P
of equation (3.5), and H is the Hamiltonian of the full system presented in
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equation (3.1).
In order to isolate the time derivatives and to solve the non-orthonormal

(T.P)
;7 (z,t), con-

jugate to the channel wavefunctions of each potential, through the definition

problem, we introduce a dual basis associated to each well w

(Wl lw;)) = 61,70nm, (3.19)

where I, J =T, P and n,m = 1,2,...N(p p). A projection of equation (3.18)
on the dual wavefunctions yields the coupled equations (3.17).

According to [56-58], the dual basis is time dependent and is a combination
of the overlaps between target and projectile bases states. One can construct

the dual basis within the space of channel wavefunctions as follows

Nr
) = (1= Pp) Y |8, (3.20)
k=1
where Pp is the projection operator
Np
Pp =Y [aF) (@), (3.21)
qg=1

and similarly for w’. From the definition (3.20) we see that equation (3.19)
is automatically fulfilled for I = T and J = P. Inserting equation (3.20)
into (3.19) for I = J =T we get
Np Nr
= D > (P ) (@7 |PE) B, = O, (3.22)

g=1k=1

thus, A7 is the inverse of the matrix

Np
M7y = Smn — > _(Br|D0))(@F|2). (3.23)
q=1

Since M7 is an Hermitian matrix, $7 is also Hermitian. An alternative

derivation of the dual basis is given in [35].

In problems involving different mass partitions, one may use the so-called

prior and post representations of the Hamiltonian, depending on whether one
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considers the projectile-target combination of the initial or final states; by
definition they have to give the same results. Equations (3.16) and (3.17) are
constructed in prior representation. In post representation we can expand

the system wavefunction on the dual basis
U(r,t) =Y efwl +> elwl, (3.24)
n n

and, following a derivation similar to the one given for the prior representa-

tion, we obtain the set of coupled-equations

~T
2 Y @ VP + Y e @),
~P
ih%c: =2 a1V fwi) + D (@) [V wp). (3.25)

From the system wavefunction W¥(x,t), we can also extract amplitudes for
excitation and transfer in post and prior representations through the expres-

sions

&, = (wp| D),

cl = (oL |w). (3.26)

Due to post-prior symmetry, the amplitudes in the two representations are
related by

AT ARIIC AL A
m

& =+ (@Fel)el. (3.27)
m

The probabilities to populate the different final channels are defined as

T,P T,P
e (3.28)
in the prior representation, or as
PP = |02 (3.29)

in the post representation. The label j denotes the quantum number of the

final state in one of the two wells.
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Because of the non-orthogonality of the basis states, the sum of these “prob-
abilities” is not conserved during the collision. If we instead define the
“probabilities” by

(T,P) )+ (T-P)

T,P
PP — Re [(cj SEg (3.30)

conservation of total probability is always fulfilled within the coupled-channel
formalism. This follows from the fact that the matrix governing the time
evolution of the amplitudes in the post representation is minus the hermitian
conjugate of the matrix that determines the time evolution of the amplitudes
in the prior representation. We shall therefore call equation (3.30) the unitary
representation of probabilities. However, we can not be sure that these
quantities are always non-negative during the collision.

After the collision, when all overlaps between the basis states in the two
wells vanish, the amplitudes for a given transition are the same in the post
and prior representation, as evident from equation (3.27). This so-called
post-prior symmetry implies that the total probability is conserved once the

collision is over, also in a truncated coupled-channel treatment.

3.3.1 Inclusion of continuum in the coupled-channels method

In reference [35] only bound states were included in the bases and, hence,
breakup channels were omitted. This is possibly justified for tighly bound
systems, but not for weakly bound ones, for which the coupling to these
channels can be very important.

In a coupled-channels scheme, as we use here, but also for the calculation
of breakup probabilities presented for the exact model in equation (3.13),
one can not include the full continuum spectrum, since these states form a
continuum of energies. Moreover, the fact that these states are not square-
integrable poses numerical problems since the coupling potentials become of
infinity range. To overcome these difficulties, it is customary to resort to an
approximate, discrete description of the continuum. For that, we may use
the pseudostates introduced in chapter 2. We remind here that bound states
are obtained by solving the finite-difference method on the whole grid [45],
as presented in section 2.1.1.

In the case of coupled-channels and first order approximation methods,
we should be careful that at the end of the time evolution there is no

overlap between target and projectile bases. This is due to the fact that the
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two bases are not mutually orthogonal, so while they overlap the problem
loses unitarity, as we mentioned in section 3.3. After the reaction, when
the projectile is far enough for these overlaps to vanish, the problem has
restored its unitarity and we can evaluate the final probabilities. Thus, if
we include the continuum we need to restrict it to a small range [—l‘g, —i—:L‘;,]]
centered in the corresponding potential J = target, projectile, in order
that m{ + :v{: > Tp(tmaz). A limitation of this method is that the choice
of x;)] is done a posterior: to include the breakup component into the
continuum interval. In situations in which the breakup channel is dominant,
the wavefunction component related to the excitation to the continuum
escapes far away from the potentials, and it becomes impossible to apply the
method just described. What we suggest and apply in the case in which all
the reaction channels are relevant is to include in the bases few continuum
pseudostates defined along the entire spatial grid. In this way the calculation
does not diverge and the total probability exceedes by only a few percent

the unity limit, but we are able to reproduce quite well the exact results.

In the case of one-particle systems, as we have seen in section 2.1.3,
we can also construct the “exact” positive energies states. In this case we

compute the breakup probability as a function of momentum k
P(k) = [{p(k, )| ¥(z, tf))]?, (3.31)

where W(z,ts) represents the final wavefunction obtained by solving the
problem with either the exact method (3.6) or constructed after applying
the coupled channels-method (3.16). Changing variables and introducing

the Jacobian factor, we can express the probability as a function of the

R2k?
_dk B m
P(E) = d—EP(k) = ”2Eh2p(k)' (3.32)

energy £ = ——
21
Of course, the total probability is conserved

—+o00

Ny Ny
P(E)E =1-Y P(E) - Y P(E)). (3.33)
0 i=1 j=1



56 3. Scattering of one-particle in the field of two potential wells

3.4 Numerical results: dependence on the distance

of closest approach and on the Q-value

In this section, we test the exact method results to understand their depen-
dence on the distance of closest approach and on the Q-value. For simplicity,
in this example, the motion of the projectile well is assumed to follow the
uniformly accelerated motion (3.2). The choice of the depths of the two
wells, as well as the choice of the initial single-particle state, determine the
characteristics of the two colliding objects, for example the situation of weak
binding in a halo-like system. In particular, we have chosen two model cases
to show the different behaviour of well-bound and weakly-bound systems.

In the case of the bound system, whose exact result is depicted in figure 3.3,
the fixed well is chosen in such a way that the single particle is moving in the
only bound state (with binding energy Ej, = —3.10 MeV), while the moving
well admits two (initially unoccupied) bound levels. In this model case the
projectile is moving following a fixed classical trajectory, like that presented
in equation (3.2). The parameters chosen to define the trajectory® of the
example in figure 3.3 are xg = 10 fm and a = 0.3/h? fm/ps?. The different
frames refer to different times (the total collision time is divided in 210 steps
and the corresponding time is quoted in each frame) and in each frame the
upper part gives the square of the one-particle wave function while the lower
frame gives the actual position of the two potentials at the same time. As
apparent from the figure, when the tail of the moving well starts to overlap
with the fixed well (frame c) part of the wave function enters in the moving
well and then follows its motion (frames d-f). At the end of the process, by
projecting the final wave function onto the target and projectile eigenstates
one can determine the elastic and transfer probabilities, respectively. The
final probabilities for this case are 60% for elastic scattering, and 40% for
transfer. The presence of a node in the part of wave function inside the
moving well clearly indicates that the transfer takes place mostly to the
second single particle state. Note that the breakup probability is practicably

negligible in this case.

3For this case the time is expressed in unit of A.
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Figure 3.3: Time evolution of the exact wavefunction for the well bound
model case. In all frames, corresponding to different times, the upper part
gives the square of the wavefunction at that time and the lower part the
actual position of the two potentials at the same time.
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Figure 3.4: Time evolution of the exact wavefunction for the weakly-bound
model case. In all frames, corresponding to different times, the upper part
gives the square of the one-particle wave function at that time and the lower
part the actual position of the two potentials at the same time. The wave
function is amplified in the insets, to highlight the continuum (breakup) part
of the wave function.
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To simulate the case of weakly-bound systems, shown in figure 3.4, we
modify the depth of the potentials in order to obtain a weakly-bound eigen-
state of the target (Egs = —0.91 MeV) and projectile (Eqs, = —0.89 and
E; = —10.0 MeV) potentials. As in the previous case, the projectile is
assumed to move according to the trajectory? (3.2) with distance of closest
approach xg = 10 fm and acceleration a = 0.3/h? fm/ps?. As a consequence
of the weak binding the initial wave function displays a longer tail, which
results on a larger overlaps between the two wells. The corresponding time
evolution of the wave function is shown, at different stages of the reaction, in
figure 3.4. The final probabilities for this case are 16% for elastic scattering,
36% for transfer, and 48% for breakup. The weak binding situation is also
responsible for larger break-up probabilities. To emphasize the continuum
part of the wave function, which is distributed over a large interval, we also
show in the insets a zoom of the wave function in a region far from the two
wells.

By varying the kinematical and/or potential parameters, the present
models permits to simulate different physical situations. As an example,
we discuss in the next subsections the influence of the distance of closest

approach and the Q-value.

3.4.1 Distance of closest approach

We study here the influence on the calculated probabilities of the variation
of the distance of closest approach. In our model this variable is defined
as the minimum distance reached by the center of the projectile potential
with respect to the center of the target potential well. According to our
time definition, this position corresponds to ¢ = 0. In figure 3.5 we show
the result of transfer (blue), breakup (red) and elastic/inelastic (orange)
channels probabilites as a function of the distance of closest approach. The
lower panel of figure 3.5 corresponds to a bound system, while the upper
panel refers to weakly-bound system results.

As we can see from figure 3.5, the probabilities display the expected
exponentially decaying behavior arising from the combination of the tail
properties of the two wells and of their eigenfunction. This trend is observed

also experimentally and confirms that, despite the one-dimentional restric-

“For this case the time is expressed in unit of A.
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tion, our model encompasses physical features found in three-dimensions.
It is therefore not surprising that, in the case of the initial weakly-bound
system characterized by the long tail, the transfer probability survives to
larger distances with a lower decaying rate. Note also that below a certain
critical distance (approximately below 10 fm for the well-bound case and
12 fm for the weakly-bound one) the transfer probability becomes so large
that in a perturbative picture we will have back and forth transfer, with
resulting oscillatory behavior.

We can also observe that, in the weakly-bound case, the breakup proba-
bility is higher than in the well-bound case. This is, of course, consequence

of the smaller binding energy of the initial state.

Weakly-bound system

12 14 16 18 20 22

1.0 i Inelastic
208 — Breakup
.g 0.6 — Transfer
€04

il . L L il i
12 14 16 18 20 22
Distance of closest approach (fm)

10

Figure 3.5: Elastic, transfer and breakup probabilities as a function of the
distance of closest approach xg between the two colliding wells. The lower
frame refers to the case of a well-bound initial single-particle state, whereas
the upper frame corresponds to the case of a weakly-bound state. See text
for details.
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3.4.2 Influence of the Q-value

Another interesting test is the optimum Q-value [59]. The Q-value for a
reaction is defined as the amount of energy released by that reaction; the
optimum Q-value, Qopt, is the value at which the reaction occurs with
maximum probability. The Q-value defines a window, described by the
adiabatic cut-off function ¢(@), in which the transition has more chances
to occur. Therefore, the adiabatic cut-off function defines the actual value
of the transition probability for the reaction channel 7, given the probability

expected by the model P;
P =Pig(Qi). (3.34)

The one-dimensional ¢(Q) is defined as

_ (@=Qopt)?
g(Q)=e a0 | (3.35)

where ag is the projectile acceleration at the turning point. In one dimension
the Q-value is simply defined as the difference between initial and final levels

energy, and it is optimum when it approaches zero
Qopt = Ef - Ei =0. (336)

Thus, just varying the energies of the corresponding bound states, i.e. the
potential depth, we can study the transfer process as a function of the Q-
value associated to the transfer process. In figure 3.6 we can see the results
obtained for a well bound (panel a) and a weakly-bound (panel b) system.
As we can see from figure 3.6, the model reproduces the expected gaussian
behavior expected for the cut-off function (3.35) and it is peaked around the
“optimal Q-value”, which in our specific case of transfer of a neutral particle
is close to zero. The width of the probability distribution depends on the pro-
jectile acceleration. As was already noted in figure 3.5, in the weakly-bound
case there is a large contribution from breakup, which is strongly favored
by the initial weak binding of the particle, and which shows a smoother

dependence on the value of the single-particle energies in the moving well.
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Figure 3.6: Elastic, transfer, and breakup probabilities as a function of the
difference between the energies of the single-particle states in the fixed and
moving wells (Q-value). Results are shown for a well bound (a) and weakly-
bound (b) systems.
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3.5 Comparison of exact and approximate methods

In addition to the cases already presented, we have performed further cal-
culations, aimed at exploring different kinematical situations. In each case,
we present the exact time-dependent solution (section 3.1) and, whenever
possible, we compare this result with the approximate solutions obtained
with the coupled-channels and first order perturbative theory presented in
sections 3.2 and 3.3. The chosen model cases have been selected to illustrate
several physical situations in which different reactions channels are favoured;

they are summarized in table 3.1.

