
B r e e d e r s  a n d  n o n t e r r i t o r i a l  

i n d i v i d u a l s  o f  a  l o n g - l i v e d  

s p e c i e s , t h e  e a g l e  o w l  B u b o  b u b o :  

d i f f e r e n c e s  i n  s p a c e  u s e  a n d  

m o v e m e n t  p a t t e r n s   

LETIZIA CAMPIONI 

PhD THESIS 
2012 

B
r

e
e

d
e

r
s

 a
n

d
 n

o
n

te
r

r
it

o
r

ia
l 

in
d

iv
id

u
a

ls
 o

f 
a

 l
o

n
g

-l
iv

e
d

 s
p

e
c

ie
s

,t
h

e
 e

a
g

le
 

o
w

l 
B

u
b

o
 b

u
b

o
: 

d
if

fe
r

e
n

c
e

s
 i

n
 s

p
a

c
e

 u
s

e
 a

n
d

 m
o

v
e

m
e

n
t 

p
a

tt
e

r
n

s
  

Ph
D 

Th
es

is
 



                                                                         

 

REPRODUCTORES Y DISPERSANTES DE UNA ESPECIE DE LARGA VIDA, EL 

BÚHO REAL (BUBO BUBO): DIFERENCIAS EN EL USO DEL ESPACIO Y 

PATRONES DE MOVIMIENTO DE DOS FACETAS DE UNA MISMA 

POBLACIÓN 

 

 

BREEDERS AND NONTERRITORIAL INDIVIDUALS OF A LONG-LIVED 

SPECIES, THE EAGLE OWL BUBO BUBO: DIFFERENCES IN SPACE USE AND 

MOVEMENT PATTERNS  

 

Memoria presentada por  
LETIZIA CAMPIONI 

para optar al Grado de Doctor en Biología  
por la Universidad de Sevilla 

 
 
 
 
 

Director                                                                                             Tutor 
Dr. Vincenzo Penteriani                                                                Dr. Francisco García Novo     
Estación Biológica de Doñana                                                     Universidad de Sevilla 
 
 
 

Sevilla 2012 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

BREEDERS AND NONTERRITORIAL INDIVIDUALS OF A LONG-LIVED 

SPECIES, THE EAGLE OWL BUBO BUBO: DIFFERENCES IN SPACE USE AND 

MOVEMENT PATTERNS  

 
 

 
 
 

 

PhD Thesis 

LETIZIA CAMPIONI 

 

 

 

 

 

 

Seville 2012 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisors: 
 
Vincenzo Penteriani 
Department of Conservation Biology 
Estación Biológica de Doñana 
Seville, Spain 
 

María del Mar Delgado Sánchez 
Metapopulation Research Group  
Department of Biosciences 
University of Helsinki 
Helsinki, Finland 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 A mia nonna,  

mia madre e  

mia sorella  

 

 

 

 

 

 

 

 

 

 
  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ÍNDICE 

 

ABSTRACT         1  

INTRODUCCIÓN        3 

OBJETIVOS Y ESTRUCTURA DE LA TESIS     11 

 

CAPITULO 1  Social status influences microhabitat selection: breeder and   19                                        

  floater Eagle Owls Bubo bubo use different post sites 

CAPITULO 2 Breeders and floaters prefer different habitat cover: Should  43                            

  habitat preference be a social status-dependent strategy? 

CAPITULO 3 Individual status, foraging effort and need for conspicuousness  65  

  shape behavioural responses of a predator to moon phases 

CAPITULO 4 Changes of movement patterns from early dispersal to settlement 97 

CAPITULO 5 Individual and spatio-temporal variations in the home range  123  

  behaviour of a long-lived, territorial species 

SÍNTESIS         165  

CONCLUSIONES        169 

APÉNDICE          

AGRADECIMIENTOS         

 

 

 

 

 



 



Abstract
 

 

- 1 - 
 

ABSTRACT 

Many animal species live in societies in which nearby conspecifics are vital elements 

of their social environment, with the nature and quality of their behavioral 

interactions determining the type of social organization. As a group, birds show a 

wide range of social organizations where, in some cases, social status gives priority of 

access to resources, ultimately affecting individual fitness. For example, in territorial 

species where at least two social groups –breeders and non-territorial floaters – are 

recognized, territorial ownership can lead to holders behaving differently compared 

to the floating counterpart of the population. For this reason, social structure is often 

considered a key determinant of population biology, influencing fitness, gene flow, 

and spatial pattern and scale. Nonetheless, nonsocial factors (e.g., environmental 

condition, food supply) can also affect behavioral interactions, individual 

relationships, and, ultimately, social organization. In the present thesis, we studied 

the behavioral differences between individuals of different social status; we focused 

in particular on the analysis of habitat selection, space use behavior and movement 

patterns of breeders and nonterritorial eagle owls (Bubo bubo).  

 The focal radio-tracking of breeders and nonterriotrial floaters during 8 years 

demonstrated that owls perform different behavioral strategies in relation to 

different life cycle stages, social status and the behavioral trait under study. These 

observations emphasize the existence of more structured inter-individual 

relationships than expected. Moreover, previous investigations of social interactions 

(vocal and visual communication) support the importance of territoriality and social 

dominance on owls' behavioral decisions. Our results indicate a scenario in which 

both social and nonsocial factors seem to affect the behavioral mechanisms that 

regulate habitat selection, space use and movement behavior in different ecological 

contexts. In contrast to our initial predictions, trophic resource abundance in our 

study area does not correlate directly with owls' space use behavior. However, the 

large abundance of the staple prey across this area, due primarily to management and 

release of rabbits (the study area serving as game reserve), might actually favor a 
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high density of conspecifics over a reduced area (40 breeding pairs/100 km2) by 

relaxing environmental constrictions like resource competition (e.g. food). In line 

with this prediction, we show that territory holders (Chapter 5) occupy reduced 

home ranges of high quality for reproduction. Surprisingly, the home range size 

(mean HR size ~ 220 ha) appears to be a direct consequence of landscape structure 

rather than prey abundance available across the study area. Across the mosaic of 

territories settled by owls, females - the sex that experiences less social constriction - 

are those which exhibit wider home ranges that overlap to a greater extent with those 

of their neighbors. Nevertheless, within the boundaries of their home ranges, adults' 

behavioral decisions were significantly affected by nonsocial factors such as the 

biological needs and individual identity. Similarly, external cues like the lunar cycle 

(Chapter 3), act to regulate the time and effort that owls allocated to social 

(communication) or physiological (feeding) activities. 

 A key finding demonstrated here is that nonterritorial floaters show a 

tremendous capacity to adapt their behaviour to their immediate needs and social 

and physical surroundings. As with other territorial species, floating owls show 

cryptic behaviour, living in a parallel "underworld" where individuals make decisions 

while considering social constraints (Chapter 1-2), acquired experience (Chapter 4) 

and landscape features. At the end of their natal dispersal, the most likely fate for our 

floaters was to settle close to the natal population while awaiting circumstances that 

would offer greater reproductive opportunities. In conclusion, the study of the 

relationships between animals and their environment is a field where ecology and 

behavior are tightly intertwined. In my opinion, and as stressed in the present study, 

social organization is a key determinant of population biology with important 

implications on spatial processes. 
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Organización social, sistemas territoriales y estatus sociales  

Gran parte de las especies animales viven en una sociedad. Sociedad cuya 

organización (término análogo a sistema o estructura) puede venir fuertemente 

determinada por el comportamiento, por ser éste responsable en gran medida de las 

interacciones entre los individuos. De hecho, son las interacciones las que representan 

el nivel basal de cualquier organización social, mientras que las características de las 

mismas (es decir, naturaleza, calidad y patrones) son las que caracteriza una relación. 

El conjunto de las relaciones interindividuales, su naturaleza, calidad y patrón son los 

elementos que componen una estructura social (Hinde 1976, BOX 1a). En este 

sentido, las organizaciones sociales pueden ser definidas como la síntesis de las 

interacciones interindividuales (Whitehead 2008).  

 En general, las aproximaciones que se han utilizado para el estudio de las 

organizaciones sociales pueden englobarse en dos categorías (Whitehead 2008): (a) 

etológica, enfocada en comprender la organización de patrones de interacciones 

entre individuos y su variación en el tiempo; y (b) ecología de comportamiento (sub-

disciplina de la biología evolutiva darwiniana) centrada mayormente en las 

consecuencias - a nivel de éxito reproductor y supervivencia - de diferentes patrones 

de comportamiento. Tanto una escuela como la otra, y con el transcurso de los años, 

han observado que, en una gran variedad de vertebrados sociales y especies de 

insectos, diferentes organizaciones sociales pueden variar no sólo entre especies, si 

no también dentro de la misma especie o incluso en la misma población. De hecho, en 

una población pueden existir marcadas variaciones en la composición de grupos de 

individuos o en la repartición de las tareas reproductoras entre miembros del mismo 

grupo (p. ej. diferentes números de reinas reproductoras en distintas colonias de 

hormigas, Ross and Keller 1995). Esta variación, ha sido el punto de partida para 

abrir un largo debate acerca de cuestiones con fuertes implicaciones ecológicas: 

¿Cuáles son las causas que promueven la variación en los sistemas sociales (factores 

ecológicos extrínsecos y factores sociales intrínsecos)?  
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 En cuanto a los diferentes factores que pueden promover tal variación, 

merece la pena señalar en primer lugar que, si bien la organización social es el 

resultado de las interacciones entre individuos, estas interacciones pueden estar 

asimismo afectadas por la misma estructura social (Hinde 1976). Sin embargo, no hay 

que olvidar que existen otros factores no sociales que pueden afectar la estructura 

social a diferentes niveles, entre lo que podríamos mencionar la abundancia de 

recursos tróficos. De hecho, muy a menudo, el grado de asociación entre individuos 

depende de características espaciales como la distribución de los recursos (Pusey and 

Packer 1997; Johnson et al. 2002). De la misma forma, diferencias en las 

características morfológicas (Krause et al. 2005) y en el comportamiento individual 

(Viscido, Parrish and Grünbaum 2004) pueden a su vez determinar la tipología y la 

estructura de relaciones inter-individuales, así como la formación y la composición de 

grupos de individuos.  

 La presencia de posibles heterogeneidades tanto espaciales como inter-

individuales hace que en presencia de recursos limitados (como por ejemplo 

alimento, parejas o sitios de reproducción) la competencia por ellos conlleve a la 

formación de jerarquías de dominancia. En este contexto jerárquico el estatus social 

es clave en la regulación del acceso a los recursos, afectando la eficiencia biológica 

tanto de los individuos dominantes como de los subordinados. Estos sistemas sociales 

pueden regular el número de individuos en función de la disponibilidad de los 

recursos o de cualquier otro requerimiento que se encuentre en cantidad limitada o 

variable para la especie (Newton 1998).  

 Los sistemas territoriales son la manifestación más evidente de dominancia 

(BOX 1b; Newton 1998). En dichas especies se pueden claramente diferenciar dos 

grupos sociales: (a) los reproductores, aquellos individuos que poseen y defienden un 

territorio; y  (b) los individuos no territoriales, con un estilo de vida exploratorio 

(Brown 1969, Smith 1978).  
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BOX 1.  

(a) Definiciones de organización social y términos relacionados 

Organización social    "Patrón de interacciones entre individuos, una  
    descripción de los comportamientos" (Rowell  
    1972, 1979) 

    "Unión de nichos sociales que se solapan"  
    (Flack et al. 2006) 

Estructura social  “Patrón de interacciones sociales y resultantes  
    relaciones entre miembros de una sociedad  
    (Keppeler and van Schaik 2002) 

Sistema social   "Conjunto de animales conspecíficos que   
    interactúan regularmente y más entre sí que con  
    miembros de otras sociedades" (Keppeler and van 
    Schaik 2002) 

Tipos de interacciones  Agonística: interacción asociada con conflictos  
    entre individuos  

    Cooperativa: tipo de interacción entre individuos  
    que trae beneficio mutuo 

    Reciproca: interacción en la que un individuo da  
    más a aquellos individuos de los que recibe más  
    (Hemelrijk 1990) 

    Simétrica: si el individuo A interacciona con el  
    individuo B, entonces B interacciona con A  
    (ejemplos: apareamiento, intercambio de  
    vocalizaciones) 

    Asimétrica: si el individuo A interacciona   
    significativamente más con el individuo B más de  
    cuanto B interacciona con A (ejemplos:   
    intromisión, amamantar) 
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Relaciones   Enlace: sugiere algo más que una atracción mutua, 
    generalmente implica interacciones de larga  
    duración  

    Reciproca: un individuo da más a aquellos  
    individuos de los que recibe más (Hemelrijk  
    1990) 

    Dependencia es una relación asimétrica, donde el  
    individuo A  depende del individuo B para  
    necesidades básicas, normalmente alimento, o  
    protección desde los depredadores  

    Dominancia: atributo que caracteriza el patrón de 
    interacciones agonísticas repetidas entre dos  
    individuos, con un constante resultado a favor de  
    uno de los individuos (Drews 1993) 

    Parentela: relaciones de sangre entre individuos:  
    padre-hijo, hermano-hermano  

Elementos que caracterizan  Grupos: un conjunto de animales en mutua                      
la estructura social  relación (independiente de la escala temporal de  
    análisis) 

    Jerarquías de dominancia: un descriptor de  
    dinámicas sociales; se describe utilizando  
    medidas de interacciones asimétricas, por ejemplo 
    el ganador de interacciones agonísticas, la  
    prioridad de acceso a los recursos 

    Rol: el papel de un especifico individuo que actúa  
    en un contexto social. Los roles son fundamentales 
    en las sociedades de insectos sociales 

    Unidades sociales: conjunto de individuos en   
    asociación mutua (casi) permanente 

    Nivel, orden, rango: posición relativa de un  
    individuo en una sociedad 
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(b) Definición de territorialidad y términos relacionados 

 

Territorialidad  La territorialidad se manifiesta cuando los individuos  
   muestran un comportamiento agresivo orientado en el  
   espacio, es decir una defensa agresiva de un espacio que  
   proporciona recursos limitados (Burt 1943; Brown and  
   Orians 1970, Adams 2001) 

Territorio  Área caracterizada por (i) su estabilidad en el tiempo y en 
   espacio, (ii) ser activamente defendido por los individuos  
   que en él habitan, y (iii) un uso exclusivo por parte de su  
   posesor (Brown and Orians 1970)  

Dominio vital  Es la manifestación en el espacio del comportamiento que 
   los  animales desempeñan para vivir el día a día y  
   reproducirse (Burt 1943). El dominio vital es el resultado  
   de procesos dinámicos y, por tanto, fluctuante en el tiempo 
   y  en el espacio. Los dominios vitales pueden presentar una 
   estructura multimodal interna (Börger et al. 2008) 

Centros de actividad Definidas como zonas internas del domino vital más  
   frecuentadas por los individuos con diferentes fines.  
   Incluyendo áreas de forrajeo, sitios de reproducción, estas 
   áreas se caracterizan por presentar una variación, en el  
   tiempo y en el espacio (Samuel et al. 1985).  

Uso del hábitat  Generalmente se refiere a la forma en que un individuo o  
   una especie elige los recursos del hábitat o condiciones  
   ambientales para cumplir con las necesidades de su  
   historia de vida. Por lo tanto puede ser descrito   
   directamente a partir de observaciones de cómo el animal 
   interactúa con las características del hábitat, o se puede  
   inferir desde la asociación entre las características del  
   hábitat y la presencia de los individuos o de la especie bajo 
   estudio (Gaillard et al. 2010). 
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El pertenecer a una u otra clase social va a determinar cuando los individuos tendrán 

acceso a los recursos, pudiendo consecuentemente afectar su supervivencia y éxito 

reproductor a lo largo de la vida (Hansen & Closs, 2009), y como consecuencia, la 

dinámica, estabilidad y viabilidad de una población.  

 El comportamiento territorial puede manifestarse con distintos niveles de 

tolerancia, desde individuos que defienden activamente áreas de uso completamente 

exclusivo hasta individuos que toleran un alto grado de solapamiento con otros 

conspecíficos, siendo posible todos aquellos niveles intermedios entre estos dos 

extremos. Pese a la motivación que puede llevar a una especie a evolucionar un 

comportamiento territorial, el compromiso entre los costes y beneficios asociados a 

la defensa de determinados recursos tiene que estar necesariamente sesgado hacia 

los últimos (Brown 1969). Importante es también resaltar el hecho de que, además de 

presentar una variabilidad en el espacio, la territorialidad puede presentar una 

 
Preferencia de hábitat se define como la probabilidad de un recurso o de un  
   hábitat de ser seleccionado por un animal cuando se le  
   ofrecen opciones alternativas en condiciones igualadas  
   (Johnson 1980) 
 
Dispersión natal  Movimiento pasivo o activo desde el área natal  hasta la  
   futura área de reproducción. La dispersión puede verse  
   como un proceso multifacético, incluyendo tres fases  
   secuenciales llamada inicio, transición/búsqueda y  
   parada/asentamiento. La dispersión puede ocurrir en  
   cualquier etapa de la vida de un animal, a diferentes escalas 
   espaciales y a través de ambientes con distinta   
   heterogeneidad (Clobert et al. 2009).  
 
Dispersión de  se define como el movimiento entre sucesivos sitios de                
los reproductores reproducción o grupos sociales (Greenwood & Harvey  
   1982, Clobert et al. 2001) 
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variabilidad temporal, es decir que según las exigencias de cada especie,  la defensa y 

el uso exclusivo de los recursos puede variar en el tiempo.   

 Miembros de los sistemas territoriales son también los individuos no 

territoriales, comúnmente conocidos como individuos flotantes. Esta porción de los 

sistemas territoriales se caracteriza por estar formada por aquellos individuos que, 

aún siendo sexualmente maduros, se encuentran a la espera para entrar a formar 

parte de la porción reproductora hasta el momento en el que un sitio de reproducción 

y una pareja estén disponibles (Penteriani et al. 2005a, 2006a, b, 2008, 2011). Los 

individuos flotantes pueden encontrarse en la fase de dispersión (Penteriani and 

Delgado 2009a), siendo la madurez sexual la característica fundamental que los 

diferencia del concepto de dispersante (Penteriani et al. 2011). Dado que el estudio 

de los individuos flotantes ha sido y es actualmente abordado bajo diferentes 

enfoques ecológicos, desde estudios de dinámica de poblaciones hasta análisis de 

dispersión natal, su definición se encuentra sujeta a una cierta ambigüedad.  

 El estatus social de los individuos puede verse reflejado en algunas 

características físicas de los individuos, como en el fenotipo, variaciones en el tamaño 

corporal, diferencias en los patrones de plumaje en el caso de las aves y en la 

condición física. Sin embargo, el rango social puede a su vez reflejarse en otros rasgos 

asociados a aspectos eco-etológicos, como la adquisición de recursos (Fero and 

Moore 2008), patrones de inmigración (Höner et al. 2010), e interacciones con 

conspecíficos (Smith 1978, King 1980, Robitaille and Prescott 1983, Rohner 1997, 

Gese & Ruff 1998, King and Allainé 2002, McGowan et al. 2006, Fero et al. 2007, 

Herberholz et al. 2007). Si bien la bibliografía acerca del comportamiento de los 

reproductores es amplia (Hojesjo et al. 2007, Afonso et al. 2008, Kinahan and Pillay 

2008), los individuos no territoriales han sido sujetos a un menor número de 

estudios, probablemente debido a que en general manifiestan un comportamiento 

más críptico y, por tanto, son más difícil de detectar (Rohner 1997). Es por ello que 

este sector de las poblaciones animales es aún hoy en día  sorprendentemente 
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inexplorado, dado su importancia en la dinámica, estructura y viabilidad de las 

poblaciones (Penteriani et al. 2006, 2011). 

 La organización social juega un papel clave en la biología de las poblaciones, 

afectando la eficiencia ecológica de los individuos, el flujo génico, y el patrón de 

distribución de los individuos en el espacio (Wilson 1975). Sin embargo, hasta los 

años ochenta no se reconoció la porción de los flotantes como elemento fundamental 

en la regulación de la estructura de las poblaciones, afectando la distribución espacio-

temporal y la estabilidad de las mismas. Fue en aquella década cuando se comenzó a 

considerar la importancia de los individuos no reproductores como elementos 

amortiguadores para disminuir el riesgo de extinción de las poblaciones animales 

(Jamieson and Zwickel 1983, Kokko and Sutherland 1998). Por último, y desde una 

perspectiva ecológica más aplicada, la estructura social puede también tener 

importantes implicaciones en el manejo y conservación de las poblaciones. Entender 

las relaciones sociales entre conspecíficos puede indudablemente ayudarnos a 

comprender las relaciones espaciales (por ejemplo, la distribución) de los individuos 

y, por tanto, representa una herramienta esencial para el manejo y conservación de 

las especies (Sutherland 1998). En este contexto, la falta de informaciones sobre la 

porción flotantes de las poblaciones puede desembocar en conclusiones erróneas 

acerca de la salud y persistencia de éstas y, como consecuencia, llevarnos a tomar 

decisiones inadecuadas (Penteriani et al. 2011).     

 

Una especie territorial de larga vida como modelo biológico 

El Búho real (Bubo bubo) se caracteriza por ser una especie (i) principalmente 

monógama y (ii) territorial, pudiéndose encontrar sus poblaciones formadas por (iii) 

adultos reproductores y flotantes. Por lo tanto, esta especie es ideal para profundizar 

en el estudio de numerosos aspectos acerca de las estrategias de comportamiento 

empleadas por parte de cada grupo social a la hora de integrarse en su entorno físico. 

Además y debido a las frecuentes interacciones sociales que caracterizan esta  especie 
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(Delgado & Penteriani, 2007, Penteriani and Delgado 2009), representa un modelo 

biológico adecuado para analizar las relaciones intraespecíficas bajo diferentes 

constricciones impuestas por el contexto social. Asimismo, como predador y debido a 

su historia de vida y a su elevada fidelidad a los sitios de cría, el búho real es una 

especie que permite explorar a una larga escala temporal la relación de los individuos 

con el medio que los rodea, así como su efecto sobre las comunidades de presas y 

otras especies de predadores (Sergio et al. 2003, Lourenço et al. 2011). 

 

OBJETIVOS Y ESTRUCTURA DE LA TESIS 

El objetivo principal de esta tesis es estudiar las diferencias en el comportamiento de 

individuos con diferente estatus social, centrándonos en el análisis de (a) la selección 

de hábitat, (b) del uso del espacio, y (c) de los patrones de movimiento (BOX 1b). 

 Puesto que estos aspectos del comportamiento de los individuos están 

fuertemente relacionados con una componente espacial y temporal, el estudio de la 

selección de hábitat, del uso del espacio y de los patrones de movimiento se abordó a 

diferentes escalas. Por un lado, en cuanto a la escala temporal consideramos: (a) una 

macroescala temporal, en la que pretendíamos comparar patrones de 

comportamiento en distintas fases del ciclo de vida de los individuos (reproductores 

vs. flotantes); (b) una escala anual, con el objetivo de poder encontrar y estudiar una 

potencial heterogeneidad a nivel del individuo; y por ultimo (c) una escala estacional 

para analizar patrones relacionados a las distintas tareas asociada a la etapa 

reproductora (defensa del territorio, copula, cría de los pollos, volantones). Por otro 

lado, pero de forma simultánea, empleamos también múltiples escalas espaciales: (a) 

una escala a nivel del dominio vital, con la intención de realizar estudios comparativos 

del comportamientos de conspecíficos dentro de un mismo grupo social, (b) una 

escala a nivel de centros de actividad, para estudiar aspectos comportamentales 

importantes como comparar la selección de hábitat y los patrones de movimiento 

dentro de las áreas de caza, y (a) una microescala (a nivel de sitio de cría y posaderos) 



Introducción 
 

 

- 12 - 
 

para analizar el uso de diferentes elementos/características del hábitat por parte de 

individuos flotantes y reproductores. 

 

 

 

Figura 1. Esquema del contexto ecológico en el que podrían actuar individuos reproductores y non 
territoriales en especies territoriales, y que podrían regula su comportamiento de selección de 
hábitat/uso del espacio/movimientos, compuesto por tres componentes básicas: (a) un componente 
social (caja roja) que representa las relaciones que se establecen entre conspecíficos (dominancia vs. 
subordinación); (b) un componente (caja morada) relacionado con los factores internos del individuo (es 
decir,  tamaño, sexo, condición fisiología, habilidades cognitivas) que pueden afecta la forma de explotar 
y explorar el entorno externo; y por ultimo (c) un componente que comprende el conjunto de factores 
externos, tanto biótico como abióticos (caja verde), que afectan las decisiones individuales relacionadas 
al uso del espacio. 
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Siguiendo el esquema presentado en la Fig. 1 abordamos el estudio del 

comportamiento de individuos reproductores y no territoriales de búho real 

cubriendo los siguientes objetivos específicos. 

 En primer lugar (Capítulo 1) exploramos el efecto del estatus social en la 

selección del hábitat, a una escala espacial pequeña. En particular, analizamos algunas 

características físicas tales como la dominancia y la visibilidad de los posaderos 

seleccionados por los dos grupos sociales y según el sexo de los individuos. 

Ampliando nuestra escala espacial de análisis (Capítulo 2), nos centramos en el 

estudio del uso de hábitat a nivel de estructura forestal de las parcelas en el entorno 

próximo al nido para los individuos reproductores y los comparamos con la 

estructura en torno a los posaderos diurnos utilizados por los individuos flotantes. En 

el Capítulo 3, abordamos el estudio del posible efecto de factores externos, y en 

particular de la luna (como aproximación de la luminosidad ambiental), en el 

comportamiento de individuos de distintos estatus sociales.  

