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Suffucient conditions are given to assert that differentiable compact mappings and
differentiable proper mappings between Banach spaces share a value. The conditions involve
Fredholn operators. The proof of the result is constructive and is based upon continuation
methods.
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1. Preliminaries

In the whole this paper we assume that X and Y are two real Banach
spaces. If F' : X — Y is a continuous mapping, then one way of solving the
equation

(1) F(z)=0
is to embed (1) in a continuum of problems
(2) H(t,z)=0 (0<t<1),

where we can solve easily the problem (2) when ¢ = 0, and when ¢ = 1 it becomes
(1). If it is possible to continue the solution for ¢ = 0 through ¢ = 1 then (1) is
solved. This method is called continuation respect to a parameter [1-6, 13-16].

In this paper sufficient conditions in order to prove that a differentiable
mapping F has at least one zero are given. Other sufficient conditions to guar-
antee the existence of zero points in a finite dimensional setting have been given
by the author in other several papers [8-12]. We use here continuation methods.
The proof supplies the existence of implicitly defined curves reaching zero points
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[5-7]. The key is the use of the Surjective Implicit Function Theorem in Banach
spaces and the properties of the Fredholm C'-mappings (see [7] and [13]). If
F is a C'-mapping, then F'(z) is a continuous linear mapping from X into Y
for every z € X and, in addition the function z € X — ||[F'(z)|| € [0,00) is
continuous.

We briefly recall some concepts about Banach-valued Mappings. Assume
that F : A — Y is a continuous mapping, where A C X, I’ is said to be compact
whenever the image F(B) is relatively compact (i.e. its closure F(B) is compact
in Y) for every bounded subset B C A. F'is said to be proper whenever the
preimage F~1(K) of every compact subset K C Y is again a compact subset
of A. If a € A, A is open, F is compact and the derivative F'(a) exists, then
F'(a) : X — Y is a linear compact application (see [13, p.296]). If again A is
open, then F is said to be Fredholm mapping if and only if F is a C'-mapping,
and F'(z) : X — Y is alinear Fredholm operator forall 2 € A. That L : X — Y
is a linear Fredholm operator means that L is linear and continuous and both
the numbers dim(ker(L)) and codim(L(X)) are finite. The number

ind(L) = dim(ker(L)) — codim(L(X))

is called the index of L. From the continuity of z — [|F'(2)|| is derived that
ind(F'(z)) is constant on A if A is connected. Fredholm mappings are important
in bifurcations theory and historically they arose from the consideration of a
linear equation Lz = y (z € X) for given y € Y and its dual equation L*z* =
y* (z* € Y*) for given y* € X* and from the desire of finding a class of linear
operators for which the "good” properties of classical linear systems of equations
in finite dimensional spaces are preserved as much as possible. :
Finally we state for future references the Surjective Implicit Function
Theorem (see [13, p.176]). .

Theorem 1. Assume that X, Y and Z are Banach spaces and that
U is an open subset of X x Y. Suppose that (zo,%0) € U, and F : U — Z
is a C'-mapping, and F(zo,y0) = 0. Also suppose that the partial derivative
D3 F(z0,%): Y — Z is surjective and that the nullspace Yy = Ker(D2F(zo, %))
is a complementary subspace of Y , that is, there ezists a Banach subspaceY CY
such that Y = Y, @Y; (topological direct sum). Then there exists an open subset
Uy C X x Yy with (20,0) € Uy and a C'-mapping

v:U1—>Y2

satisfying:
a) v(z0,0) =0,



Compact Mappings and Proper Mappings ... 163
b) F(x,y0 + y1 + v(2,31)) = 0 for every (z,y1) € Us.

2. Mappings sharing a value

Clearly, if we get a decomposition F' = f — g, then F" has a zero if and
only if f and g share a value, that is, there is ¢ € X with f(z) = g(x). We
establish our result in terms of f, g .

Theorem 2. Suppose that f,g: X — Y are two Cl-mappings salisfying
the following conditions:

i) f has at least one zero.

i) f is proper and Fredholm.

iii) g is compact.

(iv) Given t € [0,1] and x € X, then either f(z) # g(z) or the linear
mapping f'(z) — tg'(z) is surjective.