MODEL CASE | DOMINANT CHANNELS SECTION
Case A Elastic and inelastic 3.5.1
Case B Elastic and breakup 3.5.2
Case C Elastic, inelastic and breakup 3.5.3
Case D Elastic, transfer and breakup 3.54
Case E Elastic, inelastic, transfer and breakup 3.5.5

Table 3.1: Model cases presented in section 3.5 and the respective dominant
channels.

3.5.1 Case A

We start with the simplest case in which we observe a dominance of elastic
and inelastic channels.

The target and projectile potentials are depicted in figure 3.7 with their
respective bound states wavefunctions, the target ground state is the initial
state for this reaction and it corresponds to the dashed red curve in figure
3.7. This projectile follows the trajectory (3.3) with an asymtotic velocity of
0.1 x ¢, which corresponds to an asymptotic energy of 5.0 MeV. The reduced
mass for this systems is 1.001 amu.

In figure 3.8 we present the potentials and the exact wavefunction at different
moments of the time evolution. In each frame the upper panel shows the ex-

act wavefunction and the lower displays the target and projectiles potentials.
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Figure 3.7: Target (left) and projectile (right) Woods-Saxon potential and
corresponding bound states for the case A. The initial state, in this case the
target ground state, is the dashed red curve.
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In table 3.2 we present the results obtained by solving the problem using

different approaches and different bases.

Exact | 15 0.a. | CCH) | ¢cCc@ | cc® | ccW | cc®)©)
Elastic | 91% [ 100% | 93% [ 928 % | 91 % | 91 % 91 %
In. 1 7% 56 % 7% T0% | 87% | 8.7 % 7%
Tr.gs. |07% | 3% - - 03% | 03% | 02%
Tr. 1 05% | 0.3% - - 0.08% | 0.08% | 0.8%
Breakup | 0.7 % | 0.02 % - 0.2 % - 1075% 1%

Table 3.2: Final probabilities for the model case A with exact model,
coupled-channels method or first order approximation, with different bases

choices.

In particular, they correspond to:

Exact Calculation done by solving numerically the time dependent
Schroedinger equation (3.6). The different results represent the proba-
bility for the valence neutron to remain in the ground state (Flastic) or
to directly excite the corresponding bound states of the two potential

wells (In. and Tr.) or to excite continuum states (Breakup).

1t o.a. Calculation done by applying the first order approximation
in a perturbaive approach. In this case Breakup corresponds to the
sum of the probability to excite the first 10 continuum pseudostates
obtained with the BOX method using a radius equal to the maximum

radius of the grid.

CC® Coupled-channels calculation in which only the two target

bound states are included.

CC® Coupled-channels calculation using target bound levels plus the
first 10 continuum pseudostates obtained with the BOX method with

a radius equal to the maximum radius of the grid.

CC® Coupled-channels calculation including only target and projec-

tile bound states.

CC® Coupled-channels calculation using the target and projectile

bound states plus the first 5 pseudostates of the projectile continuum
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obtained with the BOX method with a radius of 20 fm. It corresponds

to an energy cutoff in the continuum of 4 MeV.

e CC®) Coupled-channels calculation using the target and projectile
bound states plus the first 5 pseudostates of the target continuum
obtained with the BOX method with a radius of 20 fm. It corresponds

to an energy cutoff in the continuum analogue to that of CC®.

e CCO Coupled-channels calculation including target and projectile
bases composed by bound and 5 continuum pseudostates calculated
with BOX method in a [—20;20] fin range centered in the respective
potential. This result is equal to the previous one CC®). It corresponds

to an energy cutoff in the continuum analogue to that of CC®.

By comparing the results of table 3.2, we note that the first order ap-
proximation works reasonably well because the systems is in the perturbative
regime in which most of the flux remains in the elastic channel.

The coupled-channels calcuation without transfer and continum channels,
i.e. CCW, reproduces rather well the elastic and inelastic probabilities. This
is a consequence of the dominance of the elastic channel and, to a lesser
extent, the inelastic channel in this case. We also observe that the coupled-
channels method reproduces better the exact results when including some
continuum states in the calculation. This could be surprising considering
that the dominant channels in this model case are elastic and inelastic
scattering, and the breakup component is very small. In particular, since
CC® and CC©) results are equal, we understand that the target continuum
plays a crucial role in this case, even if the target potential is a well bound
system. This could be expained considering that the potential which plays
the principal role in this reaction is actually the target, because the valence
particle is basically being excited from the ground state to the first excited
state, and there are no favorable conditions for the transfer. So we conclude
that in this case the inelastic scattering occurs involving also the target
continuum during the reaction.

In figure 3.9 we show how the probability changes with time during the
reaction. We present the elastic (blue) and inelastic (red) probabilities,
comparing the Exact result (solid lines) with the CC®) result (dotted lines).
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Figure 3.9: Evolution of probability as a function of time: the blue curves
correspond to elastic scattering, while the red ones represent the inelastic
scattering probability. Solid lines indicate results of the exact model, whereas
the dotted lines correspond to results obtained with coupled-channels calcu-
lation CC® which are listed in the last column of table 3.2.
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3.5.2 Case B

We consider now a physical situation in which the excitation to the contin-
uum (breakup) plays a more significant role. This is achieved considering as
initial state a weakly-bound state of the target well, as illustrated with the
dashed red curve in figure 3.10, where the target and projectile potentials
are depicted with their respective bound states wavefunctions. This projec-
tile follows the trajectory (3.3) with the same initial parameters of case A:
asymtotic velocity of 0.1 x ¢ (0.5 MeV incident energy), and reduced mass
of 1.001 amu.

The evolution of the exact wavefunction during the collision is presented in
figure 3.11, where in each frame the central panel shows the exact wave-
function and the lower displays the target and projectiles potentials. In the
upper panels of figure 3.11 appears the current of the “exact” wavefunction

calculated according to the expressions derived in Appendix D.3.
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Figure 3.10: Taget (left) and projectile (right) Woods-Saxon potential and
corresponding bound states for the model case B. The initial state, in this
case the target ground state, is the dashed red curve.
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Figure 3.11: Model case B. Upper panel: the current of the wavefunction.
Middle panel: the squared total wavefunction at different times obtained
with the exact method. Lower panel: the target and projectile potential
wells. In the legends the elapsed time is indicated for each frame.
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The results for case B, obtained applying different methods, are presented
in table 3.3.

Exact | 1% o.a. | CcC) | cc@ | cc®)
Elastic 207 % | 100% 214 % | 95 % | 21 %
Transfer | 0.3 % | 101 % - 5% | 0.04%
Breakup | 79 % | 116 % | 78.6 % - 79 %

Table 3.3: Final probabilities for the model case B using exact method, the
coupled-channels method and the first order approximation, with different
basis choices.

These results correspond to different calculations:

Exact Calculation done by solving numerically the time dependent
Schroedinger equation (3.6). The different results represent the prob-
ability for the valence neutron to remain in the ground state (Elastic)
or to directly excite the projectile bound state (Transfer) or to excite

continuum states (Breakup).

1%t 0.a. Calculation done by applying the first order approximation in
a perturbaive approach. In this case Breakup calculation corresponds
to the sum of the probability to excite the first 100 continuum pseu-
dostates obtained with the BOX method using a radius equal to the

maximum radius of the grid.

CCW Coupled-channels calculation using the target bound levels plus
the first 50 continuum pseudostates obtained with the BOX method
with a radius equal to the maximum radius of the grid. It corresponds

to an energy cutoff in the continuum of 0.5 MeV.

CC® Coupled-channels calculation including only target and projec-

tile bound states.

CC®) Coupled-channels calculation using the target and projectile
bound states plus the first 100 pseudostates of target continuum ob-
tained with the BOX method with a radius of 40 fm. It corresponds

to an energy cutoff in the continuum of 300 MeV.

By comparing the results of table 3.3, we can observe that the first order

approximation (CC(®)) fails because the system is not in the perturbative
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regime. Then, as can be noticed in figure 3.11f, the component corresponding
to breakup is almost completely contained within the range of [—40,40] fm
at the end of the calculation, so these results can be well reproduced by
the coupled-channels formalism if one defines the target continuum in that
interval, as it is clear from the CC®) column in table 3.3. The choice of
target continuum, instead of projectile continuum, is also due to the kind
of reaction: the target is very weakly-bound and the transfer Q-value is not
optimum, thus we expect the system to excite to low positive energy states
with respect to the target.

In figure 3.12 we show how the probability changes with time during the
reaction. We present the elastic (blue) and breakup (green) probabilities,
comparing the Exact result (solid lines) with the CC®) result (dotted lines).
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Figure 3.12: Evolution of probability as a function of time: the blue curves
correspond to elastic scattering, while the green ones represent the breakup
probability. Solid lines indicate the exact results, dotted lines correspond
to results obtained with the coupled-channels calculation CC®) which are
reported in the last column of table 3.3.
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After comparing the results obtained applying the different methods in
table 3.3, we next examine in more detail the excitation to the continuum
(breakup) probabilities. We construct the “exact” continuum wavefunction
following the prescription in section 2.1.3 for the two potentials, thus obtain-
ing two sets of continuum wavefunctions. We then apply equations (3.31)
and (3.32) to calculate the probability as a function of the positive energies.
The results are displayed in figures 3.13 at low positive energies: the exact
(solid lines) and coupled-channels (dashed lines) final wavefunctions have
been projected onto the target (lower panel) and the projectile (upper panel)
“exact” continuum. In figure 3.14 we show the same results extended to

higher energies.
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Figure 3.13: Breakup probabilities as a function of the excitation energy in
the continuum. The upper and lower panels correspond to the projection on
the projectile and target eigenstates, respectively. Solid lines use the exact
total wave function, whereas the dashed lines are for the coupled-channels
solution.
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Figure 3.14: Same as in figure 3.13, but extended to higher excitation en-
ergies. The difference between exact and coupled-channels results around
2-3 MeV could depend on the handful number of continuum pseudostates
included in the CC®) calculation and on the restricted range in which they
are confined.

For high excitation energies (around 5--6 MeV) all the results follow the
same trend, while for small energies they differ considerably. This could be
the signature that the continuum reflects the structure of the corresponding
potential well, for energies approching zero, thus indicating the importance
to consider, if feasible, the continuum of all the possible subsystems of the
outgoing particles.

To explain the sharp peak at low energy in the curves corresponding to the

5, we suggest

projectile, since for this model case we do not expect resonances
the presence of a virtual state in the projectile potential. We suppose that
this virtual state influences also the exact wavefunction corresponding to
breakup: looking at the exact wavefunction in figure 3.11f, one could claim

that the part which follows the projectile during the evolution corresponds to

5See Appendix B.1 for further details.
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transfer. Therefore, we think it is part of the breakup component due to the
virtual state. As further check, we show in figure 3.15 a zoom of the central
panel of figure 3.11f focusing on the exact wavefunction component above
the projectile potential (green solid curve). The red dotted line is the result
of the calculation presented in this section, in which we suggest the presence
of the virtual state for the projectile. The blue dashed line is the result of
a calculation in which the projectile potential well is made deep enough for
the virtual state to become bound. As a final result, in this case, we obtain
a total transfer probability of 17% (almost 12% to the ground state and 5%
to the projectile first excited state). The wavefunction in the latter case is
completely different respect to the one resulting from the former calculation
(in which we suppose a transfer to a virtual state), and its shape reflects the
combination of the transfer to the two projectile bound states. We refer to

Appendix B.2 for more information about the virtual state.
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Figure 3.15: Comparison between the exact wavefunction of the central panel
of figure 3.11f (red dotted line) and the one (blue dashed line) obtained with
a deeper projectile well in order to get a second bound level. The green solid
curve corrsponds to the projectile potential.