 Un elemento que puede determinar una diferencia entre la forma de explorar 

y explotar un aérea por parte de un reproductor o de un joven en dispersión es el 

grado de familiaridad con el entorno exterior. En el Capítulo 4, nuestra atención fue 

dirigida hacia el estudio del efecto de la familiaridad con el entorno físico en los 

patrones de movimiento, en la selección de los posaderos y en las aéreas de caza en 

función del estatus social. Por último (Capítulo 5) analizamos el "comportamiento de 

uso del dominio vital" de los individuos reproductores en función de factores externos 

(composición y  heterogeneidad del hábitat, y disponibilidad de recursos tróficos) y  

características intrínsecas de los individuos (sexo, condición física). Por 

comportamiento de uso del espacio entendemos el uso del espacio, los patrones de 

movimientos y los ritmos de actividad, que fueron analizados a escala temporal 

estacional y general, así como a escala espacial de dominio vital y centro de actividad 

(BOX 1b).     
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RESUMEN 

El estatus social de los individuos puede reflejarse en muchos aspectos de su 
comportamiento y de su ecología, incluyendo el uso del hábitat y las interacciones 
inter-específicas. En las especies territoriales se pueden diferenciar dos grupos 
sociales ― los reproductores y los dispersantes ― caracterizados por tener diferentes 
tareas y, por tanto, diferentes comportamientos. Por ejemplo, mientras  los individuos 
territoriales tienen que invertir parte de su tiempo en la defensa de su área de 
reproducción y en tareas reproductivas, los individuos dispersantes tienen una vida 
más  transitoria, no mostrando comportamientos territoriales, ni siquiera en la última 
fase de la dispersión, cuando pueden encontrar un área en la que asentarse de 
manera estable. En aquellas especies cuyas interacciones sociales se basan en señales 
visuales y vocales, la elección y el uso de lugares específicos para el envío y la 
recepción de señales es crucial en la vida de un animal. En este trabajo se analizó la 
selección de posaderos de individuos reproductores y dispersantes de búho real Bubo 
bubo durante su actividad nocturna. Los resultados mostraron la existencia de dos 
comportamientos diferentes, fuertemente ligados al estatus social de los individuos. 
Mientras que los reproductores seleccionan posaderos más visibles, probablemente 
para expresar su condición de dominancia en su territorio de forma efectiva, los 
dispersantes seleccionan posaderos menos visibles y menos dominante. Esta 
selección de posaderos por parte de los dispersantes va en línea a  una vida más 
reservada, en la que divagan desapercibidos entre territorios ocupados. Esta vida 
secreta ayuda a reducir los riesgos asociados a posibles agresiones intraespecíficas. 
Estas agresiones son, además, menos frecuentes cuando el dispersante es hembra, lo 
que podría explicar el hecho de que observásemos más intrusiones de hembras 
dispersantes en territorios de reproductores. 
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ABSTRACT 

Social status can be reflected in many aspects of an individual’s behaviour and 
ecology, including habitat use and conspecific interactions. In territorial species 
where at least two social groups – breeding birds and non-territorial floaters – 
are recognized, the diverse tasks associated with territorial ownership can lead 
territory holders to behave differently from the non-territorial part of the 
population. Territory holders defend their breeding area and reproduce, 
whereas floating individuals are dispersing and lead a more transient life, 
during which they do not show any territorial behaviour even when settling in a 
more or less fixed area (known as the stop phase). As social interactions are 
based on visual and vocal cues, the use of specific sites for sending and ⁄ or 
receiving signals can be a crucial choice in an animal’s life. By analysing the 
post-site selection of Eagle Owl Bubo bubo breeders and floaters during their 
nocturnal activity, we found that: (1) territory holders selected more visible and 
dominant posts than non-territorial floaters; (2) the choice of posts made by 
floating individuals did not differ between the wandering and stop phases of 
dispersal; and (3) floating females intruded more frequently than floating males 
within a breeder’s home-range. These findings highlight the fact that two social 
strategies are possible within the same species, depending on an individual’s 
social status and its related tasks. Breeders could take advantage of visible 
locations to declare their status as territory holders, whereas floaters could 
benefit from a more secretive life to wander unnoticed among occupied 
territories. This secretive life would help floaters to reduce the risks associated 
with conspecific aggression. Finally, the greater occurrence of floating females 
within breeders’ home-ranges can be explained by the fact that female 
incursions in a breeder’s home-range are less risky than male intrusions. 
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From a behavioural perspective, social status is assumed to lead to variation in 

animal behaviour (Smith 1978, King 1980, Rohner 1997, King and Allainé 2002, 

McGowan et al. 2006, Fero et al. 2007, Hojesjo et al. 2007). Specifically, in territorial 

species where at least two social groups –breeders and non-territorial floaters – are 

recognized, territorial ownership can lead to holders behaving differently from the 

floating counterpart of the population (Jamieson and Zwickel 1983, Arcese 1987, 

Zach and Stutchbury 1992, Rohner 1997, Stamps and Krishnan 1998). Additionally, 

social status can be reflected in many aspects of an individual’s behaviour and 

ecology, including habitat use, interactions with conspecifics or willingness to take 

risks (Robitaille and Prescott 1983, Gese and Ruff 1998, Fero et al. 2007, Herberholz 

et al. 2007). Several behavioural traits have been described in detail for territorial 

individuals of many species (Hojesjo et al. 2007, Afonso et al. 2008, Kinahan and 

Pillay 2008), whereas behaviours of the less detectable and frequently overlooked 

floating contingent of animal populations remain largely unexplored (Penteriani and 

Delgado 2009a). In birds, for instance, there are few studies that have been able to 

record and quantify floaters’ behaviour (Smith 1978, Stutchbury and Robertson 1987, 

Stutchbury 1991, Rohner 1997). Moreover, studies including both floaters and 

breeders have mainly focused on investigating mechanisms of territory acquisition or 

understanding fundamental ecological dynamics at the population level (e.g. 

Hamilton and May 1977, Johnson and Gaines 1990, Whitlock 2001, Penteriani et al. 

2005a,b, 2006, 2008a,b). However, and perhaps due to the difficulties related to data 

collection on floaters, differences in behavioural strategies due to their different 

social status still need to be understood in greater depth. Knowledge of the 

behavioural tactics and role of floaters in a population is essential to the 

understanding of the evolution of animal behaviour under the social constraints 

determined by differences in social status.  

 The social context of territorial breeders is generally characterized by long-

lasting stable interactions (e.g. territorial displays) among territorial neighbours. 

Floaters are mainly dispersing individuals that lead a more wandering life and do not 

show any territorial behaviour even when settling in a more or less fixed area (e.g. 
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Rohner 1997). Indeed, during their more nomadic life, non-breeders encounter new 

social and physical environments that may affect their behaviour at different spatial 

and temporal scales during the different phases of dispersal (Smith 1978, Foster 

1987, Arcese 1989, Stutchbury 1991, Tobler and Smith 2004, Aragón et al. 2006, 

Delgado and Penteriani 2008, Delgado et al. 2009). Nevertheless, peculiar social 

interactions also exist among breeders and floaters, mainly when both these portions 

of a population share the same space at the same time. Evidence exists that floaters 

are like a ‘shadow population’, living close to territory holders or sharing portions of 

their home-ranges with them (Jamieson and Zwickel 1983, Arcese 1987, Walls and 

Kenward 1995, 1998, Rohner 1997). When floaters are close to or within the territory 

of a breeder, they can be very secretive because holders are typically aggressive 

towards floaters (Arcese 1987). The sites used by birds for specific activities 

represent focal points, both within home-ranges and in the routine movements of 

breeders and floaters, and could potentially represent a key element of individual 

behavioural strategies, especially when individuals with different social status move 

within the same areas. 

 Territory holders and non-territorial floaters of Eagle Owls Bubo bubo share 

(to some extent) the same areas. Both social groups present similarities in the use of 

habitat-elements, i.e. they both use distinct post sites to perform routine activities. 

For instance, being ‘sit and wait’ predators, owls use perch-sites during nocturnal 

hunting sessions where they can spend several hours (Penteriani et al. 2008c). 

Breeding owls select precise plucking and defecation sites within their nesting sites 

(Penteriani and Delgado 2009b,c), territory holders repeatedly use call-posts during 

vocal and visual communication (Delgado and Penteriani 2007, Penteriani et al. 

2007a,b) and breeders and floaters tend to be faithful to the same diurnal roosting 

sites when ending their nocturnal activities (Delgado et al. 2009). This evidence 

allows us to hypothesize that, depending on their different social status and the 

diverse tasks associated with it, the tradeoff between costs and benefits that influence 

behavioural decisions of individuals of different social classes may produce divergent 

behavioural strategies. The strategy of breeders is primarily aimed at maintaining the 
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holding of resources and mates. The floaters’ strategy is principally aimed at 

searching for an empty breeding site while reducing the risks associated with 

conspecific aggression due to visible intrusions. In species such as raptors, contests 

between conspecifics can end up in wasteful and potentially injurious fights. As a 

result, we should expect that internal (i.e. social status) and external (i.e. 

environmental features such as social context) factors might interact in a divergent 

way when determining the behavioural choices of these two distinct social statuses.  

 Very few studies have attempted to determine the potential effect of social 

status on the behavioural process of habitat selection (but see Brown and Long 

2007). This information is even scarcer when considering species that not only show 

elusive behaviour due to their status of floaters but also because of their nocturnal 

activity. Here, we analysed the post-site selection of both breeder and floater Eagle 

Owls. Floating Eagle Owls go through a multiphase natal dispersal process 

characterized by an intense exploratory stage (the wandering phase) followed by the 

establishment of one or more temporary settlement areas (the stop phase; Delgado 

and Penteriani 2008). During such phases, floating individuals may live very close to 

the breeding portion of the population and share large portions of their home-ranges 

with breeders (Rohner 1997). Moreover, in the stop phase, floaters can show well-

defined home-ranges quite similar to those of territory holders (Delgado et al. 2009). 

In contrast to territorial conspecifics, they behave as elusive individuals that do not 

declare their presence. In fact, they have never been observed displaying territorial 

behaviours in any areas of their range (Delgado 2008, Delgado et al. 2009). Breeders 

maintain their territory year-round and over several years, having well-defined 

home-ranges with internal core areas (e.g. nest territory, hunting areas) of intense 

use (Delgado and Penteriani 2007). As previously stated, owls show a clear 

preference for exposed locations during many intra-specific communication 

activities. Therefore, we specifically focus on several features characterizing the 

dominance and the visibility of post sites to determine the degree of selection 

performed by individuals of each social status.  
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 If post-site selection constitutes a relevant aspect of social status-dependent 

strategies, three predictions can be made. First, we expect that territory holders and 

non-territorial floaters will select post sites with different visibility. Given the 

behavioural dependency of territorial individuals on vocal and visual communication, 

we expect a disproportionate selection of dominantly located posts by breeders 

relative to non-breeding individuals. Secondly, due to their lack of territorial 

behaviour and their main need to remain hidden from breeders during dispersal, we 

can consequently expect that floaters will always select post sites with similar 

characteristics of visibility, independent of their phase of dispersal. In fact, male 

territory holders are very aggressive, mainly towards male intruders, and such 

attacks frequently end with the death of one of the opponents (see also Penteriani et 

al. 2007a for more details on intra- and inter-sexual contests). For this reason, our 

final expectation was that floating females will be found more frequently in a 

breeder’s home-range than will floating males.  

 

 

METHODS 

Study area and data collection 

The study site was a hilly area of the Sierra Norte of Seville (Sierra Morena massif) 

located in southwestern Spain (for more details, see Penteriani et al. 2005c).  

 To compare perching behaviours of breeders and floaters, we used 

information from 39 radiotagged individuals: two females and 13 males from 15 

different breeding sites, and 24 floaters (nine females and 15 males). Juveniles were 

radiotagged at the nest when they were approximately 35 days old, 5–10 days prior 

to the onset of fledging. Breeding Owls were captured by simulating a territorial 

intrusion with a combination of a taxidermic mount of an Eagle Owl and a net 

(Penteriani et al. 2007a). Owlets were aged following Penteriani et al. (2005c) and 

were sexed by molecular procedures using DNA extracted from blood (Griffiths et al. 

1998). Both adults and young were fitted with a teflon ribbon backpack harness that 
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carried a 30-g radio-transmitter (Biotrack Ltd, Wareham, Dorset, UK), with a mercury 

posture sensor that allowed us to discriminate perching behaviour from periods of 

activity (e.g. vocal display, hunting or flying) by changes in the radio signal of the 

transmitters. When the tag pulse increased its frequency and its volume changed, we 

assumed that the Owl was shifting from a vertical and fixed position (i.e. perched 

individual) to a horizontal and dynamic position (i.e. flying individual). The change in 

volume was due to the variation of the distance between the individual and the car 

antenna because of the individual’s movement (Penteriani et al. 2008c). Furthermore, 

vocal and hunting activities, while perching (i.e. at constant pulse volume), produced 

iterative changes of the tag pulse due to repeated movements of the Owl’s body, 

which allowed us to discriminate Owl behaviour while perching (Penteriani et al. 

2008c). As the young were still growing, the backpacks were adjusted so that the 

teflon ribbon could expand (Delgado and Penteriani 2007). The manipulation was 

always safe: after 7 years of continuous radiotracking of both breeders and floaters, 

we never recorded a potential adverse effect of backpacks on birds or breeding 

performance (Delgado and Penteriani unpubl. data). The backpacks were not 

removed after the study due to the difficulty in retrapping the same individual 

(Penteriani and Delgado unpubl. data). Owls were trapped and marked under the 

Junta de Andalucía – Consejería de Medio Ambiente permit nos. SCFFSAFR⁄GGGRS-

260⁄02 and SCFFS-AFR⁄CMMRS-1904⁄02.  Locations of radio-marked animals were 

determined by triangulations using three-element hand-held Yagi antennas 

(Biotrack) with Stabo (XR-100) portable ICOM receivers (IC-R20). We performed 

continuous radiotracking year-round following a single Owl during the whole night 

from 1 h before sunset to 1 h after sunrise. Juveniles were followed from the 

beginning of natal dispersal (end of August in our study area, Delgado and Penteriani 

2008) until either death of the animal or failure of the battery transmitter (~1.5 to 

~2.5 years); this is across both the wandering and the stop phases.  

 Triangulations were generally done at a low range of distances (100–300 m), 

with an accuracy of mean ± se = 83.5 ± 49.5 m (Penteriani and Delgado 2008). Such a 

value was calculated when, after a triangulation, we needed to locate the individual 
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exactly to manipulate it during field experiments (e.g. Penteriani et al. 2007b) or to 

record the cause of mortality if it died.  

 To determine the beginning and the end of the different phases (i.e. start, 

wandering and stop phases) of dispersal, we recorded the position of each juvenile 

weekly, typically when Owls were at their diurnal roost sites. For each individual, we 

plotted the distances between its natal nest and diurnal roost site for each weekly 

location and an individual’s mean distances of all weekly locations and the natal nest 

during the entire dispersal period. We considered dispersal to have started when 

individuals left their parents’ home-range (i.e. at the end of August at a mean (± sd) 

age of 170 ± 20.51 days; range: 131–232 days), which we estimated as the point 

when the distance of each weekly location from the nest becomes larger than the 

individual’s mean distance during the dispersal period (Delgado and Penteriani 

2008). After leaving the natal territories, dispersal distances progressively increased. 

Finally, when Owls reached the stop phase of dispersal, dispersal distances levelled 

off. We considered that Owls had settled in a stable settlement area when the 

distances between successive weekly locations became smaller than the average 

distance of previous weekly movements calculated for each dispersing Owl 

separately (for more details see Delgado and Penteriani 2008). The transition from 

the wandering to the stop phase typically occurred in mid March of the following year 

at a mean (± sd) age of 395 ± 109.86 days (range: 181–640 days). Therefore, the 

wandering phase encompasses the movements between the start of dispersal and the 

final settlement in a more or less stable area.  

 Post sites were selected from data collected during 226 nights of 

radiotracking (132 for breeders and 94 for floaters). To ensure independence 

between points, for each individual: (1) the whole set of points was placed on a map 

by GIS software (ArcVIEW 3.2) and a distance of 150 m between locations was set as 

the minimum threshold to consider two fixes as two distinct perch sites; (2) in 

several cases (i.e. sunset, sunrise, moonlight), it was possible to make visual contact 

with the perched individual and, consequently, to confirm the radiotracking 
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localization; and, when possible, (3) faeces, plucked prey, Owl feathers and⁄or pellets 

were used to confirm the exact location of perching posts.  

 

Post-site characteristics 

To analyse the degree of prominence of Owls’ posts, we calculated two indices. First, 

the dominance index was used, which quantifies the domination of a focal point with 

regard to the surroundings. This index is calculated as the average difference of 

altitude between the elevation of the post-site location and the elevations at the end 

of three lines of 100 m that, starting from the post site, progress in the direction of the 

main valley, at 45 and at 90° (Gainzarain et al. 2000, Delgado and Penteriani 2007). 

Secondly, the visibility index of the post sites was calculated with regard to the 

surroundings, i.e. the number of contour lines covered by the diameter of a circle 

around the post site with a radius of 100 m. The diameter was drawn perpendicular 

to the general slope of the contour lines surrounding the post site. High values of 

these two indices indicate increasing dominance and visibility (Gainzarain et al. 

2000).  

 

Floater’s post-site locations within breeder’s home-ranges  

As additional information on the relationships between breeders and floaters, we 

explored the frequencies of male and female floater post sites within the 15 breeder 

home-ranges. We considered the frequencies of floater roosts inside vs. floater roosts 

outside breeders’ home-ranges (calculated by minimum convex polygon, MCP; Hayne 

1949) as an indirect measure of the number of intrusions of each sex in the breeder’s 

home-ranges. 

 

Statistical analysis 

We performed five separate generalized linear mixed models (GLMMs, McCullagh and 

Nelder 1989) using SAS macro program GLIMMIX (version 8.2; SAS Institute 2001), 

which iterates procedure MIXED (PROC MIXED in SAS software). Degrees of freedom 
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have been computed by using the containment method, i.e. the PROC MIXED default 

method when one or more random statements are used to specify the variance–

covariance structure. The use of the containment method is justified because the 

design of our matrix is balanced and our random statement has been written so that 

the relationship between fixed and random effects is clear. We modeled the response 

variables, dominance index and visibility index, using a Poisson distribution (or a 

negative binomial distribution when Poisson was not appropriate) with a log link 

function always including individual identity as a random effect. The dominance 

index was transformed by adding 30 (the largest negative value) to each value, 

enabling us to model it with a Poisson distribution. We assessed whether the 

selection of post sites characterized by different degree of dominance (first model) 

and visibility (second model) were influenced by social status (1 = breeder; 0 = 

floater). To avoid the possibility that our results could be biased because floaters 

select less dominant and visible points as they may occur in areas with less irregular 

topography (i.e. the selection of posts is the by-product of the general areas where 

they live), we repeated these two models selecting only those post sites that were 

located in the areas in which the home-ranges of breeders and floaters overlapped 

(i.e. the habitat structure was equal for both social groups). The third and fourth 

models assessed the effect of the dispersal stage (indexed as 1 for wandering and 0 

for stop phases) as a categorical (explanatory) variable on the floater post-site 

selection, again with dominance and visibility indices as the response variables. In all 

these models, we initially considered sex as a further potential factor affecting the 

selection of post sites. As its effect was never significant (always P > 0.10), we 

removed this factor from the models. Finally, to assess whether the presence of 

floaters’ post sites inside breeders’ home-ranges was associated with the sex of 

floating Owls, we modelled the location of the post site (indexed as 1 for a post inside 

and 0 for a post outside an adult’s home-range) against the sex of the floater, in this 

case using a binomial error distribution. The significance of all explanatory variables 

(and their interaction) was tested in turn in the models (stepwise forward 



Social status and behavioural choices
 

 
 

- 30 - 
 

procedure), retaining only those that contributed significantly to the change in 

deviance. Statistical significance was accepted at P ≤ 0.05.  

 

RESULTS 

Breeders and floaters use different post sites 

A total number of 679 post sites of 15 breeders (n = 225 post sites) and 24 floaters (n 

= 454 post sites) were identified. Posts differed significantly between the two social 

statuses on the basis of the dominance (F1, 643 = 5.73, P = 0.017; Fig. 1a) and visibility 

indices (F1,643 = 20.92, P < 0.0001; Fig. 1b). That is, breeders (visibility range: 0–10, 

median = 3; dominance index range: 30–90, median = 38) preferred dominant posts, 

whereas floaters mainly selected hidden locations (see Fig. 2 for an example of the 

three-dimensional spatial distribution of post sites). This happened also when 

considering only those floater posts (n = 245 post sites) that overlapped with the 

breeder’s home ranges, i.e. when taking into account the potential effect of the habitat 

structure (dominance index: F1, 432 = 4.76, P = 0.03; visibility index: F1,432 = 9.34, P = 

0.0024; Fig. 3).  

 

Phases of dispersal do not affect floater selection of posts 

When comparing the visual characteristics of 171 posts used during the wandering 

phase with the features of 199 post locations during the stop phase of 19 floaters that 

shifted between these phases (a subsample of the whole set of floaters), there was no 

significant difference in post-site selection (all P > 0.1; Fig. 1). 

 

Floating females intrude more frequently than males in breeders’ home-

ranges 

The mean home-range size (MCP 100%) of floating females (mean Af = 769 ± 187 ha; 

n = 9) was smaller than the mean home-range of floating males (mean Am = 1053 ± 

402 ha; n = 15). Nevertheless, floating males intruded less frequently than floating 

females into the breeders’ home-ranges: posts of floating females (n = 172) were 
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more frequently (70.3%) located inside a breeder’s home-range than outside (F1, 430 = 

5.64, P = 0.018). Conversely, floating males’ post sites (n = 284) were less commonly 

located inside (43%) a breeder’s home-range. Because the home-ranges of floating 

females is smaller than for floating males, we can exclude the possibility that the 

recorded differences in locations of male and female floaters inside breeders’ home-

ranges are dependent on the sex-biased size of the floaters’ home-ranges.  

 

 

 
 
 
 
 
Figure 1. Full dataset box plots of: (a) the degree of dominance of breeders’ (B) vs. floaters’ (F) post 
sites, as well as floaters’ during the wandering (W) vs. stop (S) phases of dispersal; and (b) the degree of 
visibility of breeders’ (B) vs. floaters’ (F) post sites and floaters’ post sites during the wandering (W) vs. 
stop (S) phases of dispersal. For each box plot the total data range, the 25 and 75% quartiles (box), the 
mean (bold line) and the median (thin line) are presented. P-values (from GLIMMIX procedure) show the 
levels of significance of both degree of dominance and visibility for the comparisons between breeders 
vs. floaters and wandering vs. stop. 
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DISCUSSION 
 
Our results highlight how a spatial characteristic of animal habitats, hunting post 

sites, was selected differently by individuals of the same species depending on their 

territorial status. Breeders and floaters selected post sites with distinctly different 

visibility, with the most visible locations occupied by breeders. This implies that 

individuals of different social status may employ different behavioural strategies, 

which may produce divergent patterns of habitat use and selection. While breeders 

can take advantage of visible locations to declare their status as territory owners, 

floaters can take advantage of secrecy to wander unnoticed among territorial 

conspecifics during the whole natal dispersal period.  

 The importance of post sites in territorial behaviour, and their influence on 

life-history traits, has previously been demonstrated for true shrikes (Laniidae; Yosef 

1993, Safriel 1995). Moreover, characteristics such as the height or dominance of post 

sites have been investigated in relation to vocalizations of breeding individuals (e.g. 

Marten and Marler 1977, Simpson 1985, Møller 1988, Mathevon and Aubin 1997, 

Beck and George 2000, Penteriani 2002, Delgado and Penteriani 2007, Naguib et al. 

2008) or to hunting efficiency (Fitzpatrick 1980, Tye 1989, Sonerud 1992, Yosef 

1993), providing some evidence for how adaptive behaviour can maximize the 

transmission of vocal signals and hunting success, respectively (Yosef 1993, 2004). In 

fact, we cannot ignore the fact that dominance and visibility of post sites can have a 

relevant function in hunting strategy as well. Being ambush predators, owls can 

obtain considerable advantages by perching on dominant locations. In fact, it has 

been shown that for many predator species, such as Hawk Owl Surnia ulula, Common 

Buzzard Buteo buteo, Rough-legged Buzzard Buteo lagopus and Common Kestrel 

Falco tinnunculus (Sonerud 1980, 1992), there exists a positive correlation between 

perching height and the size of the area that can be searched from a post site. From 

this perspective, post-site selection could have a function not only in the intra-specific 

communication but also in the hunting strategy. However, and depending on their 

main activity (vocalizations vs. hunting), Owl behaviour and localization within 
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dominant posts can be different even when using the same post site (V. Penteriani 

and M.M. Delgado unpubl. data): call displays are generally performed from the top of 

dominant posts (e.g. the pinnacle of a tree canopy), whereas hunting prospection is 

more frequently done from a more concealed position (e.g. within the tree canopy) 

and silently. 

 

 

 
 
 
 
 
Figure 2. (a) Spatial distribution of Eagle Owl post sites (⎖ = floater, ⧠ = breeder) where the home-
ranges (MCP 100%) of both social statuses; one breeding male (grey polygon, period: 2004–2005) and 
one floating male (in the wandering phase, period: 2005–2006; black polygon) occurred alongside one 
another. (b) Enlarged three-dimensional image of a small home-range’s section [grey polygon in (a)] 
shared by the same two individuals, with post-site spatial distributions represented. The territory holder 
(⧠) preferentially selected the more dominant and visible locations, whereas the floater (⎖) perched on 
more hidden posts. 
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 To our knowledge, no attention has been paid to how the ‘visibility’ of 

perching locations relates to the social status of the chooser. Among social species, 

indirect warning signs used to inform about the occupancy of a territory are, in 

general, widespread (e.g. scent and faeces marking; Kappeler 1990, Katti 2001, Gese 

2001). Such marking behaviours rely strictly on the use of strategic points, i.e. 

vantage points, visible locations or locations of easy access, where the marks are 

displayed. A similar behaviour has previously been observed in Eagle Owls during the 

breeding season, when Owls used either faeces or prey’s feathers to mark focal 

locations of their home-ranges (Penteriani and Delgado 2009c).  

 Territorial status incurs a cost to keep the possession of such resources, and 

breeding Owls are compelled to perform territorial defence and sexual displays to 

preserve their territory and mate. Under such a scenario, being in a dominant 

location facilitates both visual and vocal communication with conspecifics by 

informing the social environment of one’s presence. Moreover, in species 

characterized by aggressive territorial behaviours and weapons, several benefits can 

be gained by a territory holder selecting dominant and visually connected posts. 

Holders might avoid being involved in dangerous aggressive encounters with 

occasional intruders crossing their territorial boundaries because the latter are 

aware of their presence from afar. This might represent both a safe strategy and a 

way to reduce wasting time and energy in dangerous contests, which can then be 

invested in other activities. When floating Owls are crossing and⁄or sharing the areas 

occupied by territory holders, breeders’ visibility may also be acting, at least partially, 

as a signal received by several floating individuals. From the top of their dominant 

posts, territory holders might be acting as continuous signallers during the entire 

time spent perching (not only when actively performing vocal⁄visual displays). The 

high visibility achieved by such positions may expand the propagation distance of the 

signal and, as a consequence, increase the number of individuals able to receive the 

signal. This especially could be true when large numbers of floaters occupy a given 

area. In the case of the Great Horned Owls Bubo virginianus, for example, they may 

represent up to 40–50% of the whole population (Rohner 1996). 
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Figure 3. Box plot of (a) the degree of dominance and (b) the degree of visibility of post sites selected by 
breeders (B), by floaters inside (F in) and floaters outside (F out) the home-ranges of breeders. For each 
box plot the total data range, the 25 and 75% quartiles (box), the mean (bold line) and the median (thin 
line) are presented. P-values (from the GLIMMIX procedure) show the levels of significance of both 
degree of dominance and visibility for the comparisons among breeders and floaters inside and outside 
the breeders’ home-ranges. 
 