Then f and g share a value.

Proof. First step. By hypothesis (i), there is o € X such that f(zo) =
0. Choose any open ball D; C X containing zo. Let us define the set

V = g(4),
where
A={z € D;: thereis t=1t(z)€[0,1] such that f(z)= tg(z)}.

Observe that A is not emtpy, because f(zo) = 0 = 0.g(20), and so 2o € A. Note
also that V' C g(Dl), and D, is bounded, therefore g(D,) is relatively compact
(by (iii)) and so V' is relatively compact too. We also have that.the subset
[0,1] x V is compact in the topological product spaceR x Y. We now construct
the ”cone”
V'={ty: telo,1], yeV}
This set is compact in Y, because it is image of [0,1] X V under the continuous
mapping
(t,y) €[0,1]xY -ty €Y.

Next, we consider the subset of X given by
V" = fY(v).
Again V" is a compact set, because f is proper (by (ii)) and V' is compact.

Second step. If we fix a point 2 € X then f'(x) is a Fredholm linear
operator by (ii) and tg’(z) is a compact operator for given scalar ¢. Finally,
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from [13, pp. 366-367], we have that if we fix + € X and t € [0,1], then
f'(z) — tg'(2) is a linear Fredholm operator and

ind(f'(z) - tg'(x)) = ind(f'(=))

for every t € [0, 1].
On the other hand, as noted in Section 1, the index ind(f’(z)) is constant
when 2 runs over X. Hence

ind(f'(z) — tg’(z)) = a constant.

for all ¢ € [0,1] and all z € X, and in particular for all 2 € V",

Third step. In this paragraph we will use Theorem 1 together with the
continuation method to prove that f and g share a value. To this end let us
construct the following C'-homotopy:

H:RxX =Y

given by
H(t’x) = f(x) - tg(x)a

where R is the real line. Clearly H(0,zo) = 0. In addition, the partial derivative
D2 H(0,20) = f'(z0)
is surjective (as a linear mapping from X into Y') and the subspace
X1 = Ker(D2H(0, z0))

is complementary in X. This is true because f’(z) — tg’(x) is Fredholm for all
t €[0,1) and all z € V" (s0 Ker(f!(z) —tg'(x)) is always finite dimensional) and
the surjectivity condition is satisfied from hypothesis (iv) because f(xo) = 0.
We will prove that every curves exist linking the zero 2o of H(0,z) with
a zero of H(1,z).
Let, more in general, (¢p,a) € R X X be a point such that

H(to, a) =0.

Then Theorem 1 may be applied and we conclude that there exist positive
numbers r¢ and r and a C'-mapping

v: (to - To,to-l-‘l'o) X B(O,To) CRx X;— Xq
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that satisfies
’v('to, 0) =0

and

H(t,a+ 2y +v(t,21)) =0
for any fixed ¢ € (to — 70,20 + 70), for all (¢,21) € (to — 70,t0 + r0) X B(0,70)
and ||v(¢,21) + @1|| < r. We have denoted here ||.|| = the norm on X, X; =
Ker(D2H (tg,a)) = Ker(f'(a) —tg'(a)), B(0,70) = the open ball with center zero
and radius r¢ in X; and X; = the complement of X; in X as closed subspace.
So, each point z = a + 2 + v(t,2;) is a solution for f(z) —tg(z) =0

From the proof of Implicit Function Theorem [13, pp.149-155] obtained
trough the Banach Fixed-Point Theorem together with the compactness of
[0,1] x V" and the continuity of H(t,a) and DoH(t,z), the constants r and 7
can be taken independently on the particular point (Zo,a) € [0,1] x V", since
the proof of the Sobrejective Implicit Function Theorem ([13], p.177) really uses
a restriction of DM (z,y) and H(z,y) in a convenient shape.

Then from the compacteness of [0,1] we can reach the level ¢ = 1 from
the level £ = 0 in a finite number of steps. X being connected, there is a solution
curve C C [0,1] x X with a point (1,2g) € [0,1] x X with H(t,z) = 0 for all
(t,z) € C, and so

H(1,25) =0,

that is,
f(25) = 9(23),

as we wanted. The proof is finished. -
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