Finally, in table 3.4 we present the total breakup probability for the distribu-
tions presented in figure 3.13. As one can see, the exact and coupled-channels
calculations for each well are in reasonable agreement. The fact that each
well itself approaches the total breakup probability expected for this process

could indicate that it is not appropriate to sum the distributions related to
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the different wells to obtain the total breakup probability.

‘ Target Projectile
Exact 66% 82%
Coupled-channels | 56% 73%

Table 3.4: Probabilities of the breakup distributions presented in figure 3.13
for the model case B.

3.5.3 Case C

In the test case considered here, both the target and the projectile potential
wells have two bound levels, as shown in figure 3.16. In this model case the
projectile is moving following a fixed classical trajectory, like that presented
in equation (3.2). Initially, the particle is sitting in the target ground state,
and the projectile has a constant acceleration® of 4500/A? fm/ps?. The
reduced mass is 0.975 amu. The different configurations of the potentials
during the time evolution and the squared wavefunction, are presented in
figure 3.17.

Target Projectile
T

-10|

-8.43 MeV|

Energy (MeV)
8 )
T
|
3

| |— - Initial state ]
— Other bound states

26.5 MeV
-30/- - 30 65 MeY)

} IR } [ B
4040 TR 0 10

0
x (fm) x (fm)

Figure 3.16: Taget (left) and projectile (right) Woods-Saxon potential and
corresponding bound states for the model case C. The initial state, in this
case the target ground state, is the dashed red curve.

SFor this case the time is expressed in unit of A.
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Figure 3.17: Model case C. Upper panels: the squared exact wavefunction
at different times. Lower panels: the target and projectile potential wells.
In the legends the time step is indicated for each frame.
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As one can notice, the wavefunction changes clearly from the ground
state (there are no nodes in the function in panel a) to a combination of
the ground and first excited states. So we expect the system to scatter
inelastically during this reaction. As can be seen from the results presented
in table 3.5, there is also an important breakup component, which manifests
as an asymmetric longer tail on the right side of the exact final wavefunction
in figure 3.17f (around 8 fm).

Exact | 1% 0.a. | CCO | cC®
Elastic 65% 100% 73% 65%
Inelastic 22% 29% 27% | 22%
Transfer g.s. | 107°% | 60% -

Transfer 1 1073% 18% - -
Breakup 13% - - 13%

Table 3.5: Final probabilities for the model case C with the exact solution,
coupled-channels method or first order approximation.

These results correspond to different calculations:

e Exact Calculation done by solving numerically the time dependent
Schroedinger equation. The different results represent the probability
for the valence neutron to remain in the ground state (Elastic) or to
directly excite the target first excited state (Inelastic) or the projectile

states (Transfer), or to excite continuum states (Breakup).

e 15t 0.a. Calculation done by applying the first order approximation in

a perturbaive approach.

e CCM Coupled-channels calculation including only the target bound

states.

e CC®@ Coupled-channels calculation using the target bound levels plus
the first 50 continuum pseudostates obtained with the BOX method
with a radius equal to the maximum radius of the grid. It corresponds

to an energy cutoff in the continuum of 17 MeV.

What one could expect from optimum Q-value considerations is a strong
probability to transfer the neutron to the first excited state of projectile

potential well \@f). Despite the fact that the Q-value for the transfer process
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is optimum (i.e. Ef — ET_ ~ 0), this channel is not dominant for the exact
result. Looking at the comparable form factors for transfer and inelastic
processes presented in figure 3.18, we can have an explication of the first
order approximation (1! o.a.) results for the transfer. To understand why
the trasfer channel is suppressed, let us compare the caracteristic times of
the process: if the collision time is of the same order of excitation time of a
certain transition, that process is more likely to occur. The collision time for
this reaction results to be of the order of T.oiision ~ 10710 ps. The excitation
time for a transition from the state |®;) to |®¢) is 7 = h/(Ef — E;). For the
inelastic scattering the excitation time for this case is Tinelastic ~ 10710 ps,
while for the transfer it results Ty qnsfer ~ 6 - 107 ps. These results could

explain why the excitation to the target first level state |®1) is favoured.
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Figure 3.18: Form factors of the transfer (red dotted lines) to the projectile
first excited state and inelastic (blu solid line) processes for model case C.

As one can see from table 3.5, the use of target bound states in the first order
approximation (1% o0.a.) or in the coupled-channels calculation (CCM) is
not enough to simulate properly the exact result. Only the inclusion of the
target continuum in the calculation permits to describe perfectly the reaction
(CC(Q)). In conclusion, by comparing approximate approaches with exact
models, it emerges again how fundamental the inclusion of the continuum is
to obtain the proper result expected from the “exact” calculation, even if the

system is not so weakly bound.
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3.5.4 Case D

Now we consider a case in which the dominat channels are elastic, transfer
and breakup.

The target and projectile potentials are depicted in figure 3.19 with their
respective bound states wavefunctions, the initial state is the dashed red
curve corresponding to target ground state. In this case the projectile follows
again the trajectory (3.3) with asymtotic velocity of 0.1 x ¢ corresponding
to an incindet energy of 5.0 MeV, and with a reduced mass of 0.975 amu.
The evolution of the exact wavefunction during the collision is presented in
figure 3.20, where in each frame the central panel shows the exact wave-
function and the lower displays the target and projectiles potentials. In the
upper panels of figure 3.20 appears the current of the “exact” wavefunction

calculated according to the expressions derived in Appendix D.3.
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Figure 3.19: Taget (left) and projectile (right) Woods-Saxon potential and
corresponding bound states for the model case D. The initial state, in this
case the target ground state, is the dashed red curve.
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Figure 3.20: Model case D. Upper panels: the current of the wavefunction.
Central panels: the squared total wavefunction at different times with exact

method. Lower panel: the target and projectile potential wells.

legends the elapsed time is indicated for each frame.

In the



82 3. Scattering of one-particle in the field of two potential wells

The results for this case are reported in table 3.6.

Exact | 15t 0.a. | CCD | CcCc®@
Elastic 76.6% | 100% | 95.6% 78%
Transfer g.s. | 7% 7.83% 4% 7.7%
Transfer 1 3.4% | 15.2% | 0.4% 2.7%
Breakup 13% - - > 12%

Table 3.6: Final probabilities for the model case D with the exact method,
the coupled-channels method and the first order approximation.

These results correspond to different calculations:

e Exact Calculation done by solving numerically the time dependent

Schroedinger equation.

e 15t 0.a. Calculation done by applying the first order approximation in

a perturbaive approach.

e CCW Coupled-channels calculation including only the target and pro-

jectile bound states.

e CC® Coupled-channels calculation using the target and projectile
bound levels plus the first 5 target continuum pseudostates obtained
with the BOX method within a radius of 25 fm. It corresponds to an

energy cutoff in the continuum of 3 MeV.

Note that the first order approximation (1% 0.a.) works quite well since we
are almost in the perturbative regime (most of the flux remains in the elastic
channel). The application of the coupled-channels method, retaining only
the bound states of the two potentials (CC()), is not enough to reproduce
the exact results. By including five states of the target continuum (CC®))
we manage to reproduce quite well elastic and transfer channels. Breakup
channel exceeds the expected value, thus bringing the total probability to
more than 100%. This meens that the projectile has not gone sufficiently
far from the target at the end of the calculation. Unfortunately, to let the
projectile go further or to consider any other configuration for the continuum
do not solve the unitary problem, since the calculation becomes numerically
unstable. Anyway, from the “exact” wavefunction and above all the current

evolution presented in figure 3.20, we can deduce that the breakup continuum
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is not so significant, because it is almost negligible with respect to the other

components.

3.5.5 Case E

We treat now a case in which all the possible channels are relevant: elastic
and inelastic scattering, transfer and breakup. The target and projectile
potentials are depicted in figure 3.21 with their respective bound states wave-
functions. The initial state is the dashed red curve corresponding to target
first excited state. In this case the projectile follows again the trajectory
(3.3) with asymtotic velocity of 0.05 X ¢ corresponding to an incident energy
of 1.0 MeV, and with a reduced mass of 0.975 amu.

The evolution of the exact wavefunction during the collision is presented in
figure 3.22, where in each frame the central panel shows the exact wave-
function and the lower displays the target and projectiles potentials. In the
upper panels of figure 3.22 appears the current of the “exact” wavefunction

calculated according to the expressions derived in Appendix D.3.
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Figure 3.21: Taget (left) and projectile (right) Woods-Saxon potential and
corresponding bound states for the model case E. The initial state, in this
case the target ground state, is the dashed red curve.
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The results for this case are reported in table 3.7.

Exact | 1% o.a. | ¢cC® | cC®
Inelastic 6.7% 103% 16% 3%

Elastic 29% 100% 10% 84%
Transfer gs. | 1.2% | 107%% | 0.6% | 0.04%
Transfer 1 15.6% | >100% | 36% | 0.2%
Breakup 47.5% - 44% | 20%

Table 3.7: Final probabilities for the model case E obtained with the exact
method, the coupled-channels method and the first order approximation.
Note that CC) and CC®@ total probability exceeds 100%, as expected.

These results correspond to different calculations:

e Exact Calculation done by solving numerically the time dependent

Schroedinger equation.

e 1%t 0.a. Calculation done by applying the first order approximation in

a perturbaive approach.

e CCWM Coupled-channels calculation using the target and projectile
bound levels plus the first 10 continuum pseudostates of the target
potential, obtained with the BOX method with a radius equal to the
maximum radius of the grid. It corresponds to an energy cutoff in the

continuum of 0.3 MeV.

e CC® Coupled-channels calculation using the target and projectile
bound levels plus the first 10 continuum pseudostates of the projectile
potential, obtained with the BOX method with a radius equal to the
maximum radius of the grid. It corresponds to an energy cutoff in the

continuum of 0.3 MeV.

In this case in which all the reaction channels are relevant, we expect the
first order perturbative approach (1%¢ o.a.) to fail. We also have difficulties
to apply the same method for the inclusion of continuum in coupled-channels
calculation, as in previous cases. In case B the breakup component did not
escaped quickly from the collision area, so at the end of the time evolution
it was localized around the target in an interval that did not overlap with

the projectile potential. This fact allowed us to construct two bases, for
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target and projectile respectively, which did not overlap at the end of the
calculation, thus restoring the probability unitarity. In case C the initial
parameters were set in order to give a very small transfer probability to the
projectile states, thus the inclusion of target states was enough to reproduce
the exact results. Case D is more similar to case E under study, because all
channels are rather relevant to the reaction. The difference of case D is that
breakup had a smaller influence and so we were able to describe quite well
all the other channels even with a result which slightly exceeded unitarity.
In the case under study, the breakup channel has a strong influence and its
component is not easily localizable onto the space grid, because it is travelling
faster than the projectile. What we propose here is to use continuum states
which are defined along all the spatial range. This is certainly closer to
what the real continuum is, but surely will led to a not unitary solution,
because of overlap between bound states of a potential well and continuum
pseudostates of the other. By including few target continuum states (CC™)),
e.g. 10 pseudostates, the deviation of unitarity is not so big, and we are still
able to reproduce all the reaction channels. The fact that the inclusion of
projectile pseudostates (CC(Q)) does not reproduce the exact results tells us
that the breakup component is mostly influenced by the target potential.
In fact from the wavefunction current in upper panels of figure 3.22 it is
apparent that the breakup component is traveling towards the left of the
target.

Since the projectile well is moving, the overlap between pseudostates and
bound states is changing, so we do not expect the coefficients associated to
continuum pseudostates to converge to a fixed value. What we find is that
those coefficients tend to oscillate around the exact result.