 
 
 
As floaters in breeding territories are unwanted individuals, they can be considered 

silent bystanders gathering information on the features of the social environment of 

the areas they cross during dispersal. Hence, we can hypothesize that the floaters in 

such a network might be able to obtain useful information just by attending to 
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breeders’ communication networks as eavesdroppers (Peake and McGregor 2005), 

while avoiding risky contests with holders.  

 For dispersing floaters that do not need to defend a territory, and whose 

principal need is the avoidance of aggressive encounters with conspecifics, ‘visibility’ 

can result in an increase of fatal aggressive encounters by territorial conspecifics. As 

Owls may cross several breeding areas of conspecifics during the different phases of 

dispersal, as well as settle within one of them, it might be advantageous for them to 

go unnoticed when gathering social and spatial information, while avoiding risky 

circumstances. The use of less visible post sites by floaters can be explained, at least 

partially, by the complex array of behavioural patterns that territorial Owls can 

exhibit, such as site-specific aggressiveness or the ability to discriminate neighbours 

from intruders (Penteriani et al. 2007a). Moreover, we can hypothesize that the 

voluntary selection of less dominant and concealed posts may also represent a way to 

communicate no intention of intrusion if discovered by a territorial individual. Thus, 

the selection of concealed posts might help floaters reduce the risk of conspecific 

aggression associated with dispersion. The secretive behaviour of floaters therefore 

allows them to overlap broadly with defended territories (Rohner 1996). As reported 

by Rohner (1997), floaters may settle in the interstices between different breeding 

territories and stay unobtrusively within the home-range of territory holders. 

However, this secretive behaviour of avoiding less dominant post sites does not imply 

that these are less efficient hunting posts and that floaters pay a cost. In fact, although 

both are dominant, optimal hunting and communication post sites differ in their 

dominance range: a tree or a cliff located on the lowest part of a valley does not 

represent a dominant point within the neighbours’ network (i.e. it is not useful for 

territoriality), but it is a sufficiently high point to survey a hunting area and detect 

prey. Additionally, the different frequencies of occurrence of post sites of male vs. 

female floating Owls within breeders’ home-ranges could be considered a 

consequence of the different intra- and intersexual aggressive behaviours shown by 

the study species. As shown in Penteriani et al. (2007a), when the territorial intruder 

is a female, both male and female holders respond weakly or do not react at all. In 
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such a scenario, floating females may be performing less risky intrusions than floating 

males if perceived by territory holders. Finally, because polygamy can occur in Eagle 

Owls (Dalbeck et al. 1998, Penteriani and Delgado unpubl. data), a floating female 

entering a holder’s territory might also represent to a male the possibility of 

occasionally reproducing with two females.  

 To conclude, the ultimate patterns encountered for breeder and floater Owls, 

as well as for male and female floaters, highlight that the social components that 

characterize the status of individuals cannot be neglected, as they can affect the 

individual behaviour and, consequently, produce divergent patterns of habitat 

selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Social status and behavioural choices
 

 
 

- 38 - 
 

REFERENCES 

Afonso P, Fontes J, Holland KN and Santos RS (2008) Social status  determines 
 behaviour and habitat usage in a temperate parrotfish: implications for 
 marine reserve design. Marine Ecology Progress Series, 359: 215–227.  
Aragón P, Meylan S and Clobert J (2006) Dispersal status dependent response to the 
 social environment in the Common Lizard, Lacerta vivipara.  Functional 
 Ecology, 20: 900–907. 
Arcese P (1987) Age, intrusion pressure and defence against floaters by territorial 
 male Song Sparrow. Animal Behaviour, 35: 773–784. 
Arcese P (1989) Territory acquisition and loss in male Song Sparrows. Animal 
 Behaviour, 37: 45–55. 
Beck MJ and George TL (2000) Song post and foraging site characteristics of 
 breeding varied thrushes in Northwestern California. Condor, 102: 93–
 103. 
Brown DR and Long JA (2007) What is a winter floater? Causes, consequences, 
 and implication for habitat selection. Condor, 109: 548–565. 
Dalbeck L, Bergerhausen W and Krishner O (1998) Telemetriestudie zur Orts- 
 und Partnertreue beim Uhu Bubo bubo. Vogelwelt, 119: 37–344. 
Delgado MM (2008) Exploring natal dispersal under the perspective of animal 
 movement analysis. A behavioural study on the dispersal of a long-lived 
 species. PhD Thesis, University of Seville. 
Delgado MM and Penteriani V (2007) Vocal behaviour and neighbour spatial 
 arrangement during vocal displays in Eagle Owls. Journal of Zoology 
 London, 271: 3–10. 
Delgado MM and Penteriani V (2008) Behavioral states help translate dispersal 
 movements into spatial distribution patterns of floaters. American Naturalist, 
 172: 475–485. 
Delgado MM, Penteriani V, Nams VO and Campioni L (2009) Changes of 
 movement patterns from early dispersal to settlement. Behavioral Ecology 
 and Sociobiology, 64: 35–43. 
Fero K, Simon JL, Jourdie V and Moore PA (2007) Consequences of social 
 dominance on crayfish resource use. Behaviour, 144: 61–82. 
Fitzpatrick JW (1980) Foraging behavior of Neotropical Tyrant Flycatchers. 
 Condor, 82: 43–57. 
Foster MS (1987) Delayed maturation, neoteny, and social system differences in two 
 manakins of the genus Chiroxiphia. Evolution, 41: 547–558. 



Social status and behavioural choices
 

 
 

- 39 - 
 

Gainzarain JA, Arambarri R and Rodríguez AF (2000) Breeding density, habitat 
 selection and reproductive rates of the Peregrine Falcon Falco peregrinus in 
 Álava (northern Spain). Bird Study, 47: 225–231. 
Gese EM (2001) Territorial defence by coyotes (Canis latrans) in Yellowstone 
 National Park, Wyoming: who, how, where, when, and why. Canadian 
 Journal of Zoology, 79: 980–987. 
Gese EM and Ruff RL (1998) Howling by coyotes (Canis latrans): variation  among 
 social classes, seasons, and pack sizes. Canadian Journal of  Zoology, 76: 1037–
 1043. 
Griffiths R, Double MC, Orr K and Dawson RJG (1998) A DNA test to sex most 
 birds. Molecular Ecology, 7: 1071–1075. 
Hamilton WD and May RM (1977) Dispersal in stable habitat. Nature, 269: 578–
 581. 
Hayne DW (1949) Calculation of home range size. J. Mammal. 30: 1–18. 
Herberholz J, McCurdy C and Edwards DH (2007) Direct benefits of social 
 dominance in juvenile crayfish. Biological Bulletin, 213: 21–27. 
Hojesjo J, Okland F, Sundstrom LF, Pettersson J and Johnsson JI (2007) 
 Movement and home range in relation to dominance; a telemetry study on 
 brown trout Salmo trutta. Journal Fish Biology, 70: 257–268. 
Jamieson IG and Zwickel FC (1983) Spatial patterns of yearling male Blue Grouse 
 and their relation to recruitment into the breeding population. Auk, 100: 653–
 657. 
Johnson ML and Gaines MS (1990) Evolution of dispersal: theoretical models 
 and empirical tests using birds and mammals. Annual Review of Ecology 
 and Systematics, 21: 449–480. 
Kappeler PM (1990) Social status and scent-marking behaviour in Lemur catta. 
 Animal Behaviour, 40: 774–788. 
Katti M (2001) Vocal communication and territoriality during the non-breeding 
 season in a migrant warbler. Current Science, 80: 419–423. 
Kinahan A and Pillay N (2008) Dominance status influences female  reproductive 
 strategy in a territorial African rodent Rhabdomys pumilio. Behavioral Ecology 
 and Sociobiology, 62: 579–587. 
King BR (1980) Social organization and behaviour of the Grey-crowned Babbler 
 Pomatostomus temporalis. Emu, 80: 59–76. 
King WJ and Allainé D (2002) Social, maternal, and environmental influences on 
 reproductive success in female Alpine marmots (Marmota marmota). 
 Canadian Journal of Zoology, 80: 2137–2143. 



Social status and behavioural choices
 

 
 

- 40 - 
 

Marten K and Marler P (1977) Sound transmission and its significance for animal 
 vocalization. Behavioral Ecology and Sociobiology, 2: 271–290. 
Mathevon N and Aubin T (1997) Reaction to conspecific degradated song by 
 the Wren Troglodytes troglodytes: territorial response and choice of 
 song post. Behavioral Processes, 39: 77–84. 
McCullagh P and Nelder JA (1989) Generalised Linear Modelling. London: Chapman 
 and Hall.  
McGowan A, Sharp SP, Simeoni M and Hatchwell BJ (2006) Competing for position in 
 the communal roosts of Long-tailed Tits.  Animal Behaviour, 72: 1035–1043. 
Møller AP (1988) Spatial and temporal distribution of song in the Yellowhammer 
 Emberiza citrinella. Ethology, 78: 321–331. 
Naguib M, Schmidt R, Sprau P, Roth T, Flörcke C and Amrhein V (2008) The  ecology of 
 vocal signalling: male spacing and communication distance of different song 
 traits in Nightingales. Behavioral Ecology, 19: 1034–1040. 
Peake TM and McGregor PK (2005) Animal Communication Networks. 
 Cambridge: Cambridge University Press.  
Penteriani V (2002) Variation in the function of Eagle Owl vocal behaviour:  territorial 
 defence and intra-pair communication? Ethology Ecology and Evolution, 14: 
 275–281. 
Penteriani V and Delgado MM (2008) Brood-switching in Eagle Owl Bubo bubo 
 fledglings. Ibis, 150: 816–819. 
Penteriani V and Delgado MM (2009a) Thoughts on natal dispersal. Journal of 
 Raptor  Research, 43: 90–98.  
Penteriani V and Delgado MM (2009b) The dusk chorus from an owl 
 perspective:  Eagle Owls vocalize when their white throat badge contrasts 
 most. PLoS ONE, 4: e4960. 
Penteriani V and Delgado MM (2009c) Owls may use faeces and prey feathers to 
 signal current reproduction. PLoS ONE, 3: e3014. 
Penteriani V, Otalora F and Ferrer M (2005a) Environmental stochasticity in 
 dispersal areas can explain the ‘mysterious’ disappearance of breeding 
 populations. Proceeding Royal Society London B, 272: 1265–1269. 
Penteriani V, Otalora F, Ferrer M and Sergio F (2005b) Floater survival affects 
 population persistence. The role of prey availability and environmental 
 stochasticity. Oikos, 108:523–534. 
Penteriani V, Delgado MM, Maggio C, Aradis A and Sergio F (2005c)  Development of 
 chicks and pre-dispersal behaviour of young in the Eagle Owl Bubo bubo. Ibis, 
 147:155–168. 



Social status and behavioural choices
 

 
 

- 41 - 
 

Penteriani V, Otalora F and Ferrer M (2006) Floater dynamics can explain  positive 
 patterns of density-dependence fecundity in animal populations. American 
 Naturalist, 168: 697–703. 
Penteriani V, Delgado MM, Alonso-Alvarez C and Sergio F (2007a) The 
 importance of visual cues for nocturnal species: Eagle Owls signal by 
 badge brightness. Behavioral Ecology, 18: 143–147. 
Penteriani V, Delgado MM, Alonso-Álvarez C., Viqueira Pina N, Sergio F and 
 Bartolommei P (2007b) The importance of visual cues for nocturnal 
 species: Eagle Owl fledglings signal with white mouth feathers. Ethology, 
 113: 934–943. 
Penteriani V, Otalora F and Ferrer M (2008a) Floater mortality within 
 settlement areas can explain the Allee effect in breeding populations. 
 Ecological Modeling, 213: 98–104. 
Penteriani V, Ferrer M, Otalora F and Delgado MM (2008b) When individuals 
 senesce: the ‘Florida effect’ on stable populations of  territorial, long-
 lived birds. Oikos, 118: 321–327. 
Penteriani V, Delgado MM, Bartolommei P, Maggio C, Alonso-Alvarez C and  Holloway 
 GJ (2008c) Owls and rabbits: predation against substandard individuals of an 
 easy prey. Journal Avian Biology, 39: 215–221. 
Robitaille JF and Prescott J (1983) Use of space and activity budgets in relation to age 
 and social status in a captive herd of American bison, Bison bison. Zoo Biology, 
 12: 367–379. 
Rohner C (1996) The numerical response of great horned owls to the snowshoe 
 hare cycle: consequences of non-territorial ‘floaters’ on demography. 
 Journal of Animal Ecology, 65: 359–370. 
Rohner C (1997) Non-territorial ‘floaters’ in Great Horned Owls: space use  during a 
 cyclic peak of snowshoe hares. Animal Behaviour, 53: 901–912. 
Safriel U (1995) What’s special about shrikes? Conclusions and 
 recommendations. Proc. West. Found. Vertebrate Zoology, 6: 299–308. 
SAS Institute (2001) SAS ⁄ STAT Software: Changes an d Enhancements, Version 
 8.2. Cary, NC: SAS Publishing. 
Simpson BS (1985) Effects of location in territory and distance from 
 neighbours on the use of song repertoires by Carolina Wrens. Animal 
 Behaviour, 33: 793–804. 
Smith SM (1978) The ‘underworld’ in a territorial sparrow: adaptive strategy 
 for floaters. American Naturalist, 985: 571–582. 
Sonerud GA (1980) Hunting strategies of birds which feed on small mammals in 
 boreal forests (in Norwegian). Cand. Real Thesis, University of Oslo. 



Social status and behavioural choices
 

 
 

- 42 - 
 

Sonerud GA (1992) Search tactics of a pause–travel predator: adaptive 
 adjustments of perching times and move distances by Hawk Owls (Surnia 
 ulula). Behavioral Ecology and Sociobiology, 30: 207–217. 
Stamps JA and Krishnan VV (1998) Territory acquisition in lizards. IV. Obtaining high 
 status and exclusive home ranges. Animal Behaviour, 55: 461–472. 
Stutchbury BJ (1991) Floater behaviour and territory acquisition in male Purple 
 Martins. Animal Behaviour, 42: 435–443. 
Stutchbury BJ and Robertson RJ (1987) Behavioral tactics of subadult female 
 floaters in the Tree Swallow. Behavioral Ecology and Sociobiology, 20: 
 413–419. 
Tobler M and Smith HG (2004) Specific floater home ranges and prospective 
 behaviour in the European Starling, Sturnus vulgaris. 
 Naturwissenschaften, 91: 85–89. 
Tye A (1989). A model of search for the Northern Wheatear Oenanthe oenanthe 
 and other pause–travel predators. Ethology, 83: 1–18. 
Walls SS and Kenward RE (1995) Movements of radiotagged Common Buzzards 
 Buteo buteo in their first year. Ibis, 137: 177–182. 
Walls SS and Kenward RE (1998) Movements of radiotagged Buzzards Buteo 
 buteo in early life. Ibis, 140: 561–568. 
Whitlock MC (2001) Dispersal and genetic properties of metapopulations. In  Clobert J, 
 Danchin E, Dhondt AA and Nichols JD (eds) Dispersal: pp 273–282. Oxford: 
 Oxford University Press. 
Yosef R (1993) Influence of observation posts on territory size of Northern  Shrikes. 
 Wilson Bulletin, 105: 180–183. 
Yosef R (2004) Perch-site use and inter- and intraspecific aggression of  migratory 
 Brown Shrikes (Lanius cristatus) in Southern Taiwan. Biology Letters, 41: 
 113–118. 
Zach S and Stutchbury BJ (1992) Delayed breeding in avian social systems: the 
 role of territory quality and ‘floater’ tactics. Behaviour, 123: 194–219. 



 



 



Breeders and floaters 
use different habitat 
cover: Should habitat 
use be a social status-
dependent strategy?  

Campioni L, Lourenço R, Delgado MM and Penteriani V (second review) 
Journal of Ornithology   



Reproductores y 
flotantes utilizan 

hábitats con diferentes 
coberturas forestales: 
¿Podría la selección de 
hábitat estar ligada al 

estatus social? 



Social status strategies
 

 

- 43 - 
 

RESUMEN 

Para comprender el uso del hábitat en especies territoriales, es importante 
considerar las tareas específicas y las constricciones asociadas a las diferentes etapas 
y/o estatus social del ciclo de vida de un individuo (por ejemplo; individuos 
territoriales vs. flotantes). Sin embargo, en estudios de preferencia, selección y uso 
del hábitat, raramente se ha tenido en cuenta el estatus social de un individuo. En el 
presente estudio, nos centramos en analizar diferencias entre las características del 
hábitat en los alrededores de los nidos de reproductores de Búho real Bubo bubo y las 
características de los lugares que los individuos flotantes utilizan como posaderos 
diurnos. Siendo la selección de los nidos y los posaderos un proceso importante con 
efectos en la eficiencia ecológica de un individuo (es decir, del suceso reproductor y 
de la supervivencia), esperamos que la preferencia para estos lugares refleje los 
diferentes compromisos entre costes/beneficios asociados con el estado de 
reproductor y flotante. Analizando la estructura de las parcelas forestales y las 
características del paisaje a los alrededores de los nidos y de los posaderos 
observamos que (1) reproductores y flotantes seleccionan parcelas de bosque con 
distintas estructura vertical. En comparación con los flotantes, los individuos 
reproductores nidificaron principalmente en parcelas más maduras, caracterizadas 
por tener arboles de mayor altura; sin embargo, (2) los reproductores y dispersantes 
no tuvieron ninguna preferencia de hábitat específica a escala de paisaje. Nuestros 
resultados apoyan una divergencia en el uso del hábitat en función del estatus social 
de los individuos, reflejo de que las diferentes tareas y constricciones sociales pueden 
determinar dos estrategias diferentes en el uso del hábitat.   
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ABSTRACT 

In order to understand habitat requirements in territorial species it is important 
to take into account the specific tasks and constraints associated with the 
different stages and social status of an individual life cycle (e.g. territorial 
breeder or nonterritorial floater). However, social status has rarely been taken 
into account in studies on habitat preference, selection and use. In the present 
study, we compare habitat characteristics nearby nesting sites of Eagle Owl 
Bubo bubo breeders with those of diurnal roosting places chosen by floating 
owls. Being both nesting and roosting sites important components of the 
individual fitness (e.g. mating success vs. survival) we expected that the use of 
those locations would reflect the different cost-benefit trade-offs related to the 
status of breeder and floater respectively. By analysing the structure of the 
forest stands and the landscape features surrounding both places at two spatial 
scales, we found that: (1) breeders and the floaters used forest stands with a 
different vertical structure. Compared with the floaters, the breeders used more 
mature stands characterised by higher trees; (2) as expected, breeders and 
floaters did not show any specific habitat use at landscape scale. Our results 
showed a clear discrepancy in habitat use according to social classes, suggesting 
social tasks/constraints (successful reproduction vs. overcoming dispersal 
costs) as potential determinants of two divergent strategies in habitat use. 
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The habitat requirements shown during an animal’s lifetime is the likelihood that the 

animal will select a given item if offered alternative choices on an equal basis (Beyer 

et al. 2010). Habitat selection involves different aspects of the individual life history 

and has strong implications for individual fitness (e.g. survival, fecundity, and mating 

success; Millon et al. 2010; Morosinotto et al. 2010). The overall decision process 

implies a balance of costs and benefits from the earliest actions of an individual as an 

inexperienced juvenile to the subsequent actions of the individual as an experienced 

adult. Frequently, individuals or species have been associated with specific habitat 

types, e.g., under the assumption that they should occupy the same habitats over their 

whole lifetime (Dale and Christiansen 2010). However, there is evidence of a degree 

of individual flexibility in habitat preferences, use and selection over the different 

stages of the individual life cycle (Kozakiewicz 1995; Law and Dickman 1998; 

Terborgh 1989). For example, shifts in habitat preference, selection and use have 

been observed among fledglings as well as dispersing and breeding birds (e.g. 

Campioni et al. 2010; Dale and Christiansen 2010; Delgado et al. 2010; Ferrer and 

Harte 1997; King et al. 2006). 

 The habitat needs of territorial breeders has been extensively quantified for 

many species, whereas the current lack of understanding of the behavioural 

strategies of the floating individuals of a population during natal dispersal still 

represents an information need in population ecology (Penteriani et al. 2011). Very 

few studies have been able to address habitat use in terms of cost-benefit 

considerations and behavioural tactics related to the social status of individuals, e.g., 

the hypothesis that the individual’s needs during its lifespan can vary with its social 

status (e.g., Brown and Long 2007; Campioni et al. 2010; Penteriani et al. 2011). A 

territorial breeder, which settles in a more established social context principally 

involving interactions with stable neighbours, needs to accomplish specific duties 

primarily related to its territory ownership and diverse reproductive tasks. In 

contrast, most floaters are dispersing individuals leading a transient life. Although 

they may settle in a more or less fixed area, they do not show any territorial 

behaviour (e.g. Delgado et al. 2009a; Rohner 1997; Penteriani and Delgado in press). 
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Consequently, the major threats faced by non-breeding individuals are imposed by 

dangerous travel through unknown landscapes and by frequent encounters with 

changing social contexts, which can drive floaters' behavioural decisions at different 

temporal and spatial scales (Arcese 1989, Smith 1978; Delgado and Penteriani 2008; 

Delgado et al. 2009a; Penteriani and Delgado 2011; Stutchbury 1991; Tobler and 

Smith 2004). Hence, the discrepancies among the specific tasks and constraints 

associated with each social status (reproducing successfully vs. overcoming dispersal 

costs) can potentially determine divergent habitat use strategies. In particular, 

because the characteristics of the nesting site are an important component of the 

breeder’s fitness and the choice of diurnal roosting places during dispersal may affect 

floater survival, we may expect that the use of these locations would reflect the 

different cost-benefit trade-offs related to the social status of different individuals.  

 To compare possible status-dependent differences in habitat use between 

floaters and breeders, we took advantage of an unusual opportunity furnished by the 

recent process of colonisation by a top predator, the Eagle Owl (Bubo bubo), in the 

Doñana National Park (henceforth Doñana), Andalusia, southern Spain (more details 

in Lourenço et al. 2011; Penteriani et al. 2008a). In this area, the nesting places and 

diurnal roosts of breeders and the diurnal roosting places of floaters are always 

located in forested patches, i.e., a similar type of cover that may potentially show 

different age structures and different degrees of extension for the two social classes. 

Thus, we focus here on the individual habitat use based on the following: (1) the 

structure of the forest stands and (2) the landscape features surrounding both places 

where (i) breeders reproduce and roost and (ii) floaters roost. While the adults may 

‘prefer’ a particular habitat or forest structure and select for it, it doesn't really follow 

that juveniles or floaters are preferentially selecting the remaining habitat. The 

habitat used by the juveniles may principally be the use of what is left to them given 

that the paired adults have selected the optimal hunting and nesting habitat. For this 

reason, in the context of this work, we preferred to adopt the more neutral term 

‘habitat use’ rather than ‘preference’ when referring to the juveniles. Our main 

expectation is that habitat use will show differences related to the different 
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tasks/constraints peculiar to each social group. In particular, we expect that: (1) the 

structure of the forest stands used by breeding individuals primarily reflects the need 

of the breeders to fly easily within the breeding stand during the entire reproductive 

period, when they must care for nestlings (e.g., when the breeders are carrying a prey 

item to the nest) and must subsequently care for fledglings during the post-fledging 

dependence period, i.e., breeders prefer mature forest stands characterised by old, 

high and widely spaced trees and (2) the floaters’ stand use primarily reflect the cost 

of dispersing to new environments, e.g., the need to avoid encounters with territory 

holders and potential predators, as well as reduce physical aggression/mobbing from 

other raptor species (Lourenço et al. 2011). Thus, the stand use of floaters might be 

directed towards denser and more closely spaced stands of forest than the stand 

preference of breeders. The forest patches used by the floaters should provide safer 

conditions than more open areas. Additionally, because of the above-cited needs and 

constraints acting at the scale of the entire stand, we expect (3) no differences at the 

broader spatial scale of the landscape surrounding the nests and roosts, although 

previous research in Doñana has revealed crucial elements of habitat heterogeneity 

within this study area: (i) Doñana scrublands are the preferred habitat type 

frequented by the European Rabbit Oryctolagus cuniculus (Fernandez et al. 2005; 

Palomares et al. 2001), the eagle owl’s main prey and (ii) marshlands are among the 

most productive areas of Doñana and offer the greatest prey richness (Ferrer and 

Bisson 2003; Sergio et al. 2005). 

 

MATERIALS AND METHODS 

Study area  

This study was conducted in an 870 km2 area in southwestern Spain. Most of the area 

is included in the Doñana National and Natural Parks (Fig. 1), a natural area bounded 

by the Atlantic Ocean on the west, by the Guadalquivir River to the east, and by crops 

extending several kilometres to the north towards the Sierra Morena Mountains. This 
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area is flat and generally near sea level, with a maximum elevation of 106 m (for 

additional details, see Fernandez et al. 2003). Three ecosystem types are 

predominant: fixed dunes, mobile dunes and marshes. The vegetation in the fixed 

dunes consists of autochthonous Mediterranean scrubland in a mixture of different 

stages of degradation (Castroviejo 1993). Many areas are dominated by plantations of 

pines (Pinus pinea), with variable understory vegetation. The scrubland is dominated 

by Halimium halimifolium and Ulex spp. or Erica spp. heaths depending on the depth 

of the water. More mature scrubland areas with Pistacia lentiscus and Myrtus 

communis are found primarily in the north. A number of other areas have been 

transformed by Eucalyptus camaldulensis plantations introduced during the first half 

of the 20th century.  

 

Data collection 

From 2005 through 2008, we followed the process of colonisation of Doñana by eagle 

owls. The first breeding of this species in this area was recorded in 1999 (Penteriani 

et al. 2008b). Every year, we systematically surveyed the study area and conducted a 

census of the newly settled population using a combination of different methods 

including: (a) passive auditory surveys at sunrise and sunset from October through 

February, when the vocal activity of adults was most intense; (b) visiting forest and 

open patches to detect nests, pellets, and feeding perches; and (c) passive auditory 

surveys of calling young, conducted from the stage at which the chicks were 

approximately 100 days old until they began to disperse (August–September in our 

study area). We located 15 breeding sites and 4 areas potentially suited for 

reproduction and widely spaced among these sites, with a mean nearest-neighbour 

distance of approximately 3.9 ± 0.4 km (Penteriani et al. 2008). In Doñana, the eagle 

owl used to nest in free or deserted nest structures previously built on trees by 

storks, heron and other raptor species. During the 3 years of the study, we were able 

to tag and then radiotrack 5 breeding adults (2006: n = 1; 2007: n = 3; 2008: n = 1) 

and 32 juveniles (2006: n = 9; 2007: n = 15; 2008: n = 8) from 11 nests. The owlets 
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were tagged at the nest when they were approximately 35 days old, 5–10 days prior 

to the onset of fledging. They were aged following Penteriani et al. (2004) and were 

sexed by molecular procedures using DNA extracted from blood (Griffiths et al. 

1998). They were fitted with a Teflon ribbon backpack harness that carried a 30g 

radio transmitter (Biotrack Ltd., Wareham, Dorset, UK) with a mercury posture 

sensor. Because the young were still growing, the backpacks were adjusted so that 

the Teflon ribbon could expand (Delgado and Penteriani 2007). The manipulation 

was always safe: after 7 years of continuous radiotracking of both breeders and 

floaters, we never recorded a potential adverse effect of backpacks on the birds or on 

breeding performance (Delgado and Penteriani unpubl. data). The backpacks were 

not removed after the study due to the difficulty of retrapping the same individual 

(Penteriani and Delgado unpubl. data). The locations of the radio-marked adults and 

juveniles were recorded with a triangulation method with an accuracy of 83.5 ± 49.5 

m (mean ± SE) (Penteriani and Delgado 2008) using three-element hand-held Yagi 

antennas (Biotrack) with Stabo (XR-100) portable ICOM receivers (IC-R20). The 

accuracy value was calculated when, after a triangulation, we needed to locate the 

individual exactly to manipulate it during field experiments (e.g. Penteriani et al. 

2007) or to record the cause of mortality if it died. The juveniles were located weekly 

during the daytime (when the owls were at their diurnal roost sites, Delgado et al. 

2009a) from the beginning of natal dispersal (~170 days old, for details on the 

calculation of the beginning of dispersal see Delgado and Penteriani 2008) until 

either the death of the individual or the failure of the battery transmitter (~1.5 years 

to ~2.5 years).  

 

Habitat structure at the stand level   

We characterised the structure of the forest stand within a 50 m (surface = 0.39 ha) 

diameter plot around (i) the nest tree (n = 15 nesting sites) and (ii) the floaters’ 

weekly locations (n = 17 roosting locations of different dispersers, i.e., a random 

selection from a total of 75 floaters’ roosts, performed to avoid pseudoreplication and 
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spatial autocorrelation problems). We were confident that a 50 m diameter plot 

allowed depicting the stand structure mainly because: 1) of the homogeneity of the 

artificial Doñana forest stands; and 2) the small surface of some forest patches 

occupied by the species for both breeding and roosting. Measurements were made 

using four transects per plot. Each transect formed 90° angles with the two adjacent 

transects. The transects were placed with one end at the centre of the plot and were 

arranged so that one transect extended towards each of the four cardinal points (N, S, 

E, W). Based on the line intercept method (Bonham 1989), three parameters were 

measured on the trees intercepted by the transect paths: (1) tree height (m); (2) 

diameter at breast height [√plot area/3.14]; and (3) tree density (trees number/m2). 

 

 

Figure 1. Distribution of the 15 nesting sites (grey squares) and 75 floater’s roosting sites (black circles) 
of the eagle owl in the Doñana National and Natural Parks.  
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 Moreover, we calculated the aerial flight space inside the stand for each plot, i.e., the 

free volume inside the forested stand available and necessary for owl flights near the 

nest and the roost locations, as in Penteriani and Faivre (1997). The aerial flight space 

was represented by a square-based parallelepiped whose major sides were defined 

by the heights of the tree trunks measured from the ground to the lowest limb and 

whose basal sides were defined by the distances between the trunks. Finally, we 

calculated the canopy cover (i.e., the percentage of sky obstructed by vegetation 

above the centre of the plot) from black-and-white photographs (18 mm, f/3.5 lens) 

of the canopy cover with a 50 x 50 grid of pixels arranged in a square that was the 

same size as the photograph (Penteriani and Delgado 2009a; Penteriani and Faivre 

1997).  

 

Habitat structure and composition at the landscape level 

We characterised the landscape structure and composition within a circular plot with 

a radius of 1900 m. These plots were centred on the nesting and roosting sites. The 

area of the plot corresponds to the mean home range size (MCP 95%) calculated 

employing radiotracking data on 4 of the 5 tagged breeders within Doñana. The 

landscape characteristics were measured by constructing the intersection of a digital 

layer including those circular plots with a map of landcover elements (scale 1:25.000, 

Junta de Andalucia, Consejerìa de Medio Ambiente, 2003). The landscape composition 

was classified according to the following 7 categories: tall scrub, low scrub, pasture, 

woodland, marshes, sand dune and crops. In addition, we characterised landscape 

structures by calculating: (a) the number of patches; (b) the Shannon index of habitat 

diversity; (c) the edge density as a proxy of habitat heterogeneity (Anderson et al. 

2005); and (d) for each nest tree and roost site, the distance (m) to the nearest 

marshland. In our study area, the proximity of marshes is associated with an increase 

in the richness of rabbits (Fernández et al. 2003; Palomares et al. 2001), the main 

prey of eagle owls (Penteriani et al. 2008a, b). The GIS application ArcView 3.2 and its 
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extension Patch Analyst (Elkie et al. 1999) were used for the analyses of landscape 

characteristics.  

 

Data analysis 

We applied two General Linear Models (GLMs) with a distribution belonging to the 

binomial family. The dependent variable was social status (breeder = 1, floater = 0). 

In the first model, we analysed habitat preference at the forest stand level. The 

previously detailed descriptors of the stand structure represented the explanatory 

variables (Table 1). In the second model, we investigated habitat preference at the 

landscape level, employing habitat composition and structure as the explanatory 

variables (Table 1). To reduce collinearity and the number of explanatory variables, 

pairs of strongly inter-correlated variables (r >0.6) were considered to be estimates 

of a single underlying factor. Only one of the two variables, usually the one perceived 

as more important by the study organism, was retained for analysis. Before 

performing any analysis, we tested for spatial autocorrelation among the locations of 

the breeders and floaters. For this purpose, we used a Moran's I test (Cliff and Ord 

1981) under randomisation conditions at both the stand and the landscape level. No 

patterns of spatial autocorrelation were present in our data (stand: Moran's I statistic 

standard deviate = -0.0735, P value = 0.53; landscape: Moran's I statistic standard 

deviate = 0.2429, P value = 0.40). As suggested by Zuur et al. (2008), model 

simplification was performed by backward selection of variables from the full model. 

To find the minimal adequate model, models were compared using the Likelihood 

Ratio Test (LRT) approach employing the anova command in the R environment (R 

Development Core Team 2009). Logistic regressions were performed with the glm 

function in the R "stats" package. The percentage of deviance explained was 

calculated as follows: deviance (null model) - deviance (selected model)/deviance 

(null model) x 100. The means ± SD and the 95% CI are given in addition to these 

values. Statistical significance was set at α < 0.05.   
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Table 1 Characterisation of the forest stand and landscape of breeder’s nesting places and floater’s 
roosting places of eagle owls employed in the GLM analyses. 

 

                                                                  Individual status               
 

Variable                                                  Breeder                                                Floater                                               

Stand plot level                                        mean ± SD                     range              mean ± SD                 range 

Tree height (m)*                                    16.35 ± 3.5        11.88-21.24             9.70 ± 2.09        5.84-13.12 

Diameter at breast height (m)             0.52 ± 0.2             0.25-0.87              0.40 ± 0.15         0.22-0.77 

Density                                                     0.02 ± 0.02         0.0001-0.06             0.03 ± 0.02         0.01-0.08 

Canopy cover (%)                                 47.9 ± 23.3             11.8-96.6              65.1 ± 32.7         17.7-99.7 

Flight space (m3)                         1745.0 ± 1553.2      106.8-5888.0           1099 ± 2061     150.2-8677 

 

Landscape plot level 

Dense scrub (%)                                    24.1 ± 16.7                1.4-56.5              33.7 ± 12.4         12.8-59.6 

Disperse scrub (%)                                    3.7 ± 3.6                0.01-9.8                   2.7 ± 2.6         0.03-8.71 

Pasture (%)                                                6.1 ± 12.0                0.1-44.0              10.5 ± 10.5          0.4-26.9 

Woodland (%)                                        40.5 ± 24.6                2.7-73.2              30.9 ± 20.2           0.3-61.6 

Marshes (%)                                           11.6 ± 17.2              0.01-52.7                   4.9 ± 6.3         0.05-21.2 

Sand dune (%)                                          6.2 ± 10.2              0.01-24.3                   2.7 ± 7.9         0.01-26.8 

Crops (%)                                                   9.4 ± 15.4              0.01-48.0                 7.8 ± 14.6         0.01-40.6 

Edge density (m/ha)                             61.0 ± 32.2           18.9-113.4              52.9 ± 31.1       20.1-101.7  

Shannon index of diversity                       0.7 ± 0.3                  0.2-1.2                    0.7 ± 0.3              0.2-1.3     

Distance to marshes (m)               1028.0 ± 916.0       37.6-3637.0          908.4 ± 698.9        0.01-2384 

 

* P = 0.007 in the GLM analysis 

 

 



Social status strategies
 

 

- 55 - 
 

RESULTS AND DISCUSSION 

The forest stand structure was analysed for a total of 32 locations (15 nesting places 

and 17 roosting places of floaters). The breeders and the floaters preferred forest 

stands with a different vertical structure. Compared with the floaters, the breeders 

preferred more mature stands characterised by higher trees (GLM tree mean height 

estimate ± SEM: 0.455 ± 0.168; P = 0.007; 95% CI: 0.186 - 0.865; % deviance 

explained = 33; Table 1 and Fig. 2). Although all the other parameters we took into 

account at the stand level did not showed any significant difference between breeders 

and floaters, we consider important to highlight that all of the stand measurements 

depicted a more mature and open stand structure for breeders (Table 1). 

 

 

Figure 2. Point pattern representation of the original nest and roost locations preferred by breeders and 
floaters eagle owls at forest stand level. Bubble size represents the vertical structure and it is 
proportional to the mean tree height characterising breeding territories and roosting areas. Bubble size 
is automatically drawn taking into account the range of values of tree height (min-max values). Bubble 
centre is the X and Y coordinates in UTM system of each location. Panel (a) includes breeders and 
floaters locations; (b) shows breeders only and (c) shows floaters' locations. 
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 At the landscape level (after accounting for outliers), we identified a total of 

31 plots (n = 14 for breeders and n = 17 for floaters). Breeders and floaters did not 

show any specific habitat use at the level of the landscape surrounding their nesting 

and roosting places (P > 0.1 in all cases, Table 1).  

 Our findings mainly suggest that: (1) individuals of the same population but 

differing in social status can show different habitat use; and (2) the structure of the 

forested patches could have played a more important role than vegetation type (as 

also highlighted by Dale and Christiansen 2010) in determining the recorded patterns 

of habitat use.  

 The different patterns of habitat use of breeders vs. floaters (see also 

Campioni et al. 2010) may be explained by the tasks and constraints associated with 

these differences in status. For reproduction occurring within forested stands, the 

different activities that breeders perform in the area surrounding the nest specifically 

require easy access to the nest. This access is provided by the more open structure 

offered by the oldest stands: the preference for mature trees as breeding stand has 

been recorded in many other raptor species like, for example, the goshawk (Accipiter 

gentilis; Penteriani 2002) and the white-tailed eagle (Haliaeetus albicilla; Radović and 

Mikuska 2009). 

 In contrast, non-territorial floaters are free from these temporal and spatial 

constraints. They depend primarily on foraging, frequently in unfamiliar areas, and 

on conspecific avoidance. The high costs associated with diurnal activity are shown 

by the highly cryptic behaviour of the eagle owl and of many owl species during the 

day and by the aggressive reactions of other birds of prey towards the owls 

(Lourenço et al. 2011; Sunde et al. 2003). The choice of a safe area for diurnal 

inactivity (when owls are particularly vulnerable to predation or harassment by 

mobbers) can represent an adaptive strategy to overcome the costs of dispersal 

(Stamp 2005). This phenomenon may be even more apparent if owls and diurnal 

raptors can overlap in space and time. Such overlap occurs in our study area, where 

the high densities of diurnal raptors increase the risk of diurnal raptor attacks on 
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roosting eagle owls (Lourenço et al. 2011). Indeed, it has been shown that the ways in 

which animals are distributed relative to conspecifics (and in our case relative to 

heterospecifics) often represent a trade-off between the costs and benefit of 

proximity, e.g., predator attraction vs. the dilution effect (Fero and Moore 2008).  

 We can expect the strategy of the territorial breeder to be directed to 

maximise individual benefits by selecting suitable breeding conditions that provide 

long-term individual benefits and increase fitness. In contrast, the strategy of the non-

territorial floater appears to minimise the short-term negative effects of natal 

dispersal through behavioural mechanisms, such as specific cover use. Finally, we 

cannot discard the possibility that the behavioural strategies of floaters can be 

actuated through habitat-mediated avoidance or temporal segregation mechanisms 

(e.g. Sergio et al. 2007). As an ultimate consequence, habitat use patterns may then 

involve the interaction of multiple social, behavioural and ecological determinants 

with direct ecological and evolutionary consequences for population dynamics and 

colonisation (Clobert et al. 2001, 2009). 
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RESUMEN 

El efecto de las fases lunares sobre las relaciones predador-presa ha sido casi siempre 
hasta hora analizado desde el punto de vista de la presa. El comportamiento de un 
predador en las diferentes fases lunares es el resultado del compromiso entre varios 
factores, como la respuesta a las diferentes estrategias anti-predadoras de sus presas 
y las necesidades y constricciones del ciclo biológico. En este trabajo se exploró el 
efecto del ciclo lunar en reproductores y dispersantes de búho real Bubo bubo en los 
patrones de movimiento, el esfuerzo de caza y la intensidad de la comunicación (vocal 
y visual) intraespecífica. En general, observamos que el movimiento de los 
reproductores incrementaba alrededor de la luna llena, probablemente debido a la 
mayor dificultad de encontrar una presa (en condiciones de mayor luminosidad las 
presas suelen refugiarse) y al mayor tiempo dedicado a las exhibiciones visuales (la 
luna llena aumenta la visibilidad de señales visuales). Sin embargo, en las noches de 
luna nueva, cuando las presas son más difíciles de detectar, los búhos presentaron un 
pico en su actividad de caza.  

 Por otra parte, el comportamiento de los búhos durante la fase de dispersión 
no pareció verse afectado por el ciclo lunar. Durante la dispersión natal, los 
individuos se enfrentan a potenciales riesgos asociados con la travesía de aéreas 
desconocidas (que probablemente requieren un esfuerzo similar a lo largo de todo el 
año), y al mismo tiempo no presentan ningunas constricciones relacionadas a la 
reproducción, por eso es esperable que su actividad de movimiento no se vea 
afectada ni siquiera  en situaciones de baja rentabilidad de las presas. En este 
contexto, pudimos ver como el estado social de un individuo puede jugar un papel 
importante en las consideraciones costes-beneficios y en las decisiones 
comportamentales, determinando directamente el tiempo y el esfuerzo dedicado a 
cada actividad relacionadas a necesidades inminentes (por ejemplo, llevar a cabo la 
reproducción vs. superar los riesgos asociados a la dispersión natal). 
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ABSTRACT 

The effects of moon phases on predator-prey relationships have so far been 
mainly investigated from the prey’s perspective. The response of a predator to 
moon phases may represent a complex trade-off between overcoming the 
antipredator strategies of its prey and balancing other needs/constraints (e.g. 
individual status and condition). We explored the year-round effects of the 
lunar cycle on radiotagged breeders and dispersers of an avian predator, the 
eagle owl, Bubo bubo, from the perspective of movement patterns, foraging 
effort and display intensity. In general, the movements of breeders suggested an 
increase in activity around the time of the full moon. This may be related to an 
increase in both the time needed to detect prey (on brighter nights prey are 
more concealed and wary) and the time the predator devotes to visual displays 
(the full moon increases the conspicuousness of signalling). However, hunting 
activity also peaked during dark nights, when prey might be harder to see. In 
contrast, the behaviour of dispersing owls was not affected by lunar cycles. 
Natal dispersal involves potentially dangerous crossings of unknown landscapes 
(which probably requires similar effort throughout the year), and because of the 
absence of reproductive constraints should not require greater activity when 
food profitability is low. The status of individuals may thus play a crucial role in 
cost-benefit considerations and behavioural decisions, by directly affecting the 
time and effort individuals need to allocate to various activities related to their 
most immediate needs (e.g. breeding successfully versus overcoming dispersal 
costs). 
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Moonlight influences the behaviour of a number of prey and predator species, and 

markedly influences predator-prey relationships among both invertebrates (e.g. 

Skutelsky 1996; Tigar and Osborne 1999) and vertebrates (e.g. Daly et al. 1992; 

Brown and Kotler 2004, Kotler et al. 2010). Under bright moonlight, prey species are 

generally less active, more vigilant and feed in safer habitats because of an increased 

risk of predation, as at this time they are more obvious to their predators (lunar 

phobia: e.g. Vasquez 1994; Brown and Kotler 2004; Griffin et al. 2005). As a 

consequence, predators are expected to be more active around the time of the full 

moon because of two opposing factors (but see Sábato et al. 2006): (1) they must 

search intensively for prey that is concealed and attentive, because on bright moonlit 

nights prey species shift to more apprehensive foraging strategies (Kotler et al. 2010) 

and/or are less active (Clarke 1983; Sábato et al. 2006; Berger-Tal et al. 2010) and (2) 

they benefit from higher light levels when seeking prey (Clarke 1983; Kotler et al. 

1988), as predators are most lethal during moonlit hours of the night (Kotler et al. 

2002).  

 Despite long-term interest in the influence of lunar phases on prey behaviour 

and antipredator strategies in mammals (e.g. seals versus sharks: Trillmich and 

Mohren 1981; deer mice and gerbils versus owls: Clarke 1983; Kotler et al. 1991; 

Schmidt 2006; Berger-Tal et al. 2010; bats versus owls: Law 1997; elk, Alces alces, 

versus wolves, Canis lupus: Creel et al. 2008; red fox, Vulpes vulpes, versus striped 

hyaenas, Hyaena hyaena: Mukherjee et al. 2009) and birds (e.g. auklets versus gulls: 

Nelson 1989; desert rodents versus owls: Price et al. 1984; petrels versus skuas: 

Mougeot and Bretagnolle 2000), less information is available on the response of 

predators to moonlight (but see Grassman et al. 2005; Di Bitetti et al. 2006; Sábato et 

al. 2006; Mukherjee et al. 2009). Study of the effects of moonlight on the behaviour of 

predators is important mainly because predator behaviour is not primarily driven by 

the ultimate risk of predation (especially in the case of top predators, which do not 

have intraguild predators; Lourenço et al. 2011); in addition, this topic has received 

little attention in behavioural ecology research. From this perspective the response of 

a predator to moon phases may represent a complex trade-off between countering 
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the antipredator strategies of its main prey(s) and (2) finding a balance among the 

interactions of several needs/constraints associated with its status (breeder versus 

disperser) and internal state (i.e. health), the composition and structure of its home 

range habitat, and differing periods in its biological cycle (breeding versus 

nonbreeding periods).  

 A long-term study of the breeding and dispersal sectors of an eagle owl, Bubo 

bubo, population in southern Spain has provided detailed and diverse information on 

radiotagged individuals, offering an opportunity to assess the year-round effects of 

lunar cycles on this predator. In this study we analysed individual responses to moon 

phases with respect to three main types of behaviour: (1) movement patterns (for 

both breeders and dispersers); (2) foraging effort required (calculated as the time 

between the beginning of a hunting event and the capture of a prey; for breeders 

only); and (3) intensity of breeder vocal/visual displays (dispersers do not perform 

any display).  

 Our main hypothesis was that behavioural patterns fluctuate during the cycles 

of the moon as a result of the balance between changing hunting conditions and those 

aspects of the biological cycle most closely related to lunar brightness (e.g. the need 

for greater foraging efficiency during the nestling and fledging periods, and to be 

conspicuous for territorial/sexual signalling), which are mediated by internal (i.e. 

physiological conditions) and external (i.e. landscape, trophic resources) factors. 

Although we did not measure the behaviour of the main prey of eagle owls in the 

study area (rabbits, Oryctolagus cuniculus, and rats, Rattus spp.; see Resource 

abundance), we are confident that a pattern of increased activity of this predator 

around the time of the full moon should correspond to (1) reduced prey activity (in 

all lagomorphs and rodents studied to date this response to moonlight has been 

observed; Lockard and Owings 1974; Clarke 1983; Sábato et al. 2006) and (2) 

increased difficulty of prey detection because of cover-seeking behaviour 

(lagomorphs and rodents prefer covered to open habitats during the full moon; 

Clarke 1983; Wolfe and Tan Summerlin 1989; Gilbert and Boutin 1991; Daly et al. 
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1992; Leaver and Daly 2003). It is known that rabbits are significantly more active 

during the new moon period than during the full moon (Kolb 1992; Twigg et al. 

1998). However, we also expected an increase in hunting activity around the time of 

the new moon, when darkness may make prey location and pursuit difficult (Clarke 

1983; Kotler et al. 1988, 1991; Longland and Price 1991). Additionally, we expected 

that breeders and dispersers would show different behavioural responses to the 

moon phases because of diverse constraints acting upon them. Whereas the focus of 

breeders is mainly related to territorial/sexual displays and reproductive tasks, 

dispersers face the many uncertainties of dispersal and, more frequently than 

breeders, they need to move across unknown areas prior to settlement in more-or-

less fixed locations (Delgado et al. 2010; Penteriani et al. 2011). 

 

METHODS 

Data Collection from Radiotagged Breeders and Dispersers 

During the period 2003-2010 we studied the movement behaviour and rhythms of 

activity of 31 breeders and 40 dispersing juveniles. The breeders (21 males, 10 

females) and dispersers (28 males, 12 females) were from 29 nest sites in Sierra 

Morena (southwestern Spain; for more details see Penteriani et al. 2007). Each 

individual was fitted with a 30 g harness-mounted backpack (Biotrack, Wareham 

BH20 5AJ, Dorset, U.K.) containing a mercury posture sensor, which enabled us to 

discriminate hunting behaviour from other activities (see below) through changes in 

the radio signal from the transmitter (for more details see Delgado and Penteriani 

2008 and Penteriani et al. 2008). The weight of the transmitter was less than 3% of 

the weight of the smallest adult male (1550 g; mean ± SD = 1667 ± 104.8 g), and 3.5% 

of the smallest fledgling weight (850 g; mean ± SD = 1267 ± 226.4 g) at the time of 

tagging. We manipulated and marked owls under Junta de AndalucíaConsejería de 

Medio Ambiente authorizations No. SCFFS-AFR/GGG RS-260/02 and SCFFS-

AFR/CMM RS-1904/02.  
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 Breeding males were captured by simulating a territorial intrusion using a 

taxidermic mount and playback of a male call. A net behind the mount caught 

responding individuals. The capture and manipulation of breeding owls posed little 

risk to the birds because we immediately removed them from the net, and they 

remained motionless when manipulated. Females were trapped with a bownet placed 

in the nest when nestlings were 20-35 days old; at this age they can thermoregulate, 

and night temperatures were always warm (about 20 °C). Nestlings were put in a box 

with a metal grid to make them visible to their parents, who were caught on return to 

the nest. After each bownet trapping session (which lasted from sunset to sunrise) we 

fed the nestlings and released them in the nest. We never carried out trapping on 

more than 3 nights at the same nest per breeding season. For trapped breeders we 

measured the body mass (to the nearest 10 g, using 1 kg Pesola scales) and wing 

length to calculate the body condition index, and took blood samples from adults (2 

ml, taken from the brachial vein) to obtain haematocrit values (see Internal state of 

individuals). The blood samples were stored in tubes with heparin at 4 °C for 

transport to the laboratory, where they were centrifuged for 10 min at 4000 rpm to 

separate the plasma, which was stored at -78 °C. During 8 years of continuous 

radiotracking of more than 150 eagle owls (both breeders and dispersers) we never 

observed any adverse effects of the backpacks on the birds or their breeding 

performance. The backpacks were not removed after the study because it was 

impossible to trap tagged individuals again.  

 The juveniles were aged following Penteriani et al. (2005), and sexed by 

molecular procedures using DNA extracted from blood samples (2 ml) collected from 

the brachial vein of each bird when it was still a nestling (ca. 30-35 days old).  

 Tagged individuals were tracked continuously on a nightly basis (N = 459 

nights, for a total of 5343 h of continuous radiotracking) from1 h before sunset to 1 h 

after sunrise (mean duration of tracking sessions ± SD = 11.3 ± 1.9 h). Each night the 

location (Ntotal = 8494) of each individual was recorded each time a change in its 

posture or position was detected by the posture mercury sensor (mean number of 
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locations per radiotracking session ± SD = 17.6 ± 4.9). Thus, the number of locations 

recorded effectively represented the movement of an individual during the night. 

During the 8-year study period, individuals were tracked on a rotational basis 

throughout the year, providing a homogeneous distribution of radiotracking nights 

per lunar phase (Fig. 1). Locations were determined by triangulation using a three-

element hand-held Yagi-antenna connected to an ICOM (IC-R20) portable receiver 

(www.icom.co.jp). Based on the error in radiotracking localization (mean accuracy ± 

SE = 83.5 ± 49.5 m) and to ensure independence among locations, 150 m was set as 

the minimum threshold distance necessary to distinguish locations while tracking at 

night. To avoid unnecessary disturbance during continuous tracking we attempted to 

maintain a distance at least 100-300 m from the focal individual, although directly 

following individuals did not appear to affect their behaviour (i.e. the owls appeared 

to ignore the observer when the latter accidentally approached closer to the bird; V. 

Penteriani and M. M. Delgado, unpublished data). 