In figure 3.23 we show how the probability for the CC() calculation changes
with time during the reaction. Each panel corresponds to a given reaction
channel; from the lowest: inelastic (green), elastic (blue), transfer to projec-
tile ground state (red), transfer to projectile first excited state (orange), and
breakup to continuum (black). The comparison of the exact result (solid
lines) with the CCM result (dotted lines) are presented. Note how the
coupled-channels results clearly lose unitarity close to the turning point at

t =0 ps.
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Figure 3.23: Evolution of probability as a function of time for the model case
E. Each panel corresponds to a reaction channel indicated in the correspond-
ing legend. Solid lines represent the exact results, dotted lines correspond
to the results obtained with coupled-channels calculation CC) which are
reported in table 3.7.






Chapter 4

Two-neutron halo systems:

structure and dynamics

After having investigated the one-body problem, we proceed to a more
complicate, and physically more enlightening, two-body halo system. Our
schematic model in this case consists of a fully occupied Woods-Saxon core
plus two particles outside the core interacting via a matter density-dependent
point contact residual interaction. As anticipated in the introduction of this
memory, our goal with this choice is to model a simplified (1D) Borromean
nucleus, i.e. a system with a two-particle halo which is bound notwithstand-
ing the possible core plus one particle subsystem is unbound.

The two-body structure model is summarized in section 4.1, where we also
present the results for the system eigenvalues and eigenvectors and the role
of the pairing interaction between the two nucleons in binding the system
(4.1.1), and other quantities of physical interest such as anomalous density
and electric transitions (4.1.2 and 4.1.3). We then describe scattering process
of the two-body system in the field of two potential wells in section 4.2, and
we study the influence of the binding energy and pairing interaction in the

reaction mechanism (4.2.1 and 4.2.2).

89
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4.1 Bound and unbound states of two particles in

a mean field

We describe here the structure of the two-body system composed by an inert
core and a two-body halo. This problem consists of two valence particles
moving in a one-dimensional Woods-Saxon potential (2.1) representing the
mean field generated by the other nucleons, i.e. the core, whose bound levels
are assumed to be completely filled. The two valece particles, which we as-
sume to be neutrons, interact via a density-dependent short-range attractive

residual interaction

Vint (21, 22) = Voo (21 — 22) — V1 ['0[(951‘;(;”2)/2]]])5(351 —z2), (4.1)

where Vg, Vg, p, and pg are parameters, and p(z) is the core matter density’

Ny—1

p(x) = D Vi (x)i(x), (4.2)
1=0

where IV, is the number of occupied bound states. The residual interaction

parameter values selected for the structure results are as follows

Vo = 0.0 MeV, Vrr = —38.0 MeV, (4.3)
po=0.15fm™!,  p=1.

So, we assume that the volume term Vj is zero and we only deal with the
matter density weighted term.

Since we model a drip line system, we have chosen the Fermi surface
in such a way that there are no available bound states, so the two valence
particles must lie in the continuum. The final two-body state becomes bound
due to the action of the residual interaction between the two particles, akin
to a 1D “Borromean” system. Thus, the two-body Hamiltonian Hy, is built

combining the one-body Hamiltonian? (2.1) with the residual interaction

'The formulation of this problem has been introduced and presented in [60] for the 3D
case. Note that in our 1D reduction for a symmetric potential the core density (4.2) is a
symmetric function of x.

*We use a reduced mass of g = 0.975 amu and the same Woods-Saxon potential (2.1)
parameters used for the model case of chapter 2: Vo = —50.00 MeV, R = 2.00 fm, and
o = 0.40 fm.
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(4.1)
Hop(x1,22) = Hip(x1) + Hip(22) + Vipe (21, 22). (4.4)

Our strategy is to diagonalize the two-body Hamiltonian (4.4) in a two-
body basis built with states that are above the Fermi energy surface. We
proceed to detail the basis construction following [60]. The full 1D one-body

wave function has two components, a spatial part and a spinor part

U (2) = pa(z)xD), (4.5)

where the one-body spatial component has been previously obtained using
any of the methods presented in Chapter 2.
The two-body basis can be constructed involving products of one-body

wave functions to obtain

(20)

U3 no,Sms (£1,22) = Uny (21)1hn, (22)
X Z <51m5152m52|51525m5)xﬁ2X,(;Zi. (4.6)
Msqp,Msqy

Assuming that we are dealing with fermions, the full wave function (4.6)
should be antisymmetric under the interchange of the labels 1 and 2. Thus,
if we consider the singlet S = 0 wavefunction, the spin wave functions are

antisymmetric3

B oanan) = s o)nate) | 75 (WL - R
(4.7)
The spatial part should be symmetrized, and the dimension of the problem
for N one-body spatial wave functions goes down from N2 to N(N + 1)/2

for the symmetric two-body spatial wave functions 1/)&%2 (z1,x2),

2- 5”1,712

@) (w1, 20) = 5

[Tpnl (xl)wTLQ ($2) + wn2 (:Bl)"vbm (‘T?)] ) (48)
or, using the ket notation,

2 —dn ny

5 (|n1n2> + |n2n1>) . (4.9)

W) (21, 22) = [(s)nang) =

3The triplet contribution of the spin can be considered when the spatial part can be
antisymmetrized, thus the interaction should not be of a contact type and z1 # 2.
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The matrix elements of the Hamiltonian (4.4) in the symmetrized basis are

(2—5n n )(2—5n/ 7n/)
((s)nyny| Hop|(s)n1na) = Ve (B, + Eny)

X((Snl,n’l 5n2,n’2 + 5n1,n’25n2,n’) + <(s)n’1n’zﬂ/§nt|(s)n1n2), (410)

1

where the matrix element of the residual interaction is

((5)mmb| Vit (s)manz) = —~Vir /(2 = 00 )(2 = Gy )

X fj—;o dx ¢:Lr1 (x)lb;;é (x) [%rwm(m)wm(m). (4.11)

As the core density (4.2) is symmetric, the integrand has to be a symmetric

function too, which implies the selection rule
ni+ng+n)+nhH=2n n=01,2... (4.12)

As we are dealing with a contact interaction, it is important to define
an energy threshold, F;, = 50.0 MeV, beyond which the two-body basis
components are not taken into account. Thus, only basis states |(s)ning)
such that E,,, + E,, < E, will enter into the calculation. This energy cutoff
is due to the special characteristics of the point contact interaction that

forbid convergence when the full space is considered [60].

For each of the considered discretized bases (HO, THO, BOX) we solve
the one-body problem (2.28) to obtain a set of bound states and a set of
pseudostates representing the continuum. Then, using the positive-energy
pseudostates, the Fermi-allowed two-body basis is built and the two-body
Hamiltonian (4.4) is diagonalized, computing the matrix elements (4.10).
This second part is common to all methods. As a result of the two-body
structure model we study the eigenenergies and the eigenfunctions resulting

from this diagonalization method.

4.1.1 Energies and wavefunctions of the two-body model

As in the one-body case, we investigate the convergence of the bound state
eigenvalues and their corresponding wave functions. A proper behavior in the
tail region is essential in the description of two-particle transfer processes in

connection with the pairing field. We should emphasize that, in comparison
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with the one-body case, the treatment of this case is a more complicated
task, since it implies much larger bases. In order to give an idea of the
increased complexity of the problem we plot in figure 4.1 the dependence
of the two-body symmetrized basis dimension as a function of the one-body
basis dimension. As discussed in chapter 2, the v/b = 2.4 fm~=1/2 THO case
behaves in a similar way to the HO, and variation of /b gives us an extra

degree of freedom in the investigation of the system.
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Figure 4.1: Two-body basis dimension as a function of the one-body basis
dimension for the HO (green) and THO methods (using /b = 2.4 fm~1/2,
blue, and v/b = 2.4 fm~/2] red).

Despite that, the description of the one-body bound states obtained in
chapter 2 is quite accurate even for a small basis dimension. Therefore the
residual interaction is not expected to vary with N. This can be checked in
figure 4.2 where the resulting residual interaction —Vgr[p(z)/po]P is plotted
for the HO, THO and BOX cases: there are some differences between the

three cases, which can be significant for large values of x, in the tail region.
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Figure 4.2: Spatial dependence of the residual interaction for parameters in
Eq. 4.4 for the HO (N = 70), THO(y/b = 1.2fm~%? and N = 50), and
BOX (z, = 50fm) cases.

In the first place we check the dependence of the resulting two-body
Hamiltonian eigenvalues with the dimension of the truncated 1D basis. This
is depicted in figures 4.3a and 4.3b for the HO and THO methods, respec-
tively, while for the BOX method the dependence on the box radius is shown
in figure 4.3c. As can be seen from those figures, the energy of the bound
state (red solid line) is converging, with residual minor oscillations, to a
limiting value E) = —0.5 MeV. Note that without the residual interaction
the two-body system is unbound, and it is the attractive residual interaction
between the two valence neutrons that makes the system bound. To show the
quantitative effect of the residual interaction, we also depict in figure 4.3,
as a dashed green line, the energy of the lowest unperturbed two-particle
state for each value of the parameter N or z,. The dotted blue lines are the
energies of the lower two-particle pseudostates in the continuum arising from
the diagonalization. As in the one-body case, the convergence is faster with
respect to N for the THO case as compared to the simpler HO case.

As in the one-body case it is important to check also the radial behavior of
the bound eigenstate. To this end the resulting ground-state wave function
U(z,z) for x1 = x9 = x is plotted in the right panels of figure 4.3 for different
N values in the HO and THO cases or x; for the BOX. In order to display the
slow convergence in the tail region, we show in the figure just the asymptotic

part of the wave functions in a logarithmic scale.
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Figure 4.3: Panel (a): first two-body Hamiltonian energies (solid red and
dotted blue lines) as a function of the dimension of the truncated 1D HO
basis (left) and ground state wavefunction tail ¥(z, x) for different values of
the one-body basis dimension (right). Panel (b): same for the THO basis.
Panel (c): first two-body Hamiltonian energies as a function of the radius
xp of the BOX (left) and ground-state wavefunction tail ¥(z, z) for different
values of the box radius (right). Also shown, as dashed green lines; the
energies of the lowest unperturbed two-particle state for each value of the
parameter N or xp.
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A further insight on the effect of the residual pairing correlations can
be obtained by looking at the features of the wave function (or its modulus
squared) as a function of the coordinates x1 and x9. The results obtained for
the correlated two-particle ground state are displayed in figure 4.4 and should
be compared with the uncorrelated case displayed in figure 4.5. In order to
better pinpoint the effect of correlations we define an uncorrelated case with
zero residual interaction, but with a mean field providing a two-particle
uncorrelated wave function with the same total binding energy (—0.5 MeV)
as the final correlated one. It is apparent from the comparison of the two
figures that the residual interaction has created a spatial correlation between
the two particles, proved by an increased probability along the bisector line
r1 = X9, i. e. for small relative distances. On the contrary, the uncorrelated
wave functions looks completely symmetric in the four quadrants, implying
that the probability is not favoured for small relative distances.

The enhanced spatial correlation in the correlated case can be even bet-
ter appreciated by cutting the wavefunctions presented in figures 4.4 and
4.5 along the x1 = xo bisector. Correlated and uncorrelated sections are
compared in figure 4.6, showing the strong enhancement in the correlated
case. This enhancement will manifest as an increased probability for two-
particle transfer, two-particle breakup or knock-out processes, with strong
angular correlation between the two emitted particles in the two latter cases
[44]. We can note that all discretization methods provide similar results,
although again the number N of shells required to get convergence in THO

is smaller than in HO.
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Figure 4.4: Contour plots of the probability density for the two-body bound
state with binding energy £ = —0.5 MeV using the correlated Hamiltonian
(4.4) constructed with different bases: HO with N = 200 in panel (a), THO
with v/b = 1.2 fm~ /2 and N = 75 in panel (b), and a BOX with z;, = 100 fm

in panel (c).
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Figure 4.5: Same than figure 4.4, but for the wave function obtained with an
uncorrelated Hamiltonian (zero residual interaction), with a single particle
potential depth modified to obtain for the two-particle system the same
binding energy as in the correlated case (E = —0.5 MeV).
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lated and uncorrelated cases presented in figures 4.4 and 4.5.
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4.1.2 Anomalous Density

To test the structure model, as in the one-body case, several quantities of
interest can be investigated. We obtain here the Anomalous Density for the
ground two-body state and first continuum states. The Anomalous Density
Ty is defined as follows [61]

2

+oo
Ty = ‘/ dx 6 ppair(z)| (4.13)

where, using the creator operator notation, [ dx 6ppeir(x) = (A+ 2|atal|A),
and thus
5ppai7’(x) = Z Xiyia @i ()i, (2) - (4.14)
i1,i2
The coefficients X;, ;, are obtained by diagonalization of the Hamiltonian
(4.4). Large values of the anomalous density imply a collective character
of the state under study, and its evaluation implies the integration of the
two-body eigenfunction in points x1 = z9 = x, depicted in the right panels
of figure 4.3.
It is interesting to note that, due to the orthonormality of the one-body

basis functions ¢;(z), the anomalous density can be written as

2

Ty = : (4.15)

Z Xii
i

which implied that only the eigenvector components associated to the |(s)nn)

basis states should be taken into account.