 

General movement patterns and rhythms of activity 

Owl movement patterns and activity were calculated per night and at the spatial scale 

of the home range and core area(s), for both breeder home ranges and disperser 

settlement areas. We first estimated the home range size using fixed-kernel methods 

(Worton 1989) with a least-squares cross-validation (LSCV) process to determine the 

optimal value of the smoothing parameter for a given kernel and sample size. To 

establish home range boundaries we used density isopleth values of 90% (Seaman et 

al. 1999). We characterized the internal structure of home ranges by estimating the 

core area(s) of each home range, defined by the 50% density isopleths. As it was not 

always possible to distinguish the core nest area from the core hunting area(s), in this 

study core areas represent both nesting and hunting areas.  
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Figure 1. Distribution of the 459 radiotracking nights (2003-2010) per lunar phase for 31 eagle owl 
breeders (21 males, 10 females) and 40 dispersing juveniles (28 males, 12 females). Moon phases were 
converted to the fraction of moon disk illuminated, and expressed as radians (θ): one lunar cycle 
corresponds to a gradual increase from 0 to 2π radians (e.g. 0 and 2π radians correspond to the full 
moon and π radians to the new moon). 

 

 Movement behaviour at the spatial scale of the home range has been 

described by four variables (Delgado et al. 2010): (1) total distance, corresponding to 

the sum of the distance between successive steps on the same nightly path; (2) step 

length, which is the distance between successive locations; (3) time step, which is the 

time elapsed between successive moves; (4) speed, which is determined by dividing 

the step distance by the time interval between successive locations. As rhythms of 

activity, we used the total number of movements per night (i.e. movement rates). As 

night length varies throughout the year, we standardized movement rates by dividing 

them by the total time that the owl was active each night.  
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  Two types of behaviour were recorded within the core areas. (1) Core area 

activity was the time an owl spent inside the home range core area(s). This is a 

measure of time devoted to major activities including breeder territorial displays, as 

well as hunting and feeding of both breeders and dispersers. Feeding behaviour 

included nestling/fledgling feeding (if the focal owl was a breeder) and female 

feeding (if the focal owl was a breeding male during incubation and nestling periods). 

(2)We also recorded the number of movements within the core area(s). 

 

Assessing prey capture by breeders 

The difficulties faced by breeders in catching rabbits under various moon phases 

were assessed following Penteriani et al. (2008), based on a subsample of 13 

individuals (11 males and two females; Nnights = 98). We were able to discriminate 

hunting behaviour from other activities (e.g. vocal displays, feeding young, roosting) 

when the following three conditions were met. First, when the tag pulse increased in 

frequency and its volume changed we assumed that the owl had shifted from a 

vertical and fixed position (i.e. a perched individual) to a horizontal and dynamic 

position (i.e. a flying individual). The change in volume was because of the variation 

in the distance between the owl and the car antenna, as a consequence of the bird’s 

movement. Second, we assumed that the owl had started to hunt when it ceased 

sunset vocal activity (during which it made short and rapid movements between the 

call perches surrounding the nest; Delgado and Penteriani 2007) and undertook 

either a long flight to the hunting area or a short flight, but roosted for a long time (i.e. 

an ambushing individual). Third, we assumed that the owl had hunted successfully 

and was eating the prey when the frequency of the tag pulse increased and decreased 

rhythmically but the volume remained unchanged (i.e. a perched individual), and the 

owl was not calling (because vocal displays generate similar patterns in frequency 

pulse). This discrimination of hunting activity was supported by direct observations 

of radiotagged individuals hunting at sunset and sunrise, or on full moon nights (M. 

M. Delgado and V. Penteriani, unpublished data). The foraging effort of the owls was 
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calculated as the amount of time between the start of one hunting event and the 

capture of a prey (as indicated by the second condition used to discriminate hunting 

behaviour). If hunting conditions are favourable, owls should rapidly capture their 

prey after hunting begins, and spend a larger proportion of the night motionless or in 

activities other than hunting. If owls easily catch their prey they will not need to hunt 

for long periods, as would occur if there were repeated unsuccessful attacks or it was 

necessary to explore several different areas per night before locating a prey. 

 

Intensity of breeders’ call displays 

We previously showed that lunar brightness increases the frequency of breeder call 

displays because moonlight enhances the conspicuousness of the white badge on the 

throat, which is a visual signal associated with vocalization (Penteriani et al. 2010). 

To take this additional effect on the time budget of individuals into account, we 

included in the present analyses a subsample of radiotagged owls (Nindividuals = 21; 13 

males and eight females; Nnights = 174) for which we recorded the number of call bout 

series (a proxy for call activity under the various moon phases). A series of vocal 

bouts is defined as a series of single ‘oohu’ calls, and we defined the end of a series as 

the last call heard at least 60 s before the next call (Delgado and Penteriani 2007). 

Because the vocalization peaks of eagle owls at sunset and sunrise may be influenced 

more by twilight (Delgado and Penteriani 2007; Penteriani and Delgado 2009) than 

by lunar phase, we excluded crepuscular call displays (i.e. those during the first hour 

after sunset and the first hour before sunrise) from our analysis. 

 

Moon phases 

The daily moon phase at the geographical location of the study area was obtained 

From the Naval Oceanography Portal 

(http://www.usno.navy.mil/USNO/astronomical-applications/dataservices/rs-one-
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day-world) and expressed in terms of the fraction of moon disk illuminated and 

whether the moon was waxing or waning. Following the periodic regression 

approach suggested by deBruyn and Meeuwig (2001) and applied elsewhere (e.g. 

Kuparinen et al. 2010), the fraction of moon disk illuminated was converted into 

radians (θ), with one lunar cycle corresponding to a gradual change from 0 to 2π 

radians (0 and 2π radians correspond to the full moon, and π radians corresponds to 

the new moon). Cos(θ), sin(θ), cos(2θ) and sin(2θ) transformations were included in 

the statistical model as explanatory variables, to investigate possible lunar effects on 

eagle owl behaviour throughout the lunar cycle (see deBruyn and Meeuwig 2001 for 

details).We were confident that the effect of lunar light was not altered by cloud cover 

because of the long-term nature of the study and consequent large number of nights 

of radiotracking, and because we always avoided cloudy nights owing to the risk that 

rain could alter owl behaviour.  

 

Individual status 

Breeders and dispersers occur in the same population, but the differences in status 

entail different constraints (Campioni et al. 2010; Penteriani et al. 2011). Therefore, 

to accommodate this additional potential source of variation in individual behaviour 

we took into account three explanatory variables specifically related to the status of 

breeders and dispersers: (1) the different phases of the biological cycle (for breeders 

only: 1 = pre-laying, 2 = incubation, 3 = nestling and 4 = post-fledging); (2) days spent 

in dispersal (for dispersers only); and (3) the phase of dispersal (for dispersers only: 

1 = wandering, 2 = stop; Delgado et al. 2010). Because of the increasing experience of 

juveniles during natal dispersal (Delgado et al. 2009), and behavioural shifts during 

the different stages of dispersal (Delgado and Penteriani 2008), both variables (2) 

and (3) have the potential to affect individual responses to moon phases. 
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Internal state of individuals 

To account for the health state of individuals we measured two 

physiological/morphological indexes for breeders (at the moment of trapping) and 

dispersers (when they were 35 days old): (1) the body condition index and (2) the 

haematocrit value. These have previously been found to affect the behaviour of 

individuals, with higher values of both reflecting individuals of better quality (for 

more information see Delgado et al. 2010).  

 

External cues acting on individuals  

To test for the possible effect of habitat heterogeneity on individual behaviour we 

analysed the landscape structure and the composition of habitats to which the owls 

were exposed during nightly tracking sessions. We evaluated both landscape 

structure and composition using ArcMap of ArcGIS version 9.0 (Esri, Redlands, CA, 

U.S.A.), and reclassified the map into three main land cover elements: forest, 

scrubland and cultivated areas. We then calculated the proportion of each habitat 

type within the area traversed by individuals on each night. The calculated areas (in 

raster format; cell size: 0.5 x 0.5 km) were used as a basic input data layer for 

measuring landscape metrics. We used the raster version of FRAGSTATS 3.3 

(McGarigal et al. 2002) to calculate the edge density and Shannon’s diversity index.  

 

Resource abundance 

We considered the main features of the diet and prey abundance as explanatory 

variables, because they are potentially additive factors affecting individual behaviour. 

In particular, as previous diet analyses have shown that rabbits and rats are the main 

prey of our study population (R. Lourenço, M. M. Delgado and V. Penteriani, 

unpublished data), we considered three parameters in our study: (1) the relative 
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rabbit abundance in the breeder home ranges and disperser settlement areas (see 

below), and the biomass of (2) rabbits and (3) rats in the diet of the breeders. The 

diet of eagle owls was determined by analysing prey remains and pellets collected 

from 2003 to 2008 during visits to nests, and roosting and feeding perches in the 

breeding territories of tagged breeders. We identified prey species using bone 

identification keys and comparison with a reference collection (Laboratory of 

Archaeo sciences, IGESPAR, Lisbon, Portugal), and from these data determined the 

minimum number of prey individuals involved. Biomass percentages were calculated 

using the mean weight value obtained from previous studies, or bone measurements 

to estimate the weight of each individual (see Lourenço 2006 for more details). In 

2009, a census from the beginning of March to the beginning of May was used to 

estimate the relative rabbit abundance at 26 nesting sites and 17 disperser 

settlement areas, using rabbit faecal pellet counts (latrine counts; Palomares 2001a, 

b). To obtain comparable indexes of prey abundance (i.e. number of latrines per km of 

transect), we drew a circular plot around each nest (or the central point of the 

settlement areas for dispersers), such that the area was equal to the mean eagle owl 

home range size in our study population, calculated using the minimum convex 

polygon method. Inside these plots we walked transects of 2.2 km length, and 

recorded the number of latrines (Ntotal = 3440 latrines) within 2 m on either side of 

each transect. Rabbit density over the years can be considered relatively stable in our 

study area because of continual management and frequent releases (V. Penteriani and 

M. Delgado, unpublished data).  

 

Statistical analyses 

Breeders and dispersers were analysed separately because several variables 

(individual condition, phases of dispersal and resource abundance) were specific or 

available for just one status, and covariate effects were likely to differ between 

breeders and dispersers. To test the effects of moon phase, health state of individuals, 

external factors, status and resource availability on movement patterns, foraging 
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effort and vocal displays, we modelled these behaviours using multilevel models. 

Total distance, speed, movement rate and foraging effort were modelled with linear 

mixed-effect models, and time step and numbers of call bout series were modelled 

with generalized linear mixed-effects models assuming Poisson error structure. To 

ensure normality, total distance, speed and foraging effort were log transformed. 

Additive main effects of the variables whose effects on movement were to be tested 

were considered as explanatory variables. Because we had repeated measures for the 

same owls over different years, we considered individual nested in year as a random 

effect. As suggested by Crawley (2007), model simplification was performed by 

backward selection of variables from the full model, and models were compared 

using likelihood ratio tests until a minimal adequate model was obtained. For the 

'different phases of the biological cycle' factor, model reduction was performed by 

joining factor levels closest to each other, after which nested models were compared 

similarly as explained above. For each analysis we used slightly different subsamples 

of the data (detailed in Tables 1, 2), representing those individuals for which it was 

possible to collect the specific information sought. Residuals of the final models were 

explored for normality, homogeneity (except in the case of the generalized linear 

model) and independence assumptions. All statistical analyses were performed in R 

2.10.1 statistical software (R Development Core Team 2009) with nlme (Pinheiro et 

al. 2009), lme4 (Bates and Maechler 2009) and MASS (Venables and Ripley 2002) 

packages. Statistical significance was set at α < 0.05. 
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Table 1 Linear mixed model fitted by maximum likelihood showing the effect of the moon on movement 

patterns and foraging effort of eagle owl breeders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Estimate SE  df     t  P 

log(Total distance)*                     

Intercept (Periods 1, 3†)      9.32   0.18   218     51.77   <0.0001 

Sex   -0.21  0.08    39    -2.58    0.014  

Period 2      0.23   0.09   218              2.63     0.009 

Period 4    -0.23    0.06   218      -4.00    <0.0001 

Age   -0.00  0.00  218    -2.74    0.007 

Edge density  -0.00  0.00  218    -2.13    0.034 

Shannon diversity index  0.19  0.09  218     2.03    0.044 

% Shrubs     -0.38   0.13   218      -3.00      0.003 

Moon phase: cos(θ)    0.08   0.03   218        2.32      0.021 

 

log(Speed)‡               

Intercept (Periods 1, 3, 4†)  2.80   0.13            5368    21.74   <0.0001 

Period 2     0.17   0.06            5368      2.68   <0.01 

Age                           -0.0001                       0.00           5368    -2.29     0.022 

Moon phase: cos(θ)   0.06    0.02           5368      2.42     0.015 
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* Sum of the distance between successive steps of the same nightly path (N = 309).  

† Factor levels were included in the model simplification process. 

* Sum of the distance between successive steps of the same nightly path (N = 309). 

‡ Step distance divided by the time interval between successive locations (N = 5431). 

§ Total number of movements divided by the length of the night (N = 297). 

** Amount of time between the beginning of a hunting session and the capture of a prey (N = 98). 

 

 

RESULTS 

Moon phase affects breeders but not dispersers 

An effect of the lunar cycle was only detected for breeders, while the behaviour of 

dispersing owls was never affected (in all model reduction steps P > 0.5 for lunar 

effects). For breeders the total distance moved, time steps, speed and total number of 

movements per night were influenced by the lunar cycle (Tables 1, 2, see 

Supplementary Material). 

Movement rate§                       

Intercept (Periods 1, 2†)      0.02   0.001  195    16.73         <0.0001 

Sex             -0.006  0.001    35            -4.64        <0.0001 

Periods 3, 4        0.002   0.00  195       2.64            0.009 

% Forest      0.015  0.004  195     3.55          <0.001 

Rabbit biomass in the diet    -0.000   0.000  195      -3.78              <0.001 

Rat biomass in the diet   0.000   0.000  195       4.02               0.0001 

Moon phase: cos(θ)    0.001   0.000  195       2.38             0.018 

 

Foraging effort**                       

Intercept  4.21   0.08   77    51.51       <0.0001 

Moon phase: cos(2θ)   0.20   0.10   77       2.06             0.043 
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Table 2 Generalized linear mixed model fitted by the Laplace approximation showing the effect of the 
moon on time elapsed between successive moves (time steps) and vocal displays of eagle owl breeders 

 

 

 

 

 

 

 

 

 

 

* N = 5702. 

† Different phases of the biological cycle: 1 = prelaying, 2 = incubation, 3 = nestling, 4 = postfledging. 

‡ N = 174. 

 

Together these results suggested a higher movement activity around the time of the 

full moon than around new moon (Tables 1, 2, Fig. 2, see Supplementary Material): 

(1) the total distance moved during the night was greatest at the time of the full moon 

and least at the time of the new moon; (2) the total number of movements per night 

increased at the time of the full moon and decreased at the time of the new moon; (3) 

the proxy for flight speed increased at the time of the full moon and was least at the 

time of the new moon; and (4) the time between movement steps was low at the time 

   Estimate SE  Z  P 

Time step*               

Intercept (Period 1†)           3.62     0.028    131.85       < 0.0001 

Period 2              -0.09     0.009                      -9.69                     < 0.0001 

Period 3              -0.15                      0.009    -15.76                     < 0.0001 

Period 4              -0.11     0.006    -19.28                     < 0.0001 

Moon phase: cos(θ)    0.06     0.003    -18.21                     < 0.0001 

Moon phase: sin(2θ)    -0.01     0.004                       -3.03                        0.003   

Numbers of call bout series‡                      

Intercept      0.53     0.26      2.01                         < 0.01 

Sex                              -2.09     0.55                         -3.81                     < 0.01 

Moon phase: cos(θ)                  0.63                      0.08      7.64                     < 0.01 

Moon phase: sin(θ)   0.22                         0.10                       2.16                     < 0.01 
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of the full moon and increased at the time of the new moon (i.e. the resting time 

between movements was longer at the time of the new moon).  

 The reasons for the highest activity on the brightest moonlit night may be 

related to an increase in the time needed to find prey (Tables 1, 2, Fig. 3a, see 

Supplementary Material) and the time devoted to vocal displays at the full moon 

phase (Tables 1, 2, Fig. 3b, see Supplementary Material). These activities are not 

mutually exclusive, as breeders both have to contend with less active/more concealed 

prey and ensure greater conspicuousness of their visual displays in moonlight. The 

additional increase in activity because of moonlight territorial/sexual displays may 

have concealed a peak in hunting activity during dark nights in the general patterns 

of movement (when activity peaks were only present at the time of the full moon; Fig. 

2). 

 

Additional effects 

In addition to the lunar effect, several other variables influenced the behavioural 

patterns of breeders (Tables 1, 2, see Supplementary Material). The various phases of 

the biological cycle always entered in the whole set of movement models, probably 

highlighting constraints related to the diverse tasks of breeders during the year. The 

age of breeders seemed to influence both total distances moved during the night and 

movement speed, that is, younger individuals moved longer distances and faster. The 

total distance moved during the night was less for females (which probably reflects 

the time they spend in the proximity of both the nest and young) and was (1) 

negatively influenced by the landscape structure and composition, expressed as the 

edge density and the percentage of shrubs (i.e. when owls moved mainly in patches 

with denser vegetation and frequent ecotones, their nightly total distance was 

shorter) and (2) positively influenced by landscape heterogeneity. Movement rates 

were (1) sex dependent, with males moving more than females, as the former are 

responsible for most territorial displays and provide food to both females and 
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nestlings for most of the breeding season; (2) affected by landscape composition (i.e. 

denser habitats such as forests increase movement rates); and (3) positively affected 

by the percentage of rat biomass (and negatively affected by the percentage of rabbit 

biomass) in the diet, because owls living in home ranges with low availability of 

rabbits had to rely on smaller prey (including rats), and consequently needed to hunt 

more to obtain comparable energy to those owls catching rabbits. The effect of sex on 

the intensity of call displays is attributable to the fact that these were mainly 

performed by males (Delgado and Penteriani 2007). 

 

 

Figure 2. Moon phase effect on (a) log-transformed total distance, (b) movement rates, (c) log-
transformed speed and (d) time steps, as estimated by the linear and generalized linear mixed-effect 
models (Tables 1, 2). 
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Because the absence of a moon effect on disperser behaviours meant that we were 

not interested in this group in the specific context of the present study, and because 

most of the effects of additional covariates on disperser behaviours have been 

investigated in our previous studies (e.g. Delgado et al. 2009, 2010; Penteriani and 

Delgado 2011, unpublished data), the effects of those covariates not directly related 

to the moon phases are not presented here. 

 

DISCUSSION 

The general pattern of high activity of breeding eagle owls during moonlit nights 

could represent a cost/benefit trade-off between preying on less active/more 

concealed prey and taking advantage of the easier visual location of prey 

(illumination may enhance the efficiency of visually orienting nocturnal predators; 

Clarke 1983; Kotler et al.1988,1991; Longland and Price 1991). That is, while the 

potential for owls to detect prey might increase with increasing light, so does the 

effort involved in encountering active prey under these conditions (e.g. Daly et al. 

1992). Consequently, the observed movement patterns could be interpreted as an 

increase in search effort to maintain a constant food intake, independent of the moon 

phase (and thus prey availability). The effect of dense patches of cover (shrubs) on 

movement may be related to the more difficult hunting conditions during the full 

moon, when prey associates with shrub to avoid predators (Clarke 1983; Travers et 

al. 1988; Longland and Price 1991; Kotler et al. 1991): the owls moved shorter 

distances during the night when hunting in dense patches of vegetation, probably 

because of the difficulty in detecting prey. This general scenario is consistent with the 

specific analysis of owl foraging efforts, which highlighted the increased difficulty 

owls encountered in locating and/or catching prey during bright moonlit nights. 

Nightly catching effort also increased during dark nights, as previously observed for 

owls under experimental conditions (Kotler et al. 2002). Thus, the chance of 

encountering active prey increases with decreasing light (Lockard and Owings 1974; 
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Clarke 1983; Sábato et al. 2006), but the ability of owls to detect prey visually might 

decrease. The finding of reduced hunting efficiency of eagle owls at the time of the 

new moon is first evidence of the constraints of extreme darkness on the foraging 

effort of nocturnal predators under natural conditions.  

 Nestling/fledgling feeding (and female feeding during incubation) should 

prevent breeders, males in particular, from reducing their activity to save energy 

during periods of low prey availability, as may occur for nonbreeding individuals, 

including dispersers. Although optimal foragers should concentrate their foraging 

activity during periods when the benefits of foraging exceed the costs, breeders 

cannot always afford to wait for the most favourable hunting conditions. In fact, 

patterns of lower activity at the time of the full moon, as a direct consequence of 

reduced prey availability, have been noted in other predators not constrained by 

reproductive tasks (Lang et al. 2006; Sábato et al. 2006).  

 Dispersers did not show any behavioural response to the changing lunar 

cycle, suggesting that constraints on their ‘lifestyle’ are probably unrelated to lunar 

phases. Natal dispersal is a complex process characterized by potentially frequent, 

dangerous crossings of unknown landscapes, and probably requires similar effort at 

any time of the year. In addition, the absence of constraints associated with 

reproduction should not result in an increase in activity when food profitability is 

low. The individual’s status may thus play a crucial role in costbenefit considerations 

and behavioural decisions (Campioni et al. 2010), by directly affecting the time and 

effort individuals allocate to activities related to their most immediate needs (e.g. 

defending a territory and breeding successfully versus overcoming the multiple costs 

of dispersal).  

 We have previously used the brightness of the white tails of predated rabbits 

as an index of condition, and shown that eagle owls apparently prey more on 

substandard individuals (Penteriani et al. 2008). We hypothesized that such a 

preference could be in part explained by easier detection of unhealthy prey 

individuals using the brightness of the tail as a visual cue. Empirical studies have 
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shown that visual signals may inform the predator of the health state of prey, and 

consequently their potential to elude predators. In the light of our new findings on 

eagle owl activity under various lunar phases, another (not mutually exclusive) 

explanation for biased predation on substandard prey can be hypothesized. 

 

 

Figure 3. Time budget allocation at various moon phases. (a) Time spent successfully hunting a prey (a 
proxy of hunting conditions/prey availability). (b) Call activity. See text for further details. 
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The value of food will be higher to a hungry or unhealthy individual than to an 

individual that has large reserves of energy, or is in a good physical state, that is, 

hungry individuals should be willing to trade greater mortality risks for additional 

energy gain (Brown 1992). Because poor body condition may increase the rate of 

risk-prone prey behaviour (e.g. compensatory foraging) and alter normal behaviour 

(Murray 2002 and references therein; Wirsing et al. 2002), the greater number of 

substandard prey in the diet could also be the result of predation events at the time of 

the full moon. For prey individuals in a healthy state the costs incurred by temporary 

inactivity, such as reduced foraging, would be exceeded by the benefit of avoiding owl 

predation, but this would not apply to those individuals in poor health. Therefore, the 

presence of more substandard rabbits in the diet may be the consequence of more 

unhealthy individuals always being available (i.e. under all moonlight conditions), 

whereas healthy prey individuals are principally available (or more easily located and 

hunted) on dark nights. Evidently, as previously suggested, moon brightness might 

also increase the conspicuousness of the rabbit’s visual signal, making the difference 

between dull versus bright tails more evident.  

 It has been recently discovered that eagle owls use visual signalling for intra-

specific communication (Penteriani et al. 2007; Penteriani and Delgado 2009), and 

that such visual displays are strongly related to specific moon phases. Silent nights 

are more frequently associated with dark nights than bright ones, as owls take 

advantage of lunar light to increase the effectiveness of their visual communication 

(Penteriani et al. 2010). Because vocal displays also involve frequent and rapid 

movements from one call post to another (Delgado and Penteriani 2007; Campioni et 

al. 2010), some of the important activity at the time of the full moon is also due to the 

more frequent vocalizations of breeding individuals during moonlit nights. The moon 

phases, as a direct indicator of lunar brightness, have an important effect on predator 

behaviour in more than the context of preypredator relationships. Behavioural shifts 

at the time of the full moon are also status dependent, the rank of individuals being a 

major constraint acting differently within the same species. From this perspective, 

moonlight has the ability to modify the intensity of interactions among specific 
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classes of conspecifics via territorial/sexual displays, altering patterns of time budget 

allocations. Because lunar brightness might also bias predation rates on substandard 

prey, it has the potential to modify the phenotypic structure (high- versus low-quality 

phenotypes) of prey populations under high predation pressure. 

 

Supplementary material 

Supplementary material associated with this article is available, in the online version, 

at doi:10.1016/j.anbehav.2011.05.027 
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RESUMEN 

Los movimientos y el aprendizaje espacial son dos procesos entrelazados entre ellos. 
Los cambios en el comportamiento de movimiento de un animal pueden influenciar el 
aprendizaje del entorno espacial. Del mismo modo, la información espacial juega un 
papel crucial en muchas decisiones relacionadas con los movimientos de los animales. 
Una forma muy útil de explorar las interacciones entre las decisiones relacionadas 
con los movimientos y el aprendizaje del entorno espacial es a través de la 
comparación del comportamiento de los individuos durante las diferentes fases de la 
dispersión natal (es decir, cuando los individuos se mueven en hábitats 
desconocidos) con las decisiones y movimientos de los reproductores (que utilizan 
dominios vitales fijos y conocidos por los individuos). Es decir, comparando el 
comportamiento de individuos que continuamente tienen que recoger nueva 
información vs. individuos que presentan un conocimiento completo de su entorno. 
En este capítulo analizamos los patrones de movimiento de individuos de búho real 
Bubo bubo en tres grupos sociales distintos (a) dispersantes en la fase de búsqueda 
(que exploran ambientes desconocidos), (b) dispersantes en la fase de asentamiento 
(establecidos temporalmente en áreas de asentamiento), y (c) adultos reproductores 
con un área de campeo bien definida. Los resultados mostraron que: (1) los 
dispersantes en la fase de búsqueda se mueven más rápido que los búhos 
establecidos temporalmente en las aéreas de asentamiento, recorriendo mayores 
distancias con trayectorias más rectas y movimientos más largos; (2) cuando los 
dispersantes están asentado en un área más estable, presentan un comportamiento 
de movimiento más similar a los adultos territoriales. Pudimos de esta forma 
comprobar cómo los individuos mostraron una transición que puede verse reflejada 
en sus patrones de movimientos, desde una estrategia más exploratoria, cuando los 
animales posen escasa información del entorno físico, hasta una más óptima para 
explotar aquellas áreas que son familiares para los individuos.      

 

   

 

 

 

 



Movement behaviour
 

 
 

- 98 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For their help in the field work, we are grateful to P. 
Bartolommei, R. Lourenço, and G. Penteriani. The 
first draft was improved by the criticisms of R. Avni 
and E. Revilla. We are grateful to E. Korpimäki and 
two anonymous referees for their comments on the 
first draft of the manuscript. The work was funded 
by a research project of the Spanish Ministry of 
Science and Innovation (CGL2008-02871/BOS). 
During this work, M. M. Delgado was supported by a 
postdoctoral grant of the Spanish Ministry of Science 
and Innovation. We manipulated and marked owls 
under the Junta de Andalucía—Consejería de Medio 
Ambiente permit nos. SCFFS-AFR/GGG RS-260/02 
and SCFFS-FR/CMM RS-1904/02. 



Movement behaviour
 

 
 

- 99 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Bubo bubo, familiarity, floater, learning, movement behavior, natal 
dispersal 

 

 

 

 

 

ABSTRACT  

Moving and spatial learning are two intertwined processes: (a) changes in 
movement behavior determine the learning of the spatial environment, and (b) 
information plays a crucial role in several animal decision-making processes 
like movement decisions. A useful way to explore the interactions between 
movement decisions and learning of the spatial environment is by comparing 
individual behaviors during the different phases of natal dispersal (when 
individuals move across more or less unknown habitats) with movements and 
choices of breeders (who repeatedly move within fixed home ranges), that is, by 
comparing behaviors between individuals who are still acquiring information 
vs. individuals with a more complete knowledge of their surroundings. When 
analyzing movement patterns of eagle owls, Bubo bubo, belonging to three 
status classes (floaters wandering across unknown environments, floaters 
already settled in temporary settlement areas, and territory owners with a well-
established home range), we found that: (1) wandering individuals move faster 
than when established in a more stable or fixed settlement area, traveling larger 
and straighter paths with longer move steps; and (2) when floaters settle in a 
permanent area, then they show movement behavior similar to territory 
owners. Thus, movement patterns show a transition from exploratory 
strategies, when animals have incomplete environmental information, to a more 
familiar way to exploit their activity areas as they get to know the environment 
better. 
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Animal movement is an essential mechanism underlying many ecological processes at 

individual (e.g., home ranging, site fidelity, foraging), population (e.g., metapopulation 

connections and persistence, invasion spreading), community (e.g., assemblages, 

species coexistence), and ecosystem levels (Nathan 2008; Revilla and Wiegand 2008; 

Fryxell et al. 2008). The implications of movement behavior on several evolutionary 

and ecological processes have been recently emphasized (Dingemanse et al. 2003; 

Davis and Stamps 2004; Hansson et al. 2004; Haughland and Larsen 2004; Nathan 

2008; Schick et al. 2008). In particular, spatial memory and learning allow animals to 

move through their landscape as efficiently as possible (Saarenmaa et al. 1988; 

Vuilleumier and Perrin 2006). However, there is still a lack of knowledge on the 

characteristics of the process by which individuals learn and acquire experience to 

move within and through environments (e.g., Dukas 2004).  

 Cognitive abilities and learning affect behavior and choices related to habitat 

selection, mate choice, foraging, social interactions, and space use (Dukas 2004; Dall 

et al. 2005). Until now, most of the models that have been used to explore some 

aspects of spatial learning have assumed that individuals are “omniscient”, i.e., that 

they have complete information on the quality of all patches in the habitat. However, 

it is unlikely that individuals could always have an a priori information on the 

surroundings (e.g., Vos et al. 1998 and references therein; Stamps and Krishnan 

1999): individuals need time to acquire knowledge about the surroundings in which 

they move and, consequently, adopt some site-specific mechanisms or rules which 

allow them to exploit habitat patches optimally (Stamps 1995; Thield and 

Hoffmeister 2004; Dall et al. 2005).  

 Moving and learning are intertwined processes: (a) changes in movement 

behavior during the different phases of the biological cycle or a switch in an 

individual status (floater vs. breeder) allow the individuals to better learn about 

and/or differently perceive their environment, and (b) information plays a crucial 

role in several animal decision-making processes, like movement decisions during 

natal dispersal, a crucial phase of animal life. Individuals actively sampling novel and 
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temporary patches should show different movement behaviors from when they settle 

in a stable area. Indeed, natal dispersal presents a unique opportunity to explore 

interactions among animal movements and learning because of the specific stages 

that individuals go through (Stamps 2001; Andreassen et al. 2002; Clobert et al. 2004; 

Bowler and Benton 2005; Heinz and Strand 2006; Baguette and Van Dyck 2007; 

Delgado and Penteriani 2008), shifting from a wandering to a more stable phase 

characterized by a settlement in quite fixed areas of activity. Moreover, natal 

dispersal involves considerable time spent alone traveling across unknown areas, and 

therefore, the costs of dispersal can be significant because of both mortality risks and 

missed reproductive opportunities (e.g., Waser et al. 1994; Alberts and Altmann 

1995). But the costs of uncertainty during dispersal may be reduced by becoming 

familiar with the environment. Thus, the comparison of movement behaviors of 

floaters throughout the dispersal process vs. movements of territory owners within 

their well-established home ranges presents a unique opportunity to evaluate the 

effects of local familiarity on animal movement decisions.  

 The eagle owl Bubo bubo has a multiphase dispersal process (Delgado and 

Penteriani 2008). At the beginning, during the wandering phase (i.e., the exploratory 

stage of natal dispersal), individuals survey different unknown areas for a variable 

time period. Once they find a suitable temporary settlement area, they enter the stop 

phase of dispersal (Delgado and Penteriani 2008). Such settlement areas represent 

those zones occupied during the longest time period of the whole dispersal, 

sometimes until floaters become territory owners and start breeding. At this stage, 

due to the amount of time they spend in the settlement area, individuals become 

more familiar with their environment and learn what significant habitat features are 

in the area, where these are, and how to move to exploit them (Stamps and Krishnan 

1999).  

 By using data from a 4-year radiotracking study on the movement behavior of 

eagle owls, we tested the following main hypothesis: throughout natal dispersal, the 

shift from a more wandering and explorative stage to a quite stable settlement stage 
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will increase local familiarity due to increasing spatial learning. As a consequence, we 

may expect a progressive change in movement patterns: since they become more 

familiar with their surroundings, owls in their settlement phase (i.e., when they reach 

the stop phase) should show movement patterns more similar to territory owners 

than to wandering floaters at the beginning of dispersal. We expect the following: (a) 

Since animals with a preferred (i.e., learned) diurnal roost site are expected to 

frequently return to it after their activity period, floating owls in settlement areas and 

territory owners will show shorter distances between the first and the last location 

recorded in the same night; (b) Since wandering individuals are continuously 

exploring novel areas and sampling different patches, they will not show movements 

within well-defined foraging areas. However, if owls have learned the spatial 

distribution of resources within their home range once they have settled in an area, 

they may tend to concentrate their foraging efforts in specific restricted areas; (c) 

Because individuals dispersing through new habitats vs. individuals moving within 

their own home range use different spatial domains, the structure of individual 

movement paths will change. (d) Finally, because dispersal costs are high and floaters 

only hope is to locate a patch as quickly as possible, wandering owls traveling 

through unknown environments will travel faster and straighter than individuals 

moving in a familiar habitat. 

 

MATERIALS AND METHODS 

Data collection 

We radiotagged 40 juveniles (born in 12 breeding sites) and nine territory owners in 

the 2003–2006 period in the Sierra Morena massif (south-western Spain; for more 

information see Penteriani et al. 2007). Marked individuals were equipped with a 

Teflon ribbon backpack harness that carried a 30-g radio-transmitter (Biotrack Ltd, 

Wareham BH20 5AJ, Dorset, UK; www.biotrack.co.uk). Each transmitter package and 
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harness weighed less than 3% of the total body mass (as recommended by the US 

Geological Survey Bird Banding Laboratory), with a mercury posture sensor that 

allowed us to discriminate rhythms of activity by changes in the radio signal. 

Juveniles were radiotagged when they were approximately 35 days old. Because they 

were still growing, backpacks were adjusted so that the Teflon ribbon could expand. 

After 4 years of continuous radiotracking, we never recorded a possible adverse 

effect that could be directly attributed to backpacks on birds (Delgado and Penteriani, 

unpublished data). Owlets were aged following Penteriani et al. (2005) and sexed 

(nmales = 26; nfemales = 14) by molecular procedures using DNA extracted from blood 

(Griffiths et al. 1998).  

 We followed both territory owners and juveniles (nwandering phase=32 

individuals—19 males and 13 females; nstop phase = 25 individuals—18 males and 

seven females) individually in continuous radiotracking sessions (n = 285 entire 

nights—119 for adults and 166 for dispersing during a total time of 1,214 and 1,840 

h, respectively). A continuous radiotracking session means following a focal 

individual during the whole night (i.e., from 1 h before sunset to 1 h after sunrise; 

mean duration of a radiotracking session ± SD = 10.56 ± 0.08 h) and recording a new 

location (n = 4,758 recorded locations; mean total number of locations per individual 

± SD = 97 ± 92) each time that we detected a change in individual position (mean 

number of locations per radiotracking session ± SD = 18 ± 4). Thus, the number of 

locations recorded is a measure of the amount of movement during the night. The 

mean time between owl movements was 32.7 ± 30.8 min, not being significantly 

different between categories (F2, 4,185 = 1.7, p = 0.1). We note that: (a) the high 

variation in the mean number of locations per individual is mainly due to the 

different activity patterns of each individual; and (b) the low mean number of 

locations per radiotracking session is due to the large amount of time that the species 

spend roosting (Penteriani et al. 2008). Individual movements were detected by a 

fixed antenna located on the roof of a car. Locations were done using triangulation 

with three-element hand-held Yagi antenna connected to ICOM (IC-R20) portable 
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receivers. To avoid unnecessary disturbance during continuous tracking, we 

attempted to maintain a distance of at least 100–300 m from the focal animal. In 

general, the tracking did not seem to affect owl behavior, which appeared to ignore 

the observer (Delgado and Penteriani, unpublished). 

 

Data analysis 

Defining dispersal phases 

To determine the different phases (i.e., start, wandering, and stop phases) of dispersal, 

we recorded the position of each juvenile weekly, typically when owls were at their 

diurnal roost sites. For each individual, we plotted both the beeline distance between 

its natal nest for each weekly location and the individual average of beeline distances 

between the whole set of locations and the nest (the latter representing the individual 

global mean distance) covered for each individual during the dispersal period. When 

juveniles left the nest, they still remained in their parental home range for a while. We 

considered dispersal to have started when individuals left their parent’s home range, 

which we estimated when the distance of each weekly location from the nest 

becomes larger than the global mean distance traveled by each animal during the 

dispersal period (Delgado and Penteriani 2008). After leaving the natal territories, 

dispersal distances progressively increased. Finally, when owls reached the stop 

phase of dispersal, dispersal distances leveled off. We considered that owls settled in 

a stable settlement area when the distances between successive weekly locations 

became smaller than the average distance of previous moves traveled by each 

dispersing owl (for more details, see Delgado and Penteriani 2008). The wandering 

phase encompasses the movements between the start of dispersal and the final 

settlement in a stable area.  

 Once dispersing owls settled in a stable settlement area, we never observed a 

shift again to the wandering phase. However, we could not have detected such 
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behavior if some individuals shifted to the wandering phase after their third year 

because the battery life was ~2.5 years. Although such a behavioral shift has been 

recorded in some other species (e.g., Ferrer 1993a, b), some dead individuals were 

found more than 4 years after the battery failed (Delgado and Penteriani, 

unpublished results) in the same settlement area where they were located the last 

time. To better understand individual behavior across the whole natal dispersal, we 

are now marking “older” dispersing owls directly in their settlement areas 

(Penteriani and Delgado, unpublished results).  

Owl status, movements, and spatial learning  

To find out how movements at each floater stage differed from the breeding stage, we 

compared three different aspects: roost sites, foraging areas, and spatial domains.  

Roost sites To analyze if animals frequently return to a given roost site, we calculated 

the distance between the first and the last owl location recorded on the same night, 

i.e., before the start and after the end of the nightly activities).  

Foraging areas Firstly, we calculated the activity areas for both dispersing and 

breeding individuals. For each individual night, activity area was estimated using the 

95% kernel of all night locations (fixed-kernel method, Worton 1989), and core area 

estimated using the 50% kernel. We used the fixed kernel least squares cross-

validation estimate because it is best at defining interior contours (Seaman et al. 

1999; Blundell et al. 2001). Secondly, we used this information to: (a) identify 

foraging areas: by recording hunting events (see Penteriani et al. (2008) for more 

details), we were able to discriminate foraging areas from other areas of intensive use 

(e.g., refuges); and (b) calculate their extensions relating to the 95% area of floaters’ 

vital ranges and breeders’ home ranges. 

Spatial domains Animals often react differently to their environment at different 

spatial scales (these areas of spatial scales are called spatial domains); we used fractal 

analysis to determine these spatial domains (as in Nams and Bourgeois 2004). To test 
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for changes in movement paths (following Nams 2005), we measured: (1) path 

tortuosity (D) of each nightly movement path as a function of spatial scale. Fractal D 

measures movement path tortuosity, where D = 1 indicates a perfectly straight line, 

and D = 2 suggests approximately Brownian (plane-filling) movement. To look for 

variation in D with changes in the spatial scales, we determined the value of D for a 

series of small ranges of divider size ranging from 20 to 1,000 using Vfractal 

estimator (Fractal 4.0 software; see Nams 2005 for a detailed explanation of the 

procedure). Window sizes at each spatial scale were chosen with a minimum value of 

midpoint/1.35 and a maximum value of midpoint ×1.35. This window size definition 

gave symmetrical, fixed width windows on the log-transformed spatial-scale axis 

(Nams 2005). A discontinuity in fractal D vs. scale relationship indicates a change in 

path structure from one spatial domain to another; (2) the movement path 

heterogeneity by dividing the path into segments and estimating the variance in 

tortuosities among segments. The resulting plots of divider size vs. D were used to 

describe the pattern of scale variance. The specific pattern of scale variance may 

provide information on the spatial scales at which the animal views the landscape 

(Nams 2005). A sharp drop in the variance of tortuosity also indicates a change in 

path structure from one domain to another; and (3) the correlation in tortuosity 

between pairs of adjacent segments of the total path, as a function of segment length. 

If the segments are much smaller than patch sizes, then their correlation would be 

positive because both path segments would be either inside or outside of a patch. For 

segments that are the size of patches, one would be in a patch (and therefore 

tortuous), while the adjacent would be outside (and therefore straight), and thus, 

their correlation would be negative.  

 Finally, when segments are large enough to cover several patches, then their 

correlation would be zero. Thus, when there is a zero correlation at all scales, this 

means no patch use, while a positive correlation of tortuosities dropping to a negative 

correlation indicated a patch use. In such a case, patch size may be estimated as the 

spatial scale at which the correlation declines below zero (Nams 2005). Finally, in 
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order to characterize owls’ motor skills (i.e., how individuals exploit the elements 

inside the space in which they move), we estimated various movement path statistics. 

First, we estimated path tortuosity, by the overall fractal dimension (D). This was 

done using the same range of spatial scales for all individuals (from 20 to 160 m), 

with the upper limit set at less than half the lengths of the longest path, and the lower 

limit the minimum distance between locations (Halley et al. 2004). Using the same 

range of scales allowed us to compare fractal D among paths even though D varied 

with scale (Turchin 1996; Nams and Bourgeois 2004). D was computed using the 

fractal mean estimator with the program Fractal (Nams 1996, 2006a), and fractal D 

was normalized by log (D−1). Finally, we estimated the overall traveling speed, mean 

step lengths, and the total length of nightly movement paths. Both the overall speed 

and the total path length were based on the gross distance traveled. 

 

Statistical analyses 

Because repeated measures were made for each owlet, we considered individuals as 

sampling units (SUBJECT Statement in PROX MIXED) and used a repeated 

measurements mixed model (PROX MIXED in SAS software; SAS Institute 2001), 

including sex as a random factor. Moreover, since we radiotagged many owls per nest, 

we also tested the possible effect of nest as an additional random effect (Littell et al. 

1996). But the effect of sex and nest was never significant (always p > 0.10), and they 

were therefore removed from the models. We used a restricted maximum likelihood 

method to estimate all the unknown variance–covariance parameters (Jennrich and 

Schluchter 1986) and selected autoregressive (AR1) as the covariance structure that 

best fitted the Akaike Information Criterion (AIC). The variance structure with the 

lowest AIC value is deemed the best one. Finally, statistical significance was 

considered to be α < 0.05. 
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RESULTS 

Most juveniles started their dispersal at the end of August (mean age at the beginning 

of dispersal (± SD) = 170 ± 20.51 days old, range = 131–232 days old). Although there 

was a high degree of individual variation, 30% of eagle owls found a stable settlement 

area (i.e., shifted from the wandering to the stop phase of dispersal) in the middle of 

March (mean dispersal age of the stop phase (± SD) = 395 ± 109.86 days old, range = 

181–640 days old). The time between when a disperser finds a settlement area and 

becomes a breeder is very unpredictable in this species. We observed some 

dispersing owls that accidentally crossed an empty territory or that arrived close to 

an available mate halfway during the wandering route, settled and became breeders, 

when they were only 1 year old. On the other hand, and more commonly, other 

dispersers that encountered a stable settlement area and decided to settle remained 

there for several years without breeding.  

 Floaters during the wandering phase traveled significantly further (net 

distances) during the night than both floaters during the stop phase and territory 

owners (F2, 3 = 14.99, p < 0.0001; Table 1). As expected, individuals already 

established in a stable area (floaters in their settlement areas or territory owners) 

come back to a given roost site or area more frequently than did owls during the 

wandering phase, i.e., they traveled shorter (net distances) during the night. On the 

contrary to what was hypothesized for foraging areas, we did not detect any 

significant differences in the relative size of the foraging areas (F2, 3 = 2.06, p = 0.13) 

among the different life stages. However, the relative size of foraging areas gradually 

decreased (Table 1) from territory owners to the wandering phase of dispersal. The 

floaters in the stop phase showed an intermediate behavior between wandering and 

territorial owls.  
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Table 1. Estimates of focal movement parameters for both type of floaters (nwandering phase = 32; nstop phase = 
25) and territory owners (n = 9)  

  Juveniles(wandering phase;            Juveniles (stop phase;            Territory owners  

   mean ± SE)  mean ± SE)  (mean ± SE) 

Roost site (m)  1,396.54 ± 174.67  725.25 ± 67.21  762.86 ± 77.12  

Foraging areas (%) 0.12 ± 0.009  0.10 ± 0.007  0.09 ± 0.007 

Speed ( m/h)  874.98 ± 54.26  801.06 ± 35.82  641.75 ±37.07 

Fractal D                                    1.06±0.005                               1.08±0.005                                 1.09±0.006 

Path length (m)                       9,958.56±614.63                    9,248.99±395.25                      6,676.09±359.73 

Step length (m)                       608.16±21.78                          546.70±32.94                            456.68±23.42 

Roost site distance between the first and last owl locations of the night, foraging area proportion of the 
total home range 

  

There was a gradual change in response to spatial scale across the two phases of 

dispersal (Fig. 1). During the wandering phase of dispersal, owls moved with 

homogeneous movement paths, as shown by the continuous change in fractal D and 

the variance of fractal D with spatial scale and the non-positive values of correlation 

(Fig. 1). On the other hand, territory owners showed the most heterogeneous paths, 

with strong responses at different spatial scales (Fig. 1). This was shown by the drop 

in fractal D and variance at ~350 m and the crossing of the y-axis from positive to 

negative values by the correlation at ~300 m. These indicate two potential domains 

of scale for territory owners, suggesting that their movement paths differed 

qualitatively at scales of below 300 m and above 350 m. At scales below 300 m, the 

shape of the fractal D curve is similar to that of a correlated random walk, but at 

scales above 350 m, the shape is more similar to a directed walk (Nams 2006b); thus, 

perhaps, the owls traveled with more directed movement at larger scales. The owls in 

the stop phase showed intermediate responses to the wandering and territorial owls. 
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  Almost all variables describing motor skills experienced a gradual but 

significant transition from the beginning of dispersal to the acquisition of a territory. 

Wandering individuals with an incomplete information of the environment traveled 

faster (F2, 3 = 5.73, p = 0.0048; Table 1) with longer step lengths (F2, 3 = 7.90, p = 

0.0005; Table 1) and had the longest (F2, 3 = 12.09, p = 0.0001; Table 1) and 

straightest trajectories (F2, 3 = 6.51, p < 0.0021; Table 1). On the contrary, territory 

owners moved slower, with shorter and more tortuous movement paths. Floaters in 

the stop phase clearly represented a transition stage between wandering owls and 

territory owners, characterized by high traveling speed but quite shorter and more 

tortuous movement trajectories than floaters during the transition phase (Table 1).  

 

DISCUSSION 

Animals living in a changing world have to continuously reduce uncertainty by 

gathering information (Dall and Johnstone 2002). Our findings suggest that 

movement behavior experienced a transition from wandering exploratory strategies 

to a more specific use of spatial resources, when it is supposed that individuals 

increase the value of familiar space.  

 At the beginning of dispersal, when individuals frequently travel across 

unfamiliar (and sometimes unfavorable) areas, they have less time to become familiar 

with their surroundings. Uncertainty regarding location of conspecifics, predators, 

and resources may pose significant problems (Stamps 1995; Stamps and Krishnan 

1999; Dall et al. 2005). But the costs of uncertainty during dispersal may be reduced 

by becoming familiar with the spatial and social environment, e.g., searching actively 

for temporary, stable settlement areas. This phenomenon is evidenced by the 

observed changes in movement patterns shown by dispersing owls when they reach a 

settlement area. At that moment, although floaters never show territorial displays 

(Delgado and Penteriani, unpublished results), they do have a well-defined home 

range, as has been reported for the floaters of some bird species (e.g., Smith 1978; 
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Arcese 1989; Zack and Stutchbury 1992). However, our results highlight that the 

home range of floating birds is not a characteristic of the floating population from 

their beginning (i.e., when individuals start natal dispersal), but a consequence of the 

time they have spent as dispersing individuals.  

 The benefits of local familiarity have been generally linked with the increase 

in foraging efficiency, breeding performance, and survival (Pärt 1995). By learning 

the physical and social structures of their environment, floaters can remember the 

location and qualities of the resources they learn about (e.g., roost sites and foraging 

areas), attend to conflicting needs and sensory inputs, engage in social interaction, 

and balance all of these considerations. Even though we did not detect any significant 

differences in the relative size of the foraging areas among the different life stages, 

preferred foraging areas within the home ranges used by floaters during both the 

wandering and the stop phases of dispersal seemed to be less restricted than for 

territory owners. This could be interpreted as the result of individual adjustment 

responses of foraging behavior to local habitat structure (Fortin 2002). Since the vital 

ranges of floating owls are not defended (the floater social status does not include 

territorial disputes), a non-breeder has a higher mobility within its range, allowing it 

to displace among different hunting areas more easily than a breeder. Constrictions 

such as complex social organization and territoriality among neighbors could oblige 

territory owners to respect the limit of their hunting areas to avoid the high cost of 

intrusions in neighboring territories and consequent territorial contests.  

 We consider it important to underline here that the concepts of territory and 

home range involve pivotal differences that explain some of our results. Home ranges 

refer to areas: (a) over which an animal travels in its day-today activities to join the 

most focal elements for their survival; (b) which, due to the scattered distribution of 

resources, also include large portions of landscape that individuals are just passing 

through; and, consequently, (c) that are too large to be efficiently protected from 

intrusions (e.g., eagle owls are territorial only in a restricted portion of the home 

range; Delgado and Penteriani 2007). 
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Figure 1. Movement patterns of floating owls (during the wandering and the stop phases of natal 
dispersal) and territory owners, as represented by three statistics estimated at different spatial scales 
(more detailed information in the text): a fractal D, as a measure of path tortuosity; b variance, an index 
of variance in tortuosity among path segments; and c correlation, which measures correlation in fractal 
D between adjacent path segments. Dispersing owls showed homogeneous movement paths (i.e., 
defining a unique domain of scale), while territory owners showed two domains of scale (i.e., they were 
traveling with heterogeneous paths): below 300 m and above 350 m. Dotted lines represent 95% 
confidence intervals. 

 

On the other hand, territory refers to an exclusive portion of the whole home range 

that is defended to exclude other conspecifics (Maher and Lott 1995) and, 
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consequently, does not overlap with the home range of neighboring residents. These 

differences between home ranges and territories explain some of the different 

behaviors we observed. To improve the efficacy of territory acquisition and defense, 

territory owners exhibit a complex array of behavioral patterns, such as site-specific 

aggressiveness, the ability to discriminate neighbors from intruders, and contests 

involving complicated exchanges of communication signals (for more information, 

see also Penteriani et al. 2007). Floaters, who do not show such behavioral displays 

because they do not actively defend an exclusive area, can benefit from living in a 

restricted area through gaining knowledge of the habitat and establishing dominance 

relations with other floaters and territory owners (Smith 1978; Stutchbury 1991; 

Bruinzeel and van de Pol 2004).  

 The needs for territorial tasks (as well as reproductive ones) of territory 

owners could contribute to the slower movements of territory owners in comparison 

to floaters during dispersal. For example, territory owners spend large amounts of 

time calling on posts located close to the core areas of their home range, both for 

territorial demarcation and mate–mate communication (Delgado and Penteriani 

2007). This means long pauses of territory owners on strategic posts, which are not 

included in the time budget of floaters that mainly roost, hunt, and survey new areas 

(Delgado and Penteriani, unpublished data). 

  Differences in the speed of movement may also have generated the detected 

differences in the patterns of patch use between dispersers and territory owners, 

which in turn may also be reflecting differences in individual perceptive resolutions 

(With 1994). Animal perceptive resolution, which may integrate sensory perceptive 

abilities, physical constraints, and behavioral preference, is inversely related with the 

rate of movement. The ability of animals to perceive habitat heterogeneity at small 

scales decreases as speed increase, whereas the spatial extent at which they operate 

increases (Kolasa and Rollo 1991). Because floaters moved faster than territory 

owners, floaters perceive environmental patterns at a larger spatial scale, and as a 

consequence, dispersing owls show a large and unique domain of scale. On the other 
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hand, territory owners can operate at different and well-defined domains of scale, 

each one reflecting different aspects of their biology (e.g., foraging behavior, crossing 

home range, and reproduction). 

 Animal movement behavior can be classified into random and systematic 

strategies (Fortin 2002). In systematic movement strategies (such as the ones shown 

by owners and well-settled floaters), which only work when some a priori relevant 

information is available, the rules to optimally cover a given area are based on quite 

fixed and controlled plans. By contrast, in a random strategy (such as the one shown 

by wandering floaters), animals must attempt to move in order to optimize their 

chances of locating resources (i.e., food, mates, shelter, breeding habitats), the search 

rules rely on stochastic processes. Although it is not possible to completely neglect 

the existence of chance in nature, sensorial or cognitive improvements could override 

the need of random search in nature by, e.g., creating more and better sensory cues, 

improving high-level environmental information processing mechanisms, and 

synchronizing spatial variations of the abundances of resources. 