Anomalous density values can also be computed for the excited two-body
pseudostates. We will use the notation Tél) for the anomalous density for

the i-th two-body excited state where equation (4.14) is redefined as

ol (@) =3 X i, (2) i (2) (4.16)

11,02

where X7 are the coefficients for the i-th excited state obtained by di-

21,22

agonalization of the Hamiltonian. As in the ground state case, taking into

account the basis orthonormality in the integral evaluation the anomalous
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density can be rewritten as

) =" x4 (4.17)
k
Anomalous Density results presented in figure 4.7 for HO, THO, and
BOX agree satisfactory. Moreover, the enhanced result associated to the
two-body system ground state indicates, as expected, the collective character
of this state.
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Figure 4.7: The Anomalous Density result for the HO (a) and THO (b) for
v/b=1.2 fm~/2 as a function of the one-body basis dinension N. The BOX
method result (c) is presented as a function of the box radius .
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4.1.3 Transition matrix elements for = and 22 operators

The knowledge of the ground and excited two-particle states allows us to
calculate matrix elements of different operators, e.g. x and x2, between the
ground state and all “continuum” excited states. Besides checking the differ-
ent discretization methods, one can compare the energy strength distribution
with those obtained within the di-neutron cluster model.

We start by extending the = and z? operators to the two-particle case.

Defining

D1s = 21 + w2, (4.18)
Q12 = x% + :U%, (4.19)

we compute the transition integrals

+oo
<\I/b|(9(x1,x2)|\11i> :/ d.%'ldaj‘Q \I/Z(.%l,l‘Q)O(xl,J)g)‘Ifi(l‘l,33‘2), (4.20)

— o0
where O(x1,x2) = D12 or Q12, Yp(z1,x2) is the two-body ground state, and

the set {|W;(x1,x2))} represents the two-body continuum pseudostates.

The resultant distribution of modulus squared matrix elements from the
ground state to continuum states is reported in figure 4.8 for the different
discretization methods and for different values of N (HO and THO) or x
(BOX). Upper frames refer to By = |(¥| D12|¥;)|?, and lower frames to By =
[(Wy|Q12]P;) 2. Since the different calculations lead to different densities of
states, for a better comparison of the convergence properties we also display
in the legends of the figure the integrated values.

It would be natural trying to interprete the above results in terms of
sum rules. This is more complex in the case of the TSSR, see (2.48), since
it would require the evaluation of the expectation value of x1x9 operator. It
is, on the other hand, easier to evaluate the EWSR: in an A-body system,

for one-body operators, it can be calculated as

1R, s (00(x)\
5$)(x1,...,xA)=2u<\Ifb|Z< a:(f)> |Ty). (4.21)
= ;

The fulfillment of the EWSR is an indication of the goodness of the dis-
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cretization method, but also of the completeness of the basis, as stated for
the one-body case in chapter 2. The EWSR value is in fact only recovered
when a complete basis is used, which is not our case. Since we are dealing
with a delta function, we truncate all bases up to a certain energy. Since the
values of the transition matrix elements are rapidly decreasing (cf. figure
4.8) we may assume that the cut-off is not so relevant. However, it is much
more important that in our model we have assumed a saturated and frozen
core: states that correspond to both particles in a “forbidden” bound state
or states which represent combinations of one particle in a core state and
another in a one-body continuum state have not been included in the two-
body basis. For this reason the comparison with the EWSR for the two-body

case is beyond our simple approach.

We conclude this section by comparing the results obtained in the two-
body model with the corresponding distribution of matrix elements obtained
within the di-neutron cluster model [62|. To this end we have considered a
1D cluster of two neutrons with mass p = 1.885 amu moving in a potential
(2.1) defined in such a way to reproduce the same binding energy (E= —0.50

MeV) and quantum numbers of the two-body model case:
Vo = —50.9 MeV, R =5.0 fm, a =04 fm. (4.22)

In this case the transition intensities to continuum are calculated with a one-
body operator s, the c.m. coordinate of the cluster, and the basis states
are single-particle bound and pseudo states {|®;)} generated by the “cluster”
potential. In the lower panel of figure 4.9 we present the cluster response
Bi = |(®p|2us|®i)|? with the corresponding two-body calculations By =
[(Wy|z1 + 22|¥;)|2. For this comparison we have chosen THO results with
N= 100 for the “microscopic” case and N= 200 for the cluster case. The two
distributions have the same shape but, apart from a different normalization
factor, the maxima are not located at the same energy. This suggests that
the position of the peak in the B(E1) distribution could provide a hint on

the possible validity of the popularly used “di-neutron cluster” model.
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4.2 Scattering of two particles in the field of two

potential wells

The next step is the extension to reaction processes involving the two-particle

systems studied in the previous sections.

In this case we have an initial two-particle state W(x1,z2,t;) generated
by the fixed well (as explained in section 4.1) and we follow the time evo-
lution of the two-particle wave function due to action of the moving one-
body potentials. Since each particle feels the ineraction with each potential

independently from the other one, we should include them twice in the

Hamiltonian
Hiwr,20,t) =~ [Zr + 25| + Vi) + Vi(2)
+Vp(z1 — 25 (t),t) + Vp(xg — 25(t),t) + Vipr (21, 22), (4.23)

where 27 (t) and 25 () indicate the projectile well trajectories along the two
dimensions in which each particle move (i.e. 1 and x2). They move following
the classicl trajectory of equation (3.2), and time is expressed in units of
Plank’s constant . In addition, one can include a residual pairing interaction
Vint(z1,z2) between the two valence particles. The pairing interaction is
taken to be a density-dependent zero-range potential as presented in equation
(4.1), and hence it acts only when the two particles are both inside the same
well. We can set different parameters for the residual interaction of each
potential well. The solution is obtained by solving numerically the time-

dependent Schroedinger equation

igtlll(xl,xg,t) = H(z1,x2,t)¥ (21, 22, 1). (4.24)

In particular, we integrate the differential equation using a finite-diference
method, such as the Runge-Kutta method. As in the single-particle case, we
make use of the routines DO2PVF and DO2PCF of the NAG library* .

“Those NAG routines provide the solution of a one-dimensional differential equation,
but the two-body wavefunction ¥(x1,x2,t) is defined on a squared grid where the two
coordinates 1 and x2 are the one-dimensional coordinates of the two neutrons respectively.
So we just define W (w1, w2,t) as a one-dimensional vector composed of each line of the
squared grid read sequentially.

SWe are also imposing vanishing boundary conditions.
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At the end of the process one can single out the population of the different
final channels, by integrating the final total wavefunction W(zq,x2,ts) over

the corresponding areas shown in figure 4.10:

e The elastic and inelastic scattering probability corresponds to the situ-
ation in which both particles remain in the initial well. To evaluate this
quantity we should integrate the wavefunction inside the area occupied
by the initial total wavefunction, above the target potential. This area
is highlighted with the big blue squares in panels (a) and (b) of figure
4.10.

e The one-particle transfer occurs when one particle remains in the initial
well and the other goes to the moving one. The corresponding proba-
bility is computed by integrating the final wavefunction in the areas in
which the projectile potentials stop at the end of the time evolution.

They are depicted in panel (b) of figure 4.10 as green rectangles.

e The two-particle transfer probability, which corresponds to the proba-
bility that both particles transfer to the moving well, is evaluated as the
integral over the region along the x1 = x5 bisector which corresponds
to the final projectile position. This area is marked with the small

magenta square in panel (b) of figure 4.10.

e The one-particle breakup (one particle in the continuum outside the
wells and one in the target or projectile well), and the two-particle
breakup (both particles outside the wells) probability corresponds to
the remaining probability (the problem is unitary). We expect to
find this components outside the previous areas, and, in particular,
we suppose that the two-neutron breakup component concentrates in

the area inside the black circle in panel (b) of figure 4.10.
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X

(a) (b)

Figure 4.10: The big gray area of coordinates x1 and x2 is the space in which
the two neutrons move in our model. Panel a: schematic representation of the
area corresponding to the initial two-body wavefunction (blue square) above
the target potential well, and the direction in which the projectile potentials
move (indicated by the arrows). Panel b: schematic representation of the ar-
eas corresponding to the final wavefunction components, i.e. Elastic/inelastic
(blue big square) scattering, one-neutron transfer (green rectangles, each one
corresponding to the transfer of one of the two neutrons), and two-neutron
transfer (small magenta square). The breakup component is expected to be
outside the previous areas, in particular we expect the two-neutron breakup
to concentrate in the area inside the black circle.
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4.2.1 Influence of the pairing interaction on the reaction pro-
cess

It is interesting to study the reaction mechanism by switching on or off the

pairing interaction.

We first consider the case in which the pairing interaction is switched off
(uncorrelated case). In this case both particles initially sit in an uncorrelated
way in one single-particle state of the target potential well. As initial con-
ditions we choose two Woods-Saxon (2.1) potentials to generate the single-
particle basis of target and projectile. In particular, for the target we fix the
paramenters Vil = —1.29 MeV, RT = 1.80 fm, and o’ = 0.67 fm, while for
the projectile we use VOP = —1.10 MeV, R = 2.0 fm, and ¥ = 0.65 fm. The
reduced mass for this case is u = 0.975 amu. To generate the bound two-body
state in this uncorrelated case, we include one single-particle bound state in
addition to the continuum pseudostates® The projectile follows the (3.2) tra-
jectory with a constant acceleration a = 3000/h? fm/ps? 7. The two-particle
bound state energies obtained are E%Z) = —0.39 MeV and Eé:l; = —0.34 MeV.
An example of the corresponding wavefunction is given in figure 4.11 (upper-
left frame) as a contour plot as a function of z; and z9. Note that in
this case the wavefunction spatial part is symmetrical, so it shows equal
probabilities for the two particles to be on the same side of the potential
(cluster-like configuration) or on opposite sides (cigar-like configuration).
We then follow in time the two-particle wavefunction according to the time-
dependent Schroedinger equation (4.24). The upper-right frame displays the
wavefunction at the end of the process. From this wavefunction we can
separate the different final states, described in the previous section. In this
specific case breakup processes (both one and two-particle) are negligible.
The total one-particle probability P; amounts to about 40%, while the two-
particle transfer probability P, amounts to about 4%. Due to the absence
of correlations the transfer process is induced by the one-body mean-field
generated by the moving well, and in terms of reaction mechanism the

two-particle transfer can only be interpreted as produced by the successive

5We discretize the continuum using the THO method presented in section 2.2.2. In
particular, we include Nrgo = 75 basis states, we also use /b = 1.2 fm~'/? and an
energy cutoff of 50.0 MeV in the continuum.

"For this case the time is expressed in unit of A.
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transfer of single particles. In such a situation, in a perturbative approach,

we expect a pair transfer probability
Py ~ (P1)?/4, (4.25)

which is precisely the value obtained in our calculation.

We move now to the case with correlations. For this calculation we fix
the target paramenters VOT = —5.80 MeV, RT = 2.50 fm, and o’ = 0.67 fm,
and for the projectile we use pr = —23.6 MeV, RP = 2.00 fm, and of =
0.65 fm. The reduced mass for this case is u = 0.975 amu. The projectile
follows the (3.2) trajectory with same acceleration as in previous example.
The initial wave function is obtained by diagonalizing the residual pairing
interaction in the two-particle basis. We choose for the residual interaction
(4.1) the parameters V£, = —58.50 MeV and V24, = —58.95 MeV for target
and projectile respectively in order to obtain the two-particle bound state
energies as similar as possible: Eg; = —5.94 MeV and Eéz = —6.23 MeV.
The parameters pg = 0.15 fm™! and p = 1 are the same for both potentials.
Since we assume that the core occupies all the bound levels, we do not include
those states in the calculation. The continuum is discretized in the same way
as in the uncorrelated case.