 Dispersal costs are many and might include the risk of starvation and other 

mortality (see Stamps et al. 2005 and reference therein). In general, animals 

dispersing through an inhospitable and unknown habitat should follow straighter 

paths, to better avoid redundant searches and to locate a patch as quickly as possible 

(Zollner and Lima 1999). Wiens et al. (1995) found that darkling beetles (Eleodes 

obsoleta) move in straighter paths through highrisk areas than they do through low-

risk ones. A variety of other organisms (Crist and MacMahon 1991; Madison 1997) 

follow straighter paths when displacing long distances through unknown habitats. 

When habitat features are known, as is the case for floaters during the stop phase and 

territory owners, individuals should be able to efficiently regulate their movements 

(Klaassen et al. 2006): owls in the stop phase adjusted the length and the tortuosity of 

their movements, showing movement patterns more similar to territory owners than 

wandering floaters. 
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 To conclude, while spatial familiarity is undoubtedly one of the multiple key 

factors in determining movement patterns, the patterns that we recorded can be also 

considered to be the result of diverse individual needs associated with different social 

status. That is, two non-mutually exclusive elements affect movement behavior: 

learning of the spatial environment that individuals move across and social status of 

the individuals (e.g., wandering floaters vs. breeders). 
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RESUMEN 

A pesar de que los estudios sobre el comportamiento relacionado con el uso del 
dominio vital de los animales hayan evolucionado exponencialmente en el campo 
teórico, analítico y tecnológico, la identificación de los factores responsables de dicho 
comportamiento sigue siendo todavía un campo de investigación con muchos 
desafíos y con preguntas sin contestar. Sin embargo, muy recientemente se ha creado 
un marco conceptual integrado para el estudio del comportamiento de uso del 
dominio vital de los animales, que considera este comportamiento como el resultado 
del efecto simultáneo de procesos temporales, espaciales e individuales con 
potenciales consecuencias a nivel de población. Utilizando un aproximación integral, 
estudiamos el efecto de factores externos e internos en la variación del 
comportamiento del uso del dominio vital de 34 reproductores de búhos real Bubo 
bubo. El comportamiento del uso del dominio vital se estudió a través de un análisis 
complementario del uso del espacio, patrones de movimiento y ritmos de actividad a 
distintas escalas espaciales y temporales. El efecto de las diferentes fases del ciclo 
biológico fue significativamente evidente en los patrones de movimiento, siendo los 
machos los individuos que se movían con mayores distancias durante los períodos de 
incubación y de pollo nidícola. Tanto los factores externos (es decir, la estructura y 
composición del hábitat) como los internos (es decir, el sexo y el estado de salud) 
juegan un papel importante en el comportamiento del uso del dominio vital. 
Ampliando la escala temporal, encontramos que el tamaño del dominio vital y de las 
aéreas de mayor actividad estaban negativamente correlacionadas con la 
heterogeneidad del paisaje. Además, los reproductores machos mostraron (a) un 
dominio vital y áreas de mayor actividad de tamaños más pequeños, (b) una 
estructura más compleja del interior del dominio vital y (c) una tasa de movimientos 
más elevada. Asimismo, individuos en mejor condición física presentaban una 
estructura más simple del interior del dominio vital. Por último, los efectos inter- e 
intra-individulales contribuyeron a explicar el comportamiento del uso del espacio y 
los patrones de movimiento durante el ciclo biológico. En un ambiente estable y 
homogéneo como el que hemos analizado, las diferencias de comportamiento entre 
individuos puede hacerse más evidente, representando uno de los factores cruciales 
en el patrón de comportamiento de los individuos de una misma población. 
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ABSTRACT 

Despite the fact that investigations of home range behaviour have exponentially 
evolved on theoretical, analytical and technological grounds, the factors that 
shape animal home range behaviour still represent an unsolved question and a 
challenging field of research. However, home range studies have recently begun 
to be approached under a new integrated conceptual framework, considering 
home range behaviour as the result of the simultaneous influences of temporal, 
spatial and individual-level processes, with potential consequences at the 
population level. Following an integrated approach, we studied the influence of 
both external and internal factors on variations in the home range behaviour of 
34 radiotagged eagle owl (Bubo bubo) breeders. Home range behaviour was 
characterised through complementary analysis of space use, movement 
patterns and rhythms of activity at multiple spatio-temporal scales. The effects 
of the different phases of the biological cycle became considerably evident at the 
level of movement patterns, with males travelling longer distances than females 
during incubation and nestling periods. Both external (i.e., habitat structure and 
composition) and internal (i.e., sex and health state) factors explained a 
substantial amount of the variation in home range behaviour. At the broader 
temporal scale, home range and core area size were negatively correlated with 
landscape heterogeneity. Breeding males showed (a) smaller home range and 
core area sizes, (b) more complex home range internal structure and (c) higher 
rates of movement. The better the physiological condition of the individuals 
was, the simpler the internal home range structure. Finally, inter- and intra-
individual effects contributed to shaping space use and movement patterns 
during the biological cycle. Because of the plurality of behavioural and 
ecological processes simultaneously involved in home range behaviour, we 
claim that an integrative approach is required for adequate investigation of its 
temporal and spatial variation.  
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From early observations regarding the fundamental characteristics of animal 

movement within a limited space (“…most animals and plants keep to their proper 

home” Darwin 1861) to the advent of sophisticated telemetry technology, such as GPS 

devices (Cagnacci et al. 2010), for tracking animal movements in challenging 

environments and conditions, the study of home range behaviour has exponentially 

evolved on theoretical, analytical and technological grounds, which have now 

diverged into separate lines of research (Börger et al. 2008; Kie et al. 2010; Smouse et 

al. 2010). However, the factors that shape animal home range behaviour (i.e., 

restricted movements in finite areas) still represent an unsolved question and a 

challenging field of research (Hays 2008). Home range behaviour is comprised of 

complex and dynamic patterns of space use resulting from routine activities 

associated with basic aspects of species life-histories (Börger et al. 2006). While the 

intrinsic complexity of home range behaviour and its consequential spatial 

expression (i.e., home range patterns) could be the result of potential influences of 

both internal (e.g., body condition, reproductive status) and external (e.g., landscape 

structure and composition, food availability) factors, the dynamic nature of home 

range behaviour may be the consequence of temporal changes of internal and 

external factors during an individual’s lifetime (Börger et al. 2008). Specifically, 

changes in the internal state of individuals may determine the specific time allocated 

to different behaviours (e.g., food acquisition, predator avoidance and landscape 

exploration), thus affecting the properties of the resultant home range patterns. 

Accordingly, the time allocated to different behaviours may have relevant 

consequences at both the individual and population levels through modulating 

survival, reproduction and, as an end result, population dynamics (Morales et al. 

2010).    

 Recently, home range behaviour has begun to be approached from a new 

perspective intended to redirect previous disconnected areas of knowledge to an 

integrated conceptual framework that recognises home range behaviour as the result 

of the simultaneous influences of temporal, spatial and individual-level processes 
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(Börger et al. 2006; Börger et al. 2008; Horne et al. 2008; Indermaur et al. 2009; van 

Beest et al. 2011). This integrative approach is particularly needed when considering 

that different home range patterns can emerge from multiple spatio-temporal scales 

(e.g., McLoughlin and Ferguson 2000; Anderson et al. 2005; van Beest et al. 2011). 

Following this integrated approach, we investigated here the influence of both 

external and internal factors on the variations of home range behaviour in a long-

lived, territorial (i.e., the same home range is expected to be occupied over many 

years) nocturnal raptor, the eagle owl (Bubo bubo), during different phases of its 

biological cycle and at different spatial scales. We expected to detect the concurrent 

action of three main factors. Firstly, the effect of the individual changing needs during 

different periods of the year. Because each period of the biological cycle entails 

specific tasks (e.g., territorial and sexual displays, feeding of young), the home range 

behaviour is expected to change over the year. Secondly, the physical characteristics 

of the nest site surroundings. Because the structure and composition of the home 

range environment and the availability of the main trophic resources have been 

shown to represent some of the key factors determining differences in owner’s 

behaviours (Saïd et al. 2009; Rivrud et al. 2010), it is also to be expected that 

individuals inhabiting areas characterised by different environmental conditions 

should show different behaviours and home range structures. Finally, the 

characteristics of the home range owners. If variations in home range behaviours are 

not only based on external factors but also on the intrinsic characteristics of the 

breeders (i.e., their sex and physiological condition), then we should expect that 

behaviours and home range features will also be influenced by individual 

heterogeneity. Shifting from a more general to a species-specific perspective, we may 

also expect that (a) males should present higher activity rates than females because 

they perform most of the territorial displays and that the home ranges and core areas 

of males should increase during the incubation and nestling periods, when males 

have to find food for both females and chicks, and successively decrease during the 

post-fledging dependence period, when breeders frequently follow fledglings during 

their relatively short displacements around the nest (Delgado et al. 2009); (b) habitat 
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heterogeneity and high food availability should decrease both home range sizes and 

daily movements; and (c) because of their extremely territorial behaviour, males 

should exhibit smaller home ranges than females, as females are allowed to intrude 

into the territories of neighbouring pairs with less conflict (Penteriani et al. 2007a). 

 

MATERIALS AND METHODS 

Data collection 

This study was conducted in a hilly area of the Sierra Norte of Seville (Sierra Morena 

massif) located in south-western Spain. From 2004 to 2010, 34 breeding individuals 

(24 males and 10 females) from 24 nests were radiotracked. Each individual was 

fitted with a 30-g radio-transmitter using a Teflon ribbon backpack harness (Biotrack 

Ltd, Wareham BH20 5AJ, Dorset, UK; www.biotrack.co.uk). The mass of the backpack 

was less than 3% of the mass of the smallest adult male (1550 g) in our population 

(mean ± SE = 1667 ± 105 g). The transmitters included a mercury posture sensor that 

allowed us to record individual activity (roosting vs. movement) through changes in 

the frequency of the signal (Penteriani et al. 2008). We trapped breeding individuals 

using two methods: (a) simulating an intrusion with a taxidermic mount and 

playback of a male call (see Penteriani et al. 2010 for more details), during which a 

net behind the mount caught responding individuals that only included males 

because this is the sex that generally engages in aggressive interactions towards 

intruders (Penteriani et al. 2007a); and (b) using a bow-net (Northwoods Limited, 

Inc., Rainier, Washington) placed in the nest when nestlings were 20–35 d old (i.e., 

when they were already able to thermoregulate). Specifically, nestlings were moved 

to a box with a metal grid, making them visible to their parents, which were caught 

when they returned to the nest. After each bow-net trapping session (which lasted 

from sunset to sunrise), we fed the nestlings and released them into the nest. The 

individual manipulation was always safe: during 7 years of trapping and continuous 
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radiotracking of breeders (and >100 dispersing individuals), we never recorded a 

potential adverse effect of the backpacks on bird survival or on breeding 

performance.  

 We followed territory holders individually throughout the night (from 1 hour 

before sunset to 1 hour after sunrise; total time duration = 3333 hours) during 296 

continuous radiotracking sessions (mean number of radiotracking session per owl ± 

SD = 10 ± 6). We recorded a new location (total number of locations = 5298) each 

time we detected a change in the position of the focal individual (for more detail on 

movement detections, see Penteriani et al. 2008; mean number of locations per 

radiotracking session ± SD = 17.2 ± 5.2). Therefore, the number of recorded locations 

represented the effective number of movements for an individual during each night. 

The continuous radiotracking sessions (mean time duration of a radiotracking 

session ± SD = 11.3 ± 1.8 hr) were performed year-round in an attempt to obtain an 

homogenous dataset over the different phases of the owl’s biological cycle until either 

the individual died or the battery of the transmitter ran out (lifespan of transmitters 

from ~1.5 to ~2.5 years). The locations of radiotagged individuals were determined 

by triangulations using three-element hand-held Yagi antennae (Biotrack) with Stabo 

(XR-100) portable ICOM receivers (IC-R20). Triangulations were generally performed 

within a small range of distances of the focal owl (100–300 m), with an accuracy of 

83.5 ± 49.5 m (mean ± SE) (Penteriani and Delgado 2008a). This value was estimated 

in cases when, after a fix, we needed to locate an individual to manipulate it during 

field experiments (Penteriani et al. 2007b) or to record the cause of mortality when 

the individual died. The tracking did not appear to affect the behaviour of the owls, 

which generally appeared to ignore the observer (Delgado et al. 2009a).  
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Characterising home range behaviour 

Space use   

Space use was studied at two different temporal scales. First, the seasonal scale relies 

on the biological cycle of the species, i.e., the pre-laying (September to mid-January, 

period 1), incubation (mid-January to mid-March, period 2), nestling (mid-March to 

early April, period 3) and fledgling/post-fledging dependence (F/PFD) (early-April to 

August, period 4; see: Delgado and Penteriani 2007) periods. Second, the overall scale 

encompassed the entire period during which we were able to follow an individual 

(mean number of months during which each radiotagged owl was followed ± SD = 15 

± 8; range = 5-33). That is, this scale is not linked to the biological cycle and it has 

been only used to describe general patterns (i.e. global home range and core area 

sizes, core area-nest distance). 

 Working at two different spatial scales (home range and core area), we 

quantified the space use of tagged individuals using 4 descriptors. We first estimated 

(1) home range size through fixed-kernel methods (Worton 1989) using the Animal 

Movement Extension for ArcView 3.2 (Hooge and Eichenlaub 2000). We calculated 

the 50% and 90% fixed kernels using the least squares cross validation (LSCV) 

procedure (Silverman 1986) to determine the optimal value of the smoothing 

parameter for a given kernel and sample size (Seaman et al. 1999). The LSCV process 

generates the best value of the smoothing parameter for multimodal data with 

respect to the other methods (Silverman 1986; Worton 1989; Seaman and Powell 

1996). We chose the 50% kernel to represent the core areas after a detailed 

exploratory analysis because it allows (i) including a sufficient number of locations 

and (ii) comparisons with similar studies. To establish home range boundaries, we 

preferred to use density isopleth values of 90% because this value fitted better with 

our data, giving more accurate estimates when analysing more than 30 relocations. In 

fact, when visually exploring both 90 and 95% isopleths, the density isopleth values 

of 95% over-estimated the areas crossed by tagged individuals. We used all data 



Home range behaviour
 

 
 

- 131 - 
 

available for each individual, focusing more on the biological process that shaped 

home range internal structure (De Solla et al. 1999) than on obtaining statistical 

independence of the relocations. This was possible because we followed each focal 

owl during the entire period of its nocturnal activity, thus recording its entire set of 

movements. Finally, because individual variation in the number of relocations may 

potentially contribute to variability in estimates of space use (Kernohan et al. 2001), 

we regressed the number of relocations with home range size, but no relationships 

were found (r2 = 0.008; F1,25 = 0.19; P = 0.67). 

 Second, with the aim of characterising the internal structure of each home 

range, we estimated (2) the size of core area(s), i.e., the areas most frequently used 

within the home range. Because it was not always possible to distinguish between the 

core area of the nest and the core area(s) where individuals repeatedly hunted every 

night, in the present study, core area(s) represented both nesting and hunting areas. 

Again, when regressing the number of relocations with core area size, we did not find 

any relationship (r2 = 0.008; F1,25 = 0.81 ; P = 0.38). We also estimated (3) the number 

of core areas per home range as a measure of the amount of most frequently visited 

sites; and (4) the distance between the exact location of the nest and the geometrical 

centre of each core area.  

 

Movement patterns  

Individual nightly movement behaviour was characterised by five variables: (1) total 

distance, as the sum of the distance between successive steps of the nightly 

displacements; (2) step length, as the distance between successive locations; (3) 

speed, as the step length divided by the time interval between successive locations; 

(4) turning angle between successive movements; and (5) time step, as the time 

elapsed between successive moves. The movement variables were analysed at two 
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different spatial scales, home range and core area, and two temporal scales, overall 

and seasonal.     

 

Rhythms of activity  

The nocturnal activity of tagged owls was estimated using two indices: (1) core area 

activity, i.e., the % of time an owl spent inside the core area(s); and (2) individual 

movement rates, calculated as the movement frequencies (i) per night and (ii) within 

the core areas. Core area activity is a measure of the time devoted to main activities, 

such as hunting, feeding (including nestling/fledgling feeding and female feeding 

during breeding if the focal owl was a male) and territorial defence. Because night 

lengths vary year round, we standardised the core area activities and movement rates 

per night by dividing them by the total time the owl was active each night; movement 

rates within core areas were standardised to account for the total amount of 

movements performed by the focal owl per night. 

 

Laying dates and breeding success 

During the entire study period, for each of the 24 nests where we trapped breeders, 

we recorded (1) the egg laying date and (2) the number of fledglings. Egg laying dates 

were determined by estimating the age of nestlings following Penteriani et al. (2005) 

and assuming 33 days of incubation. Both the egg laying date and number of 

fledglings were used as response variables to detect potential effects of home range 

behaviour and internal and external factors on breeding phenology and success.  

 

Individual characteristics and internal state 

We correlated space use, movement patterns, rhythms of activity and breeding 

success with three characteristics of an individual: (1) sex, determined by molecular 
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procedures using DNA extracted from blood (Griffiths et al. 1998); (2) age, estimated 

based on the moult pattern of the feathers (Martínez et al. 2002); and (3) haematocrit 

(HT), as an indicator of physiological condition. HT has been widely used as an 

indicator of nutritional status because nutritional deficiencies result in anaemia due 

to shortages in essential amino acids (e.g., Costa and Macedo 2006). To obtain HT 

values, blood samples were collected and stored in tubes with heparin at 4° C until 

arrival at the laboratory, where they where centrifuged for 10 min at 4000 rpm. 

 

External factors  

To determine the possible influence of external factors on home range behaviour and 

breeding success, we estimated three variables (detailed in the following Eagle owl 

diet and rabbit census and Landscape characteristics of home ranges and core areas): 

(1) as diet analyses showed that the rabbit Oryctolagus cuniculus (Linnaeus, 1758) is 

the main prey of our eagle owl population (mean biomass percentage of rabbit in the 

diet = 62.0 ± 19.1%, range = 16-94%) and given the distribution overlap of both 

species (Delibes-Mateos et al. 2007), we considered rabbit abundance within the 

home ranges of tagged individuals as an indicator of habitat quality (González et al. 

2008); (2) the contribution of rabbits (% of biomass) to the diet of breeders; and (3) 

landscape characteristics of home ranges and core areas.  

 

Eagle owl diet and rabbit census 

The diet of eagle owls was determined by analysing prey remains and pellets 

collected from 2003 to 2008 during visits to nests and roosting and feeding perches 

in 24 nest sites. Following Lourenço (2006), we identified 4203 prey items using 

identification keys for bones and feathers and comparisons with a reference 

collection (Laboratory of Archaeo-sciences, IGESPAR, Portugal), followed by 

determining the minimum number of individuals. When possible, prey items were 
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identified to the species taxonomic level. We calculated the biomass percentage for 

each prey species using its mean weight value from bibliographic references or bone 

measurements to estimate the weight of each individual (Cramp and Simmons 1977–

1994; Donázar and Ceballos 1989; MacDonald and Barret 1993). 

 The relative rabbit abundance was estimated in the 24 breeding areas using 

rabbit faecal pellet counts (i.e., latrine counts). Latrine counts have been previously 

used as an index to estimate rabbit abundance (Palma, Beja and Rodrigues 1999) and 

are a good indirect estimator of rabbit abundance in large-scale studies (Palomares 

2001a, b; Fernández 2005). The census was conducted in 2009 from the beginning of 

March to the beginning of May. This period corresponds to the nestling and F/PFD 

phases of eagle owls, when it is expected that parents exhibit the highest hunting 

effort. To obtain comparable indices of prey abundance (IKA) for each territory and 

around each nest, we drew a circular plot with an area equal to the mean eagle owl 

home range size in our study population, which was calculated using the Minimum 

Convex Polygon method (MPC, Hayne 1949). Inside these plots, we walked 2.2-km-

long transect lines, recording the number of latrines found on both sides of each 

transect within a 4 m width. Latrine counts were always performed by the same 

observers (walking at the speed of 1 kmh-1), and the IKA was expressed as the 

number of latrines per km of transect; the total length of transects walked was 150 

km, in which we counted 3440 latrines (mean ± SE: 20.6 ± 12.4 km-1, range: 7.7- 46.0 

km-1). Rabbit density over the years can be considered relatively stable in our study 

area: rabbit management and frequent releases inside our study area have created 

extremely favourable and steady trophic conditions (Penteriani and Delgado, 

unpublished data). 

 

Landscape characteristics of home ranges and core areas 

We measured landscape characteristics by intersecting a digital layer representing 

the boundaries of the owl’s home ranges and core areas with a map of landcover 
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elements (scale 1:25.000, Junta de Andalucia, Consejería de Medio Ambiente, 2003). 

Landscape composition was analysed at the two spatial scales previously used in the 

analyses of home range behaviour. Following Aebischer et al. (1993), with the aim of 

selecting only those habitat types that were most relevant for eagle owls, we (a) first 

performed a compositional analysis to test owl habitat selection and then (b) 

classified the landscape at the two different spatial scales. At the fine-grained spatial 

scale of analysis (i.e., the core area), landscape composition was represented by 10 

landcover types: urban areas, water bodies, forests, dense scrublands with trees, 

sparse scrub with trees, herbaceous vegetation with trees, scrublands, low 

vegetation, woody crops and herbaceous. For the coarse-grained scale (i.e., the home 

range), landscape composition was simplified into 6 categories: urban /crops areas, 

water bodies, dense vegetation (forest and dense scrubs with trees), sparse scrub 

with trees, herbaceous areas with and without trees, and scrublands. These habitat 

types were then employed to model the variation in individual home range 

behaviour. Additionally, we used edge density (i.e., the total length of the patch edge 

per unit area within each landscape; Elkie et al. 1999) as a proxy for the effect of 

habitat heterogeneity (Donovan et al. 1995; Kie et al. 2002; Anderson et al. 2005). 

The GIS application ArcView 3.2 and its extension Patch Analyst (Elkie et al. 1999) 

were used for the analyses of landscape characteristics.  

 

Data analysis 

We constructed a set of a priori competing models starting from the simplest null 

model (intercept only model) to a full model that included all of the explanatory 

variables (see Tables S1-S4 in Online Resource for fitted variables).   

 First, we conducted a graphical analysis for the entire set of explanatory 

variables and checked for correlations (Spearman’s rank correlation) among 

predictors, excluding variables with rs ≥ 0.6. For each analysis, we used different 

subsamples, represented by those owls for which it was possible to obtain the 
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required information. Thus, in each analysis, the type and number of explanatory 

variables were selected on the basis of their biological relevance, our interest and 

sample sizes. Because we had repeated measures for the same individual within and 

between years, we included individual identity (ID), together with nest site nested in 

year as first-, second- and third-level random effects, respectively. Following Pinheiro 

and Bates (2004), the significance values of random effects were estimated using the 

Akaike information criterion (AIC). When random factors did not improve the 

model’s likelihood value, we built a less complex model class. The models were 

checked for unequal variance structures of the within-group errors by investigating 

relevant model diagnostic plots (plots of residuals vs. fitted values for the relevant 

model and variable; Pinheiro and Bates 2004) and by comparing models with and 

without different variance functions using the AIC. If selected, following Pinheiro et al. 

(2009), we implemented variance functions in the models. We also checked for any 

remaining dependencies among the within-group errors after the fixed and random 

effects were fitted. If present, these were modelled using correlation structures. The 

spatial autocorrelation between home ranges and core areas was corrected using the 

mean coordinates of each home range and core area, while movement variables were 

corrected using the spatial coordinates of each fix (UTM coordinates). In all cases, 

different correlation structures were specified, and if necessary, the most appropriate 

was selected by comparing the AIC values of the fitted models (see Pinheiro and Bates 

2004). Detection of the most parsimonious hypothesis was based on (a) model 

selection procedures using the AIC, which allows the comparing of multiple working 

hypotheses and weighting their level of support in the data; or (b) a second order AIC 

derivation, the AICc, which is appropriate when the ratio of the sample size to the 

number of parameters is less than 40 (Burnham and Anderson 2002). Two AIC 

statistics were also calculated for each model: ΔAIC and AICw, which indicate the 

probability that the model selected is the best among the different candidates. Values 

of ΔAIC ≤ 2 were used as the criterion for selecting the best models, i.e., those with 

substantial support from the data (Burnham and Anderson 2002). For simple linear 

models (LMs), we also reported r2 values. For models including random terms, we 
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presented (a) the intraclass correlation coefficient (hereafter ICC, see Zuur et al. 

2009), which is a measure of the correlation between observations from the same 

group (i.e., owl ID) and is expressed as ICC = d2/d2 + σ2, where d2 is the covariance 

between any two observations for the same individual and its variance is d2 + σ2 ; and 

(b) a generalised R2 for random effect, which provides information about the amount 

of variation in the data explained by the random effect (i.e., between-individual 

variation). This parameter was calculated as the squared correlation between the 

fitted values of the model and the observed values in the data (Zheng and Agresti 

2000). Sex was a relevant factor in almost all analyses, but the small sample size of 

some subsamples did not allow the testing for interactions; therefore, we divided the 

database into two different subsets: one for males and one for females. Because 

females rest motionless in the nest during most of the incubation period, no data 

were available to make inter-gender comparisons in this period. Values are given as 

the mean ± SD and range. All analyses were performed using the R software package 

(R Development Core Team 2009). The following specific R functions were 

performed: (i) adehabitat 1·8·3, for compositional analysis (Calenge 2006); (ii) nlme 

3.1-92 (Pinheiro et al. 2009), for linear multilevel mixed-effects models (LMMs), as 

described by Pinheiro and Bates (2004); and (iii) the lme4 0.999375-28 package for 

GLMM (Bates and Sarkal 2007) and multcomp (Hothorn et al. 2009) for multiple 

comparisons. 

 

Post-hoc test for seasonal effects 

To obtain additional insights regarding seasonal variations in the owls’ space use, 

movement patterns and rhythms of activity, we used Simultaneous Tests for General 

Linear Hypotheses, in which multiple comparisons of means were performed using 

the Tukey Contrasts method (Hothorn et al. 2009). This type of post-hoc test allows 

for the detecting of differences among all factor levels: in our case, there were four 
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factor levels corresponding to the different phases of the eagle owl biological cycle. 

Differences among levels were considered significant at P < 0.05.  