The corresponding initial and final wave functions are shown in the lower
frames of figure 4.11. In the case with correlations, the presence of the pairing
interaction, which is a two-body operator, makes possible the simultaneous
transfer of the two neutrons in addition to the the successive transfer of
single particles. The effect of this initial correlation will propagate during
the scattering process and affect the final wavefunction (lower-right frame).
As in the previous uncorrelated case we can separate the probabilities for
the population of the different final channels. One gets a total one-particle
transfer probability P; equal to 52% and a pair transfer probability P, equal
to 13%. This latter value is a factor 2 larger than the uncorrelated estimate
of equation (4.25). This factor represents therefore the enhancement factor
due to the pairing correlation: the probability of finding both particles on

the same side is now clearly favored.
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Figure 4.11: Two-body wavefunctions for the uncorrelated (upper) and corre-
lated (bottom) cases. The initial (left) and final (right) results are presented.
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4.2.2 Influence of the binding energy on the reaction process

Let us test now the system behaviour by changing the two-body bound state
energy of the two potential wells.

For the uncorrelated system we choose as initial parameters the same
of the uncorrelated case presented in the previous section. In this case we
fix the target two-body ground state energy at —0.34 MeV, and vary the
projectile energy by changing the one-body potential depth in the range
[—2.2; —1.1] MeV. In the left panel of figure 4.12 the probabilities for the
different channels are shown as a function of the projectile two-body energy
state. As one can deduce from the results, the transfer probability increases
as the projectile state becomes more and more weakly-bound. This is due to
the stronger overlap between the initial and final state during the process.
The breakup component also increases, as one can expect treating weakly-
bound systems. Note that the two-neutron transfer probability predicted
by the perturbative theory expressed in equation (4.25) agrees well with the
results of our calculations (see right panel of figure 4.12).

In the case of correlated system we have chosen initially for both target

and projectile the same model case parameters used for the description of
the two-neutron halo nuclei structure in section 4.1. As in the uncorrelated
case, we study the probability changing the two-body projectile energy, but
now we change this parameter by varying the residual interaction strength
parameter in the range [—35.0; —65.0] MeV, keping the target residual inter-
action fixed at —50.0 MeV, corresponding to a two-body ground state energy
of —4.13 MeV. These results are reported in figure 4.13.
In this case, as in the uncorrelated one presented in figure 4.12, we note
an increment of transfer and breakup probability decreasing the projectile
energy. This is due, as we mentioned for the uncorrelated case, to the larger
overlap between target and projectile two-body wavefunctions during the
process, which increases as the projectile becomes more weakly-bound and
its wavefunction tail extends over a larger region. For this correlated system
the two-neutron trasfer probabilities (zoomed in left panel of figure 4.13) do
not follow the perturbative prediction: the two-body transfer is enhanced
with respect to the result of equation (4.25), even if it increases less strongly
than one-body transfer.

Another interesting test is the variation of the two-body state energy for
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both target and projectile, keeping them equal. To do so, we change the value
of the residual interaction of the two wells in a range of [—35.0; —60.0] MeV.
The results are shown in the left panels of figure 4.14. In this case, as the
target and projectile become more weakly-bound the wavefunctions related
to both potentials extend over larger regions, thus increasing considerably
the overlap during the process respect the previous test. This results in a
faster increment of transfer and breakup probabilities with respect to the case
of figure 4.13. Again, the two-neutron probability is clearly enhanced with
respect to the perturbative estimate of equation (4.25) (see the comparison

of these two results in the left panel of figure 4.14).

In conclusion, aside from verifying the stronger transfer and breakup
probability in the case of weakly-bound systems, we confirm the enhance-
ment of two-neutron transfer due to pairing interaction. For an uncorrelated
system, the results clearly follow the perturbative prediction: the only pos-
sible way to transfer a pair is in two succesive moments. When we include
the pairing interaction between the two halo nucleons, the enhancement of
the two-neutron transfer respect to the perturbative estimate proves the
possibility to transfer the two particles toghether at the same time, and

shows the important role of pairing interaction in the reaction mechanism.
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Figure 4.12: Left panel: elastic (green dotted line), one-neutron transfer
(red dashed-dotted line), two-neutron transfer (blue solid line), and breakup
(black dahed line) probabilities for the uncorrelated case as a function of
the projectile two-body energy state, keeping the target energy fixed at
—0.34 MeV. Right panel: zoom on the two-neutron transfer (blue solid line)
result and perturbative calculation (violet dahed line) obtained applying
equation (4.25).
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Figure 4.13: Left panels: elastic (green dotted line), one-neutron transfer
(red dashed-dotted line), two-neutron transfer (blue solid line), and breakup
(black dahed line) probabilities for the correlated case as a function of
the two-body energy state of projectile, keeping the target energy fixed at
—4.13 MeV. Right panel: zoom on the two-neutron transfer (blue solid line)
result and perturbative calculation (violet dahed line) obtained applying
equation (4.25).
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(black dahed line) probabilities for the correlated case as a function of the
two-body energy state of target and projectile. Right panel: zoom on the
two-neutron transfer (blue solid line) result and perturbative calculation
(violet dahed line) obtained applying equation (4.25).
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In this thesis, we have investigated the structure and dynamics of weakly-
bound quantum systems within a one-dimensional model. This is a timely
topic in nuclear physics studies, given the interest raised in the past years
by the understanding of nuclei in the proximity of proton and neutron drip-
lines |63 65]. The one-dimensional model developed in this work provides a
simple framework to investigate many properties of these systems, such as
the role of the continuum, the consequences of the weak binding, etc), but
avoiding the mathematical complexities arising in a full three-dimensional
approach. As already mentioned in the introduction, we have developed the

computer codes required to perform the calculations presented in this work.

The system under study is composed by an inert core, represented by a
Woods-Saxon mean field potential, plus one or two valence neutrons [40]. In
the case of two valence particles, we simulate the three body Borromean halo
system, i.e. three-body bound systems with no bound binary sub-systems.
Examples of these systems are the nuclei He and MLi. It is well known
that the residual pairing interaction between the valence neutrons plays a
key role in making the full system bound. In our simplified model, this is
achieved via a density-dependent delta residual interaction.

It is also well known that the positive-energy spectrum plays an essential
role in the structure and collisions of these systems. Since these states
form an infinite set of continuum functions, in practical calculations it is
formally and computationally convenient to replace the exact continuum
states by a discrete representation in terms of square-integrable functions
("pseudostates"). Therefore, we have also explored several discretization
techniques. Two of them are based on a diagonalization of the system
Hamiltonian in a truncated basis of square-integrable functions, for which
we employ hamonic oscillator (HO) and transformed harmonic oscillator
(THO) functions. We have also implemented the BOX method, in which
the system is confined in a radial box and the states are obtained as the
eigenstates of the system under vanishing boundary conditions at the borders
of this box.

In the one-body case, in addition to the calculation of the system eigenstates,
we compute transition intensities and sum rules of different operators to
assess the goodness of the continuum description achieved with the different

methods. Moreover, we compare our results with “exact” and approximate
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approaches, thus probing the accuracy of the different discretization proce-
dures.

For the two-body system, we build the two-particle bases', compute the
system eigenvalues and eigenvectors, and study the bound state energy con-
vergence and the nature of its wavefunction. We also compute the transition
intensities for the two-body system for the linear (B;) and quadratic (Bs)
operators. We compare our B; result with the di-neutron approximation
result, showing how the distributions peak at different energies. We suggest

that this fact could be used to discriminate among the two approaches.

The results obtained in the one- and two-body cases for HO, THO,

and BOX agree satisfactorily. The pseudostate method turns out to be a
computationally efficient approach to deal with weakly-bound systems.
In the one-body case, the simplicity of the system allows the use of large
basese (several hundred of elements) at a relatively computational cost.
However, for the two-body system, despite the symmetrization and energy
maximum cutoff, the involved matrices dimension is much larger and the
problem is computationally heavier. This makes adventageous the use of
the THO which, as compared to the other methods, requires a smaller basis
dimension. Although this basis requires additional paramters with respect
to the simpler HO method, it offers two important advantages. The first is
the possibility of tuning the density of continuum states, making it possible
to enlarge the pseudostates density at energies relevant for the process under
study. The second advantage is the exponential asymptotic behavior of its
basis elements. The combination of these two facts makes the convergence in
the THO case faster than in the other two methods. Although in the present
case this advantage is not decisive, in more involved many-body calculations
it can be of major relevance. For further details on the comparison between
HO and THO methods see appendix A.

The simplicity of the present approach allows its use to model direct
reactions (elastic and inelastic scattering, transfer, and breakup processes)
in a simplified and schematic way, along the line already presented in [41-44].

The reaction is modeled as a collision between two Woods-Saxon potential

In order to construct the basis for the two-body case we need the solution of the
one-body mean field potential, both for bound states and pseudostates.
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wells in one dimension. In the case of one-particle halo nuclei, the process
involves one active neutron initially sitting on a single-particle level of a
Woods-Saxon potential and feeling the action of a second moving potential.
The target potential is assumed to be at rest in a fixed position, whereas
the projectile moves following a classical trajectory. In the case of two-
particle sytems one has to construct the initial two-particle wavefunction,
and its time evolution is due to the action of two moving one-body Woods-
Saxon potentials. For the latter system, one can include a residual density-
dependent zero-range pairing interaction between the two valence particles,
acting only when the two particles are both inside the same well. The choice
of the parameters entering the calculation will lead to various structural and
kinematical conditions, corresponding to rather different physical situations
and simulating different bombarding energy regimes, impact parameters, and
Q-values for particle transfer. Essentially, one has to fix the parameters
characterizing the potential wells (energies of single-particle states in both
potentials), initial condition (selecting one of the levels in the target poten-
tial), distance of closest approach, and asymptotic energy of the collision.
The “exact” results can be obtained by directly solving the time-dependent
one- or two-particle Schroedinger equation. The probability for populating
the different channels after the collision is determined by projecting the
asymptotic wavefunction (i.e. the solution for large values of t) onto the
corresponding eigenstates of the wells.

In the case of one-body scattering problem, the same equation is solved
within the first order approximation and standard coupled-channels formal-
ism, thus testing the validity of the necessary truncations and continuum
discretization (in this case we have used the BOX method).

In particular, from this comparison, we might infer the importance of in-
cluding the continuum to obtain the proper result expected from the “exact”
calculation We find that, even for systems which are not so weakly bound
or the breakup is not the dominant channel in the reaction, the coupling to
the continuum states can be important. We also observe that, in general,
transfer and breakup channels are favoured for weakly-bound systems.

When breakup becomes an important channel, it becomes mandatory to
include in the coupled-channels scheme, in addition to the bound states of
the system, a representation of the continuum states. This is done with the

discretization methods mentioned above and described in Chapter 2. The
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inclusion of the continnuum results is a significant improvement of the elastic
and inelastic probabilities. Overall, the breakup probabilities are also well
accounted for by these calculations. Despite this success, in these situations

we face some numerical and formal problems, namely:

(i) When increasing the number of continuum pseudostates, the coupled-

channels method becomes numerically unstable.

(ii) The coupled-channels method assumes that the internal eigenstates
of the overlap between the projectile and target eigenstates vanish
asymptotically. This condition is naturally fulfilled when only bound
states of the two wells are included but, when continuum states are
also present, the condition is only guaranteed if the pseudostates are
artificially restricted to a spatial domain centered at the projectile or
target wells, avoiding the overlap with the other potential. This intro-
duces some arbitrariness in this approach that would deserve further
investigation. As an alternative approach, we have also explored the
possibility of considering continuum states extending in the entire spa-
tial grid. Although the final result violates unitarity by a few percent,
the computed probabilities compare reasonably well with the exact

ones.

An interesting observation is that, when the exact solution is projected onto
the projectile and target positive energy states, the corresponding probabili-
ties display distinct features in the proximity of the breakup threshold, which
are possibly linked to the properties of the low-lying continuum of each well.
In a coupled-channels scheme, this feature can only be reproduced if the
continuum states belonging to both wells are included, thus raising again
the problem of non-orthogonality of the two basis. Clearly, this problem
deserves further investigation.

In the case of reactions involving Borromean systems (in which we
discretize the continuum using THO method), our model is used to inves-
tigate the reaction dynamics in two-particle transfer processes: is the pair
transferred in a single step or in a correlated sequence of two single-particle
transfer through a number of intermediate states? To do so, we study the
influence of the weak binding energy and of the pairing interaction between
the valence particles in the halo.

We confirm the stronger transfer and breakup probability in the case of



123

weakly-bound systems, that we have verified in the one valence particle
case. This is due to the halo wavefunction tails which extend over a longer
range, thus favouring a stronger interaction with the reaction partner; while
the weakly-bound nature makes the nucleus more easy to break up.

We also observe an enhancement of two-neutron transfer due to pairing
interaction. For an uncorrelated system, the results clearly follow the
perturbative prediction: the only possible way to transfer a pair is in two
succesive steps. When we include the pairing interaction between the two
halo nucleons, the enhancement of the two-neutron transfer with respect to
the perturbative estimate proves the possibility to transfer simultaneously
the two particles, and shows the fundamental role of pairing interaction in

the reaction mechanism.

The present results open many possible ways to proceed the investigation
on weakly-bound systems. We list some interesting and promising research

lines for the future:

e This model could provide a convenient way of reckoning the importance
of the pairing interaction in the continuum and the effect of resonances
[66]. This implies the introduction of an ad-hoc barrier in the potential

to simulate centrifugal barriers.

e By the inclusion of barriers in the potential, to account for the Coulomb
interaction, this model could also give a test ground for processes

involving protons [67].

e The consideration of core excitations in the model suggests also a very
enticing line of research. These core excitations have been proved to
play an important role in the determination of the structure of some
halo nuclei [22, 24, 25, 68] and this model could offer a convenient (and

simple) test ground for their study.

e This model could also provide a framework to test reactions of astro-
physical interest, which is a popular field cooperating with nuclear
physics, but it can also start an interchange with other fields less
commonly related to nuclear physics, like atomic physics, in which

this kind of simulations is rather common [69, 70].






Appendix A

Approximate continuum
discretization methods

comparison

In this work we have made use of continuum discretization using pseudostates

obtained with two different approximate methods
e Harmonic Oscillator basis (HO), presented in section 2.2.1,
e Transformed Harmonic Oscillator basis (THO), shown in section 2.2.2.

Both approaches have their pros and cons.

The HO method is computationally very efficient and simple. The
convergence of the calculation needs to be explored only as a function of
the basis size, N, which simplifies the task. This method has been applied
in the 70’s to the calculation of resonances with stabilization plots [46] with
satisfactory results. The main drawback of the HO method is the Gaussian
asymptotic dependence of the basis functions. This makes basis states
tend to zero much faster than the exponentially decaying bound states. A
sensible election of the inverse oscillator length parameter a can help to deal
with weakly-bound states, as explained in appendix D.1. However, the HO
approach requires larger N values to obtain the bound system eigenvalues

with a certain degree of accuracy compared to the other methods.
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The main advantage of the THO method is that it corrects the asymptotic
Gaussian dependence of basis functions of the HO case, including the
useful possibility of tuning via the 7/b parameter value the distribution
of pseudostates in the positive energy region. As in the HO case, the only
parameter that needs to be varied looking for convergence is N, the basis size.
The THO makes calculations more involved, but the degree of complexity is
not too high and computing time increments are almost negligible. This is
certainly so with the analytical local scale transformation (LST) from [51]
compared to the original formulation of the THO method [71]. As we have
stated, another difference with the HO method is that we need to assign
values to the /b ratio parameter. The best option is to fix it considering
the continuum region which is of major interest in each particular case and

give /b values according to this [50].

Let us illustrate in a particular case the possible advantage of using the
LST transformation, as compared to the pure HO basis. As a help for the
comparison of the approaches considered in the one- and two-body cases, we
present in table A.1 the basis dimension in the HO and THO cases such that
for a AN = 10 the variation in the bound eigenvalues of the Woods-Saxon

model potential is AFE, < 5 keV.

N Zpaa(fm)
HO® 90 55.0
HO® 50 60.0
THOW 50 75.0
THO® 20 75.0

Table A.1: One body dimension N and integration length x,,,, required to
achieve converged energies for the different methods. In the HO() case the
inverse oscillator length a is assessed with N = 1 calculation, though in the
HO®) case the value of a is fixed using a recipe described in appendix D.1.
The THOM and THO® notation stands for THO with ~/b = 2.4 fm~1/2
and /b = 1.2 fm~1/2, respectively.

The HOM and HO®@ notation stands for truncated Harmonic Oscillator
basis in which: in the HO(®) case the inverse oscillator length a is determined
with N = 1 calculation, whereas in the HO®) case the value of a is fixed

using a recipe described in appendix D.1, aiming to improve the description
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of weakly-bound states. The THO®) and THO® notation stands for THO
with /b = 2.4 fm~/2 and /b = 1.2 fm~1/2, respectively. The value of
Tmaz 18 the integration interval in both cases; integrals range from —x,q,
to +Tmaee and we check that this value is large enough in each case by
computing the basis states normalization.

In figure A.1 the least-bound state of the model Woods-Saxon potential
Wy(z) is depicted for HOM?) and THOM2), Panel (a) shows the full spatial
dependence of ¥y(x), and panel (b) shows a zoom in logaritmic scale of the
wavefunction tails, where differences are more noticeable. It can be seen
that the THO achieves a better description of the wavefunction tail with a

smaller number of basis states.
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— HO N = 50 a algorithm
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Figure A.1: Panel a: the weakly-bound wavefunctions for the 1D one-body
problem calculated with HO and THO basis using different parameters.
Panel b: the logaritmic plot of the wave functions tails; the main differences
are located on the tails region, and in particular it can be noticed that with
THO® one can reproduce the proper tail using a smaller number of basis
states.

In figure A.2 we include, for the one-body case, the results obtained for
the total strength sum rule of Wo(x) with the four approaches considered in
table A.1.

Finally, for the two-body case, we study the weakly-bound ground state
energy dependence with N in table A.2 as well as a plot of the ground state
energy (panel a) and (panel b) ground state anomalous density value (as
defined in section 4.1.2) in figure A.3.
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Figure A.2: The total strength sum rule convergence calculated with the
weakly-bound state for the 1D one-body problem in a Woods-Saxon poten-
tial, for HO and THO methods.

Ny xmax(fm)

HOM 200 30.0
HO®) 45 75.0
THO® 50 75.0
THOM 85 75.0

Table A.2: One-body dimension N and integration length x4, required to
achieve converged two-body energy for the different methods. In the HO(M)
case the inverse oscillator length a is determined with N = 1 calculation,
whereas in the HO®) case the value of a is fixed using a recipe described
in appendix D.1. The THO® and THO® notation stands for THO with
v/b= 2.4 fm~1/2 and /b = 1.2 fm~1/2, respectively.
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Figure A.3: Panel a: the energy convergence for the 1D two-body problem in
a Woods-Saxon potential for HO and THO methods. Panel b: the anomalous
density for the ground state convergence for HO and THO methods.
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As can be seen in the tables A.1 and A.2 and in the figures A.1, A.2, A.3,
results from the three approaches are in good agreement, as expected. The
THO® seems the most flexible method, as it manages to obtain converged
energies and a fairly good description of asymptotic wave functions. Among
the considered method for the one-body case, this is the case with the fastest
convergence and a best asymptotic wave function description.

The difference in basis sizes in tables A.1 and A.2 seems not too dramatic in
this case, but we should take into account that these continuum discretization
methods are of interest for two-body studies and beyond [72-75] and in this
case having a small one-body basis confers a very important advantage in
the full problem.

The convenience of THO®) is further confirmed in the one-body case by the
fast convergence of the Total strength sum rule for the ¥y(x) weakly-bound
state, and in the two-body case for the fast energy and anomalous density
convergence.

It is important to emphasize that all methods agree on the large N limit for

the different quantities computed.



Appendix B

Continuum structure:

resonances and virtual states

By observing what happens to the bound states of a one dimensional po-
tential well (with barriers) V(z) as it becomes less deep, one should notice
that the bound states move up to the zero energy threashold and evetually
disappear into continuum [76]. Shortly after a bound state ceases to exist,
a new resonance state appears above the well. In the interim a virtual state
is formed at the threshold energy. Decreasing the potential depth, it melts
with another virtual state that is moving up towards it. This melt gives rise
to a pair of complex energy states inside the well which eventually become
a resonance above the well and its conjugate virtual state.

The solutions of the time-independent Scroedinger equation for a square well

h? d?
g V@) B W) =0 (B.1)
is given by
cethor 4 o e=ikor x < —L
U(x) = ¢ ae™® 4 pe~ ke —L<x<L (B.2)
dettor 1 e~k x> L

where [—L, L] defines the range in which the potential V(x) is defined,
k = \2u(E+V)/h and ky = /2/h. The coefficients a, b, ¢, ¢, d, d'

are constants depending on boundary conditions. The functions e**** are
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waves moving to +oo or —oo according to the sign + or —. By requiring
c=d =0 (or ¢ =d=0) we define an outgoing (or incoming) wave.

Real solutions of the equation (B.1) are possible only for £ < 0, when kg
is purely imaginary (ko = i|ko|), and the outgoing waves become decaying
exponentials belonging to bound states: ¥ — e~1kl% when # — co. When
ko is purely imaginary but negative (kg = —ilko|) and F < 0 we are in
the presence of a virtual state; in this case the solution is an incoming
wave. Although these are non-physical solutions with negative energies,
their signature shows up at positive energies (for example, as a bump in the
breakup probability distributions). Complex energy solutions are related
to resonances if Im(E) < 0 fixing outgoing boundary conditions, and to
conjugate virtual states if Im(E) > 0 for the case of incoming waves. The
conjugate virtual states, also called “capture resonance states”, are associated
with exponential divergent asymptotes; while resonant states are recognized
among continuum levels because most of their probability density is concen-

trated in the potential area.

B.1 Study of resonances in one dimension

Some of the most striking effects in scattering theory are associated with
resonances. The appearance of a resonance in the continuum of a quantum
system implies sudden changes of phase shifts and reflection/transmission
coefficients at particular energy values, associated with the resonance. This
implies the occurrence of a “quasibound” state of the scattering potential,
that is, a long-lived state which has sufficient energy to breakup into two or
more subsystems.

The usual approach to resonances implies the study of complex poles of
the scattering matrix and complex eigenvalues of the system Hamiltonian
e = E—il'/2 (Gamow-Siegert functions [77]). A standard approach to study
resonances imply complex scaling, defining a complex scaled Hamiltonian,
and associating the resonance to a single square-integrable eigenfunction of
this scaled Hamiltonian |78].

Simpler alternatives to study resonances are quantum-mechanical stabiliza-
tion methods, using bound-state techniques [46, 79, 80]. This approach is
based on the fact that the resonance wavefunction in the potential region

is akin to a bound state wavefunction. When the energies of a system
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possessing resonances are plot as a function of the basis dimension (or, more
generally, any non-linear parameter characterizing the basis extension), there
are certain eigenvalues that vary very little compared to the rest: they mark
the resonant state energies, and thus the name stabilization plot [81].
Resonances are pervasive in 2D and 3D systems due to centrifugal barrier
effects. In order to study resonances using pseudostates in a 1D system
without including Coulomb interaction, we consider first the potential
studied by Hazi and Taylor [46] to reproduce their results. We also address an
analytical case, namely the Ginocchio potential, which has been previously
studied with THO states in 3D [82], and as a third example we define a
Woods-Saxon with barriers.

We show stabilization plots for each of the cases as a function of the relevant
parameters and compute the resonance energy from the stabilization plots.

We also plot the resonant wave functions.

Hazi-Taylor potential
We have first reproduced the Hazi-Taylor potential resonances [46].
The Hazi and Taylor potential is defined as

1.2
sx xr <0
Viz) = 2 - B.3

(@) { %xQe*)‘xQ x>0 (B:3)

where A > 0. In Figure B.1 we plot the potential and its first wave functions.

— Hazi-Taylor pot.| _|
8 N o

— THO

Energy (MeV)

Figure B.1: The Hazi-Taylor potential with its first three wavefunctions
calculated with each method; in solid line the resonant waves.
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Using the parameters from reference [46] and the HO method, the energies
and the wavefunctions have been perfectly reproduced. The stabilization
plot for the HO case as a function of the basis size is shown in figure B.2
(left panel), while in the right panel the resonance wave function in shown

for different N values.
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Figure B.2: Left panel: stabilization plot in the HO case as a function
of N for the Hazi-Taylor potential. The green dashed line corresponds to
the nominal resonance energy. Right panel: the resonance wavefunction for
different basis dimension values.

The stabilization plot with the box radius zp is shown in figure B.3 in the
BOX case. The THO case results are shown in figure B.4 with stabilization
plots as a function of the basis dimension (left panel) and /b ratio (right
panel). The resonance wave function obtained with the THO basis is shown

in figure B.5 (in left panel varying N, in the right panel varying ~/b).

— Resonant Energy| 7

X, (fm)

Figure B.3: Stabilization plot in the BOX case as a function of the box radius
xp for the Hazi-Taylor potential. The green dashed line corresponds to the
resonance energy.
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Figure B.4: Stabilization plots in the THO case (in panel a as a function of
N and in panel b as a function of 7/b) for the Hazi-Taylor potential. The
green dashed line corresponds to the resonance energy.
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Figure B.5: Left panel: resonance wavefunction for the Hazi-Taylor poten-
tial in the THO case varying the basis dimension N for a fixed value of
v/b=1.5 fm~1/2, Right panel: resonance wavefunction for the Hazi-Taylor
potential in the THO case and varying /b for a fixed value of the basis
dimendion N = 20.

Ginocchio potential
Resonances for the Ginocchio potential [83] have been reproduced according

to [82] using HO and THO methods.

The Ginocchio potential is

Viz)
Vo

— -+

1— )2

4

) (L= y?)[2— (T— N2 +5(1— A)y]

(B.4)
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where
1
z(y) = ﬁarctan h(y) + (A2 — 112 arctan([\2 — 1]Y/2y), (B.5)

the parameter A regulates the wideness of the potential, v the the number
of bound states.

We report the stabilization plots or both HO and THO cases in figures B.6
and B.7. In particular, in the THO case we plot the energy as a function of
N (with /b fixed at 2.6 fm~1/2) or of the /b (with N fixed at 30).

.
30 40 X 50_ X
Basis Dimension

Figure B.6: The stabilization plot in the HO case as a function of the basis
dimension N for the Ginocchio potential.
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Figure B.7: Stabilization plots in the THO case for the Ginocchio potential
as a function of N (with the ratio fixed at 2.6 fm~/2 ) in the right panel,
and of the ratio (with N fixed at 30) in the left panel.



B.1. Study of resonances in one dimension 137

Woods-Saxon potential with barriers

The Woods-Saxon with barriers potential is defined as
V(2) = Vivs(x) + Vye (om0 (B.6)

where Viyg is the standard potential of equation (2.1).

The parameters chosen are the same used in chapter 2, and, in addition

Vi =30 MeV (B.7a)
xo =4.0 fm (B.7b)

This potential has resonances, we show them in the stabilization plots of
Figure B.8 for the HO and THO (v/b = 2.4fm~/?) cases.

Energy (MeV)
Energy (MeV)

=30+ -

0 60
Basis Dimension Basis Dimension

(a) HO (b) THO

Figure B.8: Left panel: stabilization plot in the HO case as a function of the
basis dimension for the Woods-Saxon potential with barriers. Right panel:
stabilization plot in the THO case as a function of the basis dimension fixing
v/b=2.4fm~/? for the Woods-Saxon potential with barriers.

In Figure B.9 it can be appreciated the first resonant wave function (red);

note that it is very narrow and concentrated into the potential range.
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Figure B.9: The Woods-Saxon with barrier potential and the first wave
functions calculated with the HO method. In red the resonant wave function;
its probability density is higher into the potential.

B.2 Signature of a virtual state in the breakup

probabilities

In figure 3.13, the projectile distribution of probability presents a very sharp
peak at small energy (around 0.06 MeV above the breakup threshold). It
can not represent a resonance because of the one-dimensional nature of the
problem and because of the absence of barriers, so it might indicate the
presence of a virtual state. To check if the projectile well we are using
for the model case B has a virtual state at positive energy 0.06 MeV, we
depicted in figure B.10 the square value of energy as a function of the
potential depth. For a depth of 5.0 MeV, which is exactly the parameter
we are using to construct the projectile potential, the system should present
a virtual state at 0.06 MeV. The fact that the momentum corresponding to
this state (proportional to v/E) is negative also supports the presence of a

virtual state.
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Figure B.10: Determination of the virtual state energy for the test case B
discussed in chapter 3.






Appendix C

Non-covariance of Schroedinger
equation in non-inertial

reference frames

In classical physics and special relativity the inertial frames of reference
are defined as those frames in constant, rectilinear motion with respect to
another. Measurements in one inertial frame can be converted to measure-
ments in another by a simple transformation (the Galilean transformation
in Newtonian physics and the Lorentz transformation in special relativity).
A non-inertial reference frame is an accelerated frame with respect to an
inertial one. The laws of motion in non-inertial frames do not take the simple
form they do in inertial frames: to explain the motion of bodies within the
viewpoint of non-inertial reference frames, fictitious (or inertial) forces must
be introduced to account for the observed motion, such as the Coriolis force
or the centrifugal force.

To have a schematic visualization of the situation, imagine a glass full of
water. If you accelerate it, you can see how the water surface inclinates under
the effect of the inertial forces; when the acceleration is sufficiently high, the
water could also fall outside of the glass. In an analougus way, imagine the
glass to be a potential well and the water to be the wavefunction related to
its bound state. If the potential is accelerated, the wavefunction feels the
inertial forces and so it appears deformed and could also have a component
excaping from the well. This is due to the fact that the Hamiltonian changes

under a transformation to a non-inertial frame, so the Shroedinger equation
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is not covariant under Galilean boosts [84-87|. Let us consider the one di-

mensional Shroedinger equation® for a non-relativistic particle in an external

field V(x,t)

1 92

.0 _
Z@‘I)(x,t) = HP(x,t), H = ~53.2 + V(x,t). (C.1)

This Shroedinger equation corresponds to the one we solve in this thesis for
the one-body case presented in chapter 3. The inertial frame of reference
indicated by coordinates x with origin corresponding to the target potential
center, is the one in which we solve this problem and corresponds to the
center of mass frame of reference for this system.

In our case the potential is of the form
Vi(z,t) = V(z— R(t)), (C.2)

where R(t) corresponds to the projectile equation of motion [35]. Let us
consider the problem from the point of view of the frame of reference centered
in the projectile potential center of coordinates y, to which we should make

the general time-dependent translation defined by
T =1, y=x— R(t). (C.3)

The projectile frame of reference is non-inertial because the projectile is
accelerated. This is the so-called extended Galilean transformation [88, 89|,
i.e. a transformation to a rigid system having an arbitrary time-dependent
acceleration.

In this frame are valid the new relations

0 0 -0 0 0
& —_— 5 _R67y7 % — @' (0.4)

The wavefunction of projectile non-inertial frame is defined according to a

change of coordinates and a gauge transformation as

e . rt 17 /
U(y,7) = g HE Jio 8 RE(E )/Q(I)(SL‘ + R(7),7), (C.5)

'Note that the Planck’s constant  and particle reduced mass p are all unity in this
example.
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where ty represents the arbitrarily chosen origin of time, and R corresponds
to the momentum of the particle due to the motion of the well. This new

wavefunction obeys

i Gy = L0 R )+ R, (C.6)

or T 20y2
where the last term +R(t)y represents the linear inertial force felt by the
particle in the projectile potential well, thus showing that in the accelerated

system there appears a gravitational field.






Appendix D

Other demonstrations

We collect here those demonstrations supporting the discussion, that would

interrupt the flow of the text.

D.1 A procedure for the HO inverse oscillator
length optimization

1/4

k
K determines the curva-

n2
ture of the HO potential at the origin and thus, how wide is the potential.

The inverse oscillator length parameter a =

In accordance to other cases [50] the value of this parameter is fixed to
minimize the ground state energy with a small HO basis. In fact, we use a
N =1 basis, that is, a basis with the HO ground state as its only component
to obtain an approximation to the system’s ground state energy. The value
of a is varied to minimize this energy.

In cases with several bound states that include weakly—bound states, as the
chosen model Woods-Saxon potential, the a value obtained using the ground
state is too large (Harmonic potential too narrow) and a very large number
of HO states in the basis is request to sample the large z value where the
weakly-bound state wavefunction tails are still significant. To overcome this
problem one should diminish the a value of the oscillator in order to include
the whole range of the significant states.

This can be done fixing the value by hand, though we define the following
recipe or algorithm. We first make the minimization explained above; then

with the value of a obtained we build the basis and the system Hamiltonian is
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diagonalized. At this point it is possible to evaluate the expectation value of
the 22 operator for the weakly-bound wave function e.g. (¥s|2?|¥5). We then
compare this result with the same matrix element calculated for an Harmonic
Oscillator basis, which in this case can be easily computed analytically using
the relations (2.32), though it is more direct to make use of the creation and

annihilation operator formalism:

o2+l ViU -1)

2

(i|2*|j) = a ij—2 ij+2

VDG,
2
(D.1)

So we can set a new inverse oscillator length a calculated analytically fol-
lowing equation (D.1), <<I>5HO)|:32|<I>§HO)> with ¢ = j = 2. Once obtained
the new parameter we reconstruct the basis and diagonalize again before
proceeding with the observables calculation.

In figure D.1 is shown the comparison between the model Woods-Saxon
potential and the Harmonic Oscillator potentials obtained by minimization
(label a), by fixing the value by hand after minimization (label a/2) and by
following the procedure described (label a algorithm).

It is evident that the variation of the inverse oscillator length allows to
construct a Harmonic Oscillator basis which stretches to the full bound states

range limiting the number of necessary HO functions in the basis.
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L ot = | — Woods-Saxon potential
.50 ‘ | ‘ | ’ -- Bound states
40 30 -20 10 20 30 40

x (fm)

Figure D.1: The Woods-Saxon potential with the wavefunctions and the
different tries for the basis harmonic oscillator.
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D.2 Energy weighted sum rule demonstration

Assuming that for large N values the basis is complete > . |¥;)(¥;| = 1, and

considering the time dependent Schroedinger equation H|V;) = Ey|¥}) with

d2
the Hamiltonia H = —%%Qﬁ + V(z), the energy wighted sun rule is
x

EV(O(2)) = limy 0 & (O(x), N)
= S N(Ei — By) | (W3]O(@)| W) 2,
SN (E; — By){(0|O(2)|0;)(T;|0(x)| ),
= (U,|O(2) SN 15| (H — By) S0 05005 |O(2) | 1),
= 3(Up|20(z)(H — Ep)O(z)|¥s),
= H0,[20(2)(H — B)O(x) — (H — B,)O(2)? — O(2)2(H — E)|T,),
= L[ [O(x), (H — E)O(x) — O(z)(H — Ey)] | L),
= L(0y| [O(x), [H — By, O(x)]] | V).

(D.2)

Acting with the double commutator on a function ¢(z) one finally obtains

00e). 11~ En 0@ ot2) = ~42 001 [ 15,00 oto),

2 , & 2

= 12 120(2) 5 (0(x)p () — O@)* 25 0(x) — M@(w)?so(x)] :

(D.3)

In this case the operator is O(x) = z so in the N — oo limit the result
expected is 51(/3)((’)(;5)) = %%
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D.3 The wavefunction current

An interesting observable is the wavefunction curret [11]. This quantity is
defined as

jlx,t) = ™ (\P*(:c,t)aql(,gzﬁ - \Il(x,t)aqjg;’t)> (D.4)

and measures the flux of the wavefunction leaving the collision area. In this

model it represents the wavefunction component escaping in the continuum.

We can demonstrate that the plane wave’s current corresponds to its

velocity. Given a plane wave W(z) = e its derivatives are % = jketh®

and L = —ike~™**. So
i

.k . oV (z,t) ov*(x,t)
= (w (@) 2D gy P21
— 2i (e—ikxikeikx o eikx(_ik)e—ikx) (D5)
mu
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