 

Characterising home range behaviour 

Space use 

Depending on the nature of the response variables and the presence or absence of 

random effects, we fitted a suite of different models: (a) LMs, for log-transformed 

home range size, core area size and core area-nest distance at the overall timescale; 

(b) LMMs, for the same log-transformed response variables cited above (but at the 

seasonal timescale), including individual identity (i.e., owl ID) as a random effect; and 

(c) general linear models (GLMs) for the number of core areas at the overall and 

seasonal timescales. Because the number of core areas could be 1 or >1, this response 

variable was modelled using a binomial distribution (0 = >1 core area; 1 = 1 core 

area).  

 

Movement patterns 

Some variables describing movement patterns (total distance, step length, time step 

and speed) were log+1-transformed and modelled using LMMs at both the home 

range and core area spatial scales. We always included individual identity as a 

random effect at the home range spatial scale when fitting the LMMs. Additionally, 

temporal autocorrelation (using the corExp function in the R library nlme) was 

included when fitting the step length and speed models, while a variance structure 

(using the varPower function with the year as a covariate) was used to model the 

time step. Turning angles were simplified into an index of 1 for positive and 0 for 

negative angle cosine values (forward and backward movements, respectively) and 

modelled using a GLM with a binomial distribution. At the core area spatial scale, the 



Home range behaviour
 

 
 

- 139 - 
 

entire models included individual identity as a random effect, and the time step and 

speed models also included year, as a second-level random effects. A temporal 

autocorrelation (using the corExp function) was fitted to improve the step length, 

time step and speed models. Finally, at this spatial scale, turning angle was modelled 

using a GLMM.  

 

Rhythms of activity     

While at the core area spatial scale, core area activity was log+1 transformed and 

modelled together with movement rate using LMs; at the home range scale, 

movement rate was log+1-transformed and modelled using an LMM, in which year 

was specified as a random effect.  

 

Laying dates and breeding success 

For laying date, we fitted a LMM that included individual identity and nest site as 

first- and second-level nested random effects. Similarly, the mean number of 

fledglings was modelled using LM (see Table S4 in Online Resource).  
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RESULTS 

Characterising home range behaviour 

Space use  

The home ranges of females were larger and showed higher inter-individual variation 

than the home ranges of males (Table 1); the size of core areas for females was also 

larger than for males, although the variation in core area size was consistently similar 

between sexes (Table 1). The size variations of home range and core areas at the 

overall timescale (Table 1 and Fig. 1) were explained by two models that included the 

same factors, i.e. edge density (home range model estimates ± SE = -0.006 ± 0.003; 

core area = -0.007 ± 0.002) and sex (home range model estimates ± SE = -0.596 ± 

0.299; core area = -0.333 ± 0.373); a second competing model for core area only 

included edge density as the unique explanatory variable (Table S1 in Online 

Resource; Fig. 2). That is, an increase in the amount of edge density, which is a proxy 

of habitat heterogeneity, at both spatial scales resulted in a decrease of the home 

range and core area sizes (Table S1 in Online Resource).  

 With respect to home range and core area size variations at the seasonal 

timescale (Table S1 in Online Resource), no single model was strongly supported as 

approximating home range and core area variations (Table 1 and Fig. 3). Additionally, 

an ICC value (for the owl ID random term) of 0.63 supported this consistency in home 

range size during each period of the biological cycle. Although in the core area 

analysis, the model that included sex as a predictor ranked as the second best model, 

the set of the most supported models included the null model, and thus, it was not 

possible to distinguish the most plausible model. In summary, our seasonal analyses 

did not find relevant differences in home range behaviour between sexes or among 

the four periods of the owl biological cycle. This result was confirmed by post hoc 

analysis (always P > 0.05). Conversely, we observed high between-individual 

variation in home range size, as shown by the R2 value for the random term of 0.71 

(Table S1 in Online Resource).  
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 When analysing the internal structure of the home ranges at the overall 

timescale (Table S1 in Online Resource), we first found that the better the 

physiological condition of the individuals was (i.e., the higher the HT values; 50.28 ± 

1.52 %), the simpler the internal structure of their home range, i.e., closer to the nest 

(model estimate ± SE = -0.053 ± 0.018) and a smaller number of core areas (model 

estimate ± SE = 0.207 ± 0.111). Additionally, males exhibited a slightly greater 

number of core areas than females (Table 1); the core areas of males were located at 

greater distances from the nest than those of females (Table 1).  

 Regarding our analysis of the internal structure of the home ranges at the 

seasonal scale (Table S1 in Online Resource), the owls did not show any variation in 

the internal structure of their home ranges among different phases (Table 1). Finally, 

none of the models was supported regarding core area-nest distances at the seasonal 

timescale (Table 1 and Table S1 in Online Resource). 

 

Movement patterns 

At the home range spatial scale, the period of the biological cycle affected both total 

distance (intercept + period1 model estimate ± SE = 8.757 ± 0.060; period2 = 0.228 ± 

0.078; period3 = 0.134 ± 0.099; period4 = -0.121 ± 0.060) and step length (intercept + 

period1 model estimate ± SE = 5.661 ± 0.050; period2 = 0.191 ± 0.048; period3 = 

0.086 ± 0.064; period4 = 0.016 ± 0.039; Table 1, Table S2 in Online Resource and Fig. 

2). Again, as was found for home range and core area size variations at the seasonal 

timescale, the between-individual variation (R2 = 0.25) and consistency (ICC = 0.21) 

regarding total distance were considerable. Individuals travelled longer distances 

during incubation and nestling periods than during pre-laying and F/PFD periods 

(Table 1). Differences in speed could not be discerned because the intercept only 

model was included as the best supported model. Finally, the best models for turning 

angle and time step (Table 1) included the combination of two vegetation types 

(turning angle: dense vegetation model estimate ± SE = 0.004 ± 0.001; sparse scrub: 



Home range behaviour
 

 
 

- 142 - 
 

0.004 ± 0.002) and age (model estimate ± SE = 0.082 ± 0.021), respectively (Table 1 

and Table S2 in Online Resource).  

 At the finer core area spatial scale, speed and turning angle were not related 

to any of the considered external or internal factors (Table 1). Similarly, despite the 

fact that step length and time step were sex-dependent, with females travelling in 

shorter steps at longer time intervals than males (Table 1 and Table S2), the null 

models always ranked as the most parsimonious for all analyses. Moreover, we 

observed high intra-individual consistency in speed (ICC values for owl ID = 0.94) and 

step length (ICC = 0.35), with a moderate percentage of variance (R2 = 0.21) explained 

by owl ID for step length (Table S2 in Online Resource). Post hoc analysis, at both the 

home range and core area spatial scales, showed that males and females presented 

similar movement behaviour at the seasonal scale (P > 0.05 for all periods). 

 

Rhythms of activity  

The activity patterns of eagle owls (n = 11 males, n = 6 females; number of 

radiotracking nights = 259) were quite constant year round and did not show any 

clear differences between periods. Movement rate at the home range spatial scale 

(0.0276 ± 0.0004 number of movements night length-1, n = 256) was not influenced 

by any external factor. However, we found differences between sexes, with males 

(model estimate ± SE = 0.005 ± 0.001) moving at higher rates than females (model 

estimate ± SE = 0.023 ± 0.001; Table 1 and Table S3 in Online Resource, Fig. 2). At the 

core area spatial scale, the models that included edge density were always the best 

supported for explaining variation in the owls’ movement (edge density model 

estimate ± SE = -0.0005 ± 0.0003) and activity rates (edge density model estimate ± 

SE = -0.0004 ± 0.0002; Table S3 in Online Resource), with individuals showing higher 

movement and activity rates when the density of edges decreased.  
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Table1.     Space use       
  

Rhythms of Activity      
 

Scale   
 Home range Core area   Home range   Core area   

     
  

 
 

 
Home range  Core area  Core area Nest-core area  

  
Movement  

 
Movement  Activityc   

 
 

 
size (ha) size (ha) number distance (m) 

  
rateᵃ 

 
rateᵇ 

 
  

             
  

Overall  
           

  
  

 
Male 187.1 ± 28.8  34.1± 6.8  1.5± 0.2 486 ± 64.4 

  
0.028 ± 0.001  

 
0.27 ± 0.01 0.38 ± 0.02   

  
  

283.7-548.4 4.4-104.4 1-3 76-869 
  

0.011-0.042 
 

0-1 0-1   
  

  
20 19 19 19 

  
216 

 
176 220   

  
            

  
  

 
Female 309.7 ± 85.4 56.3 ± 18.5  1.2 ± 0.2 287 ± 99.6 

  
0.025 ± 0.001 

 
0.35 ± 0.05 0.35 ± 0.05   

  
  

121.3-695.0 12.3-123.4 1-3 140-731 
  

0.014-10.042 
 

0-1 0-1   
  

  
7 7 7 6 

  
40 

 
29 40   

  
            

  
  

 
All 218.9 ± 30.8 40.1 ± 6.9 1.4 ± 0.1 438.2 ± 55.5 

  
0.028 ± 0.0004 

 
0.29 ± 0.01 0.37 ± 0.02   

 
  

283.7-695.0 4.4-123.4 1-3 76-869 
  

0.011-0.047 
 

0-1 0-1   

   
27 26 26 25 

  
256 

 
205 260   

Seasonal  
           

  
Pre-laying 

 
All 149.0 ± 17.7 26.8 ± 3.9 1.6 ± 0.2 485.7 ± 80.7 

  
0.026 ± 0.001 

 
0.28 ± 0.03 0.42 ± 0.03   

  
  

23.1-324.1 3.6-589.7 1-3 137-1504 
  

0.013-0.046 
 

0-1 0-1   
  

  
21 21 21 21 

  
81 

 
68 75   

Incubation 
 

male 156.7 ± 25.3 32.7 ± 6.4 1.3 ± 0.2 522.1 ± 132.4 
  

0.028 ± 0.001 
 

0.30 ± 0.03 0.45 ± 0.04   
  

  
28.4-340.1 41.0-760.3 1-3 48-1720 

  
0.018-0.044 

 
0-1 0-1   

  
  

15 14 16 15 
  

44 
 

37 41   
Nestling 

 
All 136.3 ± 23.3 21.6 ± 5.3 1.9 ± 0.4 509.9 ± 109.6  

  
0.029 ± 0.001 

 
0.30 ± 0.06 0.44 ± 0.07   

  
  

57.9-225.0 53.290-462.6 1-3 201-967 
  

0.017-10.047 
 

0-1 0-1   
  

  
8 8 8 8 

  
21 

 
15 17   

F/PFD 
 

All 218.0 ± 5.4 36.3 ± 6.3 1.6 ± 0.2 504.4 ± 68.7  
  

0.028 ± 0.001 
 

0.30 ± 0.02  0.39 ± 0.03   

   
 

39.4-570-0 52.2-940.2 1-3 80-1140 
  

0.011-0.047 
 

0-1 0-1   

 
  

 
20 20 22 20 

  
114 

 
85 103   
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Movement patterns                  
 

Scale   Home range scale     core area scale   
  

  
      

 
      

   
total distance  step length speed  time step cos (turning  

 
step length speed  time step cos (turning    

   
(m) (m) (m/min) (min) angle) 

 
(m) (m/min) (min) angle)   

Overall 
            

  
  

 
Male 6881 ± 203.3 414.5 ± 5.6 32.3± 1.1   33.5 ± 0.51 0.03± 0.01 

 
244.1 ± 7.2  18.5 ± 1.4 33.3 ± 1.3 0.02 ± 0.02   

  
  

1543-16190 3.2-2844 0.001-1199 1-217 -1-1 
 

4-2096 0.001-403.8 1-195 -1-1   
  

  
231 4062 4067 4066 4068 

 
823 800 797 760   

  
 

Female 6713 ± 489.8 437.8 ± 15.3 36.8 ± 3.7 36.8 ± 1.38 0.03 ± 0.03 
 

220.1 ± 16.5 21.7 ± 4.3 42.1 ± 2.4 0.01 ± 0.05   
  

  
1152-14350 14.1-2843 0.07-1254 1-213 -1-1 

 
14-2075 0.07-397.9 1-195 -1-1   

  
  

46 705 690 689 689 
 

184 175 181 177   
  

 
All 6322 ± 187.4 418.0 ± 5.2   33.0 ± 1.1  34.0 ± 0.5 0.03± 0.01 

 
224.5 ± 6.64 19.0 ± 1.4 34.9 ± 1.1 0.02 ± 0.02   

   
 

1701-16190 3.2-28440 0.001-1254.0 1-217 -1-1 
 

4-2096 0.001-403.8 1-195 -1-1   

 
  

 
277 4767 4757 4756 4757 

 
1007 975 978 973   

Seasonal 
            

  
Pre-laying 

 
All 6912 ± 320.4 396.2 ± 8.1 31.9 ± 1.71 36.35 ± 0.89 0.03 ± 0.01  

 
231.0 ± 10.7 21.8 ± 2.8 36.7 ± 2.0 0.01 ± 0.04   

  
  

1701-16190 3.2-2317.0 0.001-1254 1-213 -1-1 
 

4-1628 0.001-403.8 1-178 -1-1   
  

  
88 1632 1632 1651 1631 

 
355 349 350 331   

Incubation 
 

male 8573 ± 514.5 469.0 ± 13.4 31.6 ± 1.79 33.82 ± 1.12 0.03 ± 0.02 
 

246.2 ± 18.1 16.1 ± 1.9 35.6 ± 2.6 0.07 ± 0.05   
  

  
2983-15680 6.6-2844.0 0.001-845.6 1-213 -1-1 

 
4-2096 0.07-201.4 1-195 -1-1   

  
  

43 865 864 866 868 
 

185 179 181 179   
Nestling 

 
All 7077± 489.7 402.7 ± 15.9 21.9 ± 1.41 33.17 ± 1.37 0.04 ± 0.03 

 
241.1 ± 23.5 20.2 ± 6.0 32.2 ± 2.7 0.04 ± 0.07   

  
  

3637-13500 4.5-2310.0 0.001-605.2 1-157 -1-1 
 

4-1174 0.11-397.9 1-103 -1-1   
  

  
23 408 405 391 409 

 
88 84 84 79   

F/PFD 
 

All 6168 ± 275.2 416.7 ± 8.8 31.9 ± 1.54 32.87 ± 0.74 0.03 ± 0.01  
 

204.0 ± 10.1 17.6 ± 2.0  33.5 ± 1.6 0.01 ± 0.04   

   
 

1792-15310 5.8-2843.0 0.001-1249 1-217 -1-1 
 

6-2075 0.07-363 1-195 -1-1   

 

  

 

123 1862 1844 1848 1849 

 

379 363 363 348   
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Laying dates and breeding success 

Laying dates ranged from 24-Dec to 08-Apr, while the mean number of fledgling 

chicks was 2.18 ± 1.03 (range: 1-4 chicks). Although none of the factors considered 

seem to affect owl laying dates (Table S4 in Online Resource), variation in the number 

of fledglings was better explained by two univariate competing models (Table S4 in 

Online Resource): the pairs successfully rearing the highest number of fledglings 

were those (1) with widest core areas and (2) that consumed the highest % of 

rabbits.    

 

 

Figure 1. Examples of several eagle owl (Bubo bubo) home range and core area size variations among 
males, females and both mates from the same pair, at the overall time scale (see the main text for more 
details). From left to right are showed maximum, mean and minimum home range and core area(s) size 
found among tagged owls. When presenting home range variations between mates from the same pair, 
dark grey and bright grey represent males and females, respectively.    
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DISCUSSION 

Our long-term radiotracking study of many individuals followed continuously 

throughout the year, support the importance of considering a combination of 

different spatio-temporal scales and individual-level processes when studying home 

range behaviour. We showed that (i) external and internal determinants may 

simultaneously affect the home range behaviour of owners and that (ii) their relative 

effects differ among different spatio-temporal scales. Our most important results 

indicated that (a) the effect of the different phases of the biological cycle became 

evident at the level of movement patterns; (b) both external (i.e., habitat structure 

and composition) and internal (i.e., sex and health state) factors explained a 

substantial amount of the observed home range behaviour in terms of space use, 

movement patterns and rhythms of activity; and (c) among individual heterogeneity 

and within-individual consistency in behaviours played important roles in shaping 

home range characteristics. 

 With respect to temporal implications of the observed home range behaviour, 

as expected, the owls showed seasonal variations in their movement patterns at the 

home range scale. Males travelled longer distances during the incubation and nestling 

periods, probably because they play a key role during the beginning of the breeding 

period, as they are responsible for female feeding and breeding territory defence 

(Penteriani and Delgado 2008). These two activities may require males to 

continuously move back and forth from and to the nest site, crossing extensive 

portions of their home range and core area(s) to (a) prevent intruders from 

approaching their breeding areas; (b) perform territorial displays (eagle owl 

territorial displays do not end after the egg-laying period; Delgado and Penteriani 

2007); and (c) search for food. It is well known that reproduction is energetically 

expensive for both mates, but from a movement perspective, males have to sustain 

more continuous activities, travel over longer distances and undergo higher rates of 

movement. Additionally, most likely due to offspring-parent interactions throughout 

the F/PFD period, both males and females exhibited decreased displacements during 
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this phase of the breeding cycle. From fledging, when sibling movement skills are still 

limited, to the post-fledging dependence period, when the distances travelled by 

juveniles from the nest increase, the explorations of the natal area by young birds are 

mainly limited to near the nest (Delgado et al. 2009). At this stage, because siblings 

are still under the nearly continuous control of their parents (females at least, 

Delgado et al. 2009), they might be forced to move shorter distances than in other 

periods.  

 Despite these temporal variations in movement patterns, eagle owl home 

range behaviour as a whole did not vary across the biological cycle, suggesting 

extremely stable home ranges. Constant and well-established home ranges may be 

the result of systematic movement strategies (Fortin 2002), such as those shown by 

the owners of a breeding site (Delgado et al. 2009), that work when a priori 

information is available and allow optimal coverage of a given area based on 

relatively fixed and controlled plans. In fact, sedentary species are expected to exhibit 

strong interactions between individual behaviours and their spatial context (Börger 

et al. 2006). However, although we did not take into account the possible effect of 

conspecific density in the present study, the extremely high density of breeders in our 

study area, combined with the high territoriality of males (Penteriani et al. 2008), 

could have strongly limited conspicuous home range expansions/contractions. Each 

eagle owl home range seems to have a well-determined location and size throughout 

the year. Under this framework, considerable alterations of home range boundaries 

among periods are not allowed, whereas within-boundary movements (e.g., total 

distance and step length) were somewhat variable over the temporal scale examined 

in this study. 
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Figure 2. Main patterns of eagle owl (Bubo bubo) space use, movements and rhythms of activity in 
relation to internal and external factors. (a) Size variation of home range and core area (ha) per period 
(sexes are grouped together). Bubble dimensions are proportional to the different sample sizes. (b) Box 
plot of the total distances (m) moved by males (white) and females (grey) during different periods of the 
biological cycle: pre-laying (1), incubation (2), nesting (3), and fledging/post-fledging dependence (4) 
periods. For each box plot the 25% and 75% quartiles, the mean (bold line) and the median (thin line) 
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are presented. (c) Box plot of movement rate [number of movements min-1)] by males (white) and 
females (grey) at the overall time scales (see the main text for more details). For each box plot the 25% 
and 75% quartiles, the mean (bold line) and the median (thin line) are presented. (d) Box plot of step 
length (m) moved by males (white) and females (grey) during the different periods of the biological 
cycle: pre-laying (1), incubation (2), nesting (3) and fledging/post-fledging dependence (4) periods. For 
each box plot the 25% and 75% quartiles, the mean (bold line) and the median (thin line) are presented. 
(e) Plot of log-transformed home range size (ha) in relation to edge density (m ha-1) at the overall time 
scale for males (open circle) and females (filled circles). Lines represent the predicted effect for males 
(continuous line) and females (dashed line) separately. (f) Plot of log-transformed core area-nest 
distance (m) in relation to haematocrit value (%) at the core area and overall spatio-temporal scale (see 
the main text for more details) for males (open circle) and females (filled circles). Lines represent the 
predicted effect for males (continuous line) and females (dashed line) separately. 

 

Home ranges may represent an invisible link between the movements of individuals 

and the distribution of the resources necessary to survive and reproduce (Börger et 

al. 2008). Hence, if such resources are heterogeneously distributed among different 

habitat types, or if their occurrence is influenced by landscape structure, then 

landscape properties can affect habitat selection and use, which in turn, can modify 

home range spatial patterns (Pasinelli 2000; Indermaur et al. 2009). Our findings 

indicate that most of the variation in home range and core area size is principally 

determined by edge density, which is a proxy of landscape heterogeneity and 

fragmentation. As previously observed (e.g., Kie et al. 2002; Saïd and Servanty 2005), 

the dimensions of home ranges may be negatively correlated with the density of 

edges; i.e., most complex landscape matrices determine smaller home ranges. Higher 

densities of edges have the potential to aggregate different patch types in a reduced 

space (Tufto et al. 1996; Revilla et al. 2004), consequently determining a more 

clustered distribution of basic resources. As an end result, such crowded resources 

can reduce individual rates of movement and, thus, home range sizes.  

 Additionally, edge density has been considered to be a good predictor of the 

distribution of areas suitable for the reproduction of another Mediterranean rabbit-

specialist species, the Iberian lynx (Lynx pardinus), as increased edge density favours 

rabbit abundance (Fernández et al. 2003). Specifically, the structure of edges between 

shrubs and open areas allows rabbits to optimise their spatial behaviour and to easily 
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access feeding and refuge patches (Lombardi et al. 2003; Lombardi et al. 2007). 

Because of the dependence of rabbits on this combination of edges, shrubs and open 

patches, it is not surprising that we also found a correlation between certain 

components of eagle owl movement patterns (i.e., turning angle) and rhythms of 

activity (i.e., movement rates) with landscape structure and composition. Thus, as 

predicted, the spatial heterogeneity of nesting site surroundings can affect the 

characteristics of a home range, which reveals individual decisions at this spatial 

scale (Hinsley et al. 1995; Knick and Rotenberry 1995). In fact, both the quality and 

the structure of habitats may engender diverse costs and benefits and, consequently, 

cause conspicuous behavioural differences (Diffendorfer, Gaines and Holt 1995), with 

landscapes being frequently highlighted as major factors driving animal movement 

patterns (e.g., Nathan et al. 2008; Delgado et al. 2010). 

 Given the general importance attributed to prey availability and distribution 

in shaping the behaviours of predators (e.g., Marquis and Newton 1981; Selås and 

Rafoss 1999; Fernández et al. 2009), we expected that owl home range behaviour 

would also be highly responsive to rabbit abundance, with the owls varying their 

space use behaviour according to prey density. In contrast to our expectations, rabbit 

availability did not appear to affect home range behaviour at any spatio-temporal 

scale. The absence of a prey abundance effect on eagle owl home range behaviour 

could be due to the fact that preys do not generally represent a limiting factor in our 

population: our rabbit latrine count indicated high availability and abundance of 

rabbits inside the owl home range boundaries. For example, rabbit densities (1.0 - 4.6 

individuals/ha) lower than those recorded in our study area have been suggested to 

be suitable to support successful reproduction of Iberian lynxes, which do not alter 

their space use behaviour at this threshold of density (Palomares et al. 2001). 

Although heterogeneous patterns of prey spatial distributions are common in most 

natural scenarios (Bell 1991), rabbit management and frequent releases inside our 

study area could have created extremely favourable and steady trophic conditions. 

This peculiar abundance of a homogeneously distributed prey may also be reflected 
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in the persistence of an extremely saturated eagle owl population, with a breeding 

density reaching approximately 40 breeding territories per 100 km2 with a mean 

NND of approx. 1 km (mean ± SD:  982 ± 491 m, range:  250 - 2729 m; Mora et al. 

2010). Under these circumstances, we can hypothesise that (a) prey density has 

reached a threshold that exceeds the eagle owls’ pro capita needs everywhere in our 

study area, including during the most constraining periods (i.e., feeding of large 

broods) and, because of this peculiar ecological scenario, (b) individuals do not need 

to alter their behaviour to confront seasonal environmental heterogeneity (e.g., 

Ferguson et al. 1999) or prey fluctuations (Delibes-Mateos et al. 2008).  
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Figure 3. Examples of eagle owl (Bubo bubo) home range overlaps and size variations among males 
(dark grey), females (bright grey) and both mates from the same breeding pair during different periods 
of the biological cycle. Pre-laying period: filled surface; incubation period: dashed line; nestling period: 
dotted line; fledging/post-fledging dependence period: solid line.  

 

However, we should note that although food appears to be abundant and 

homogeneously distributed throughout the entire study area, our results also 

confirmed one of the anticipated patterns, i.e., that individual variation in 

reproduction may be related to the intrinsic properties of home ranges, such as 

resource (i.e., prey) abundance. In fact, higher fecundities were associated with 

higher rabbit abundance in the eagle owl diet. This result means that under a scenario 

in which prey abundance is high in every nesting site and breeding pairs may 

reproduce successfully every year, certain home ranges particularly rich in rabbits 

allow the extremely high fecundity rates (i.e., 3-4 fledglings per nest per year) that 

eagle owls mainly exhibit when their range of distribution overlaps with that of 

rabbits (Delibes and Hiraldo 1981).  

 If our results have drawn attention to the occurrence of multi-level factors 

and processes affecting home range behaviour, one of our most important and 

probably unexpected results was the detection of a scenario that is profoundly 

dominated by the individual and its intrinsic characteristics (as revealed by the ICC 

and R2 values for owl ID random terms). Across the different spatial and temporal 

components of our study, we detected both inter-individual variations in home range 

behaviour (to a relatively variable degree, depending on the specific variable we were 

analysing) and intra-individual consistency in the way the owls behaved over the 

study period: both inter- and intra-individual effects largely contributed to shaping 

(a) home range and core area sizes and (b) movement patterns during different 

periods of the biological cycle. These findings are in agreement with those of recent 

studies that assessed intraspecific variations in home range behaviour (Saïd et al. 

2009; Börger et al. 2006; van Beest et al. 2010), in which a considerable portion of the 

home range variance was partly ascribed to differences among individuals; i.e., every 
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individual is a unique entity as a result of its own experience across the different life 

stages, as a nestling, fledgling, dispersing and floating juvenile as well as a more or 

less experienced breeder. Each individual is the result of a series of complex, 

reciprocal interactions between factors that can occur throughout an individual’s 

lifetime and are responsible for the emergence of different personalities (Sasha, 

Houston and McNamara 2004; Stamps and Groothuis 2010). Thus, it makes sense to 

assume that heterogeneity in home range behaviours, which at the individual-level, 

could be consistent over time (i.e., year-round) and may be not fully captured by 

certain fundamental biological traits (e.g., sex, age or physiological condition), could 

be partly explained by different personality types within the same population (Both 

et al. 2005). Although different home range behaviours may also be a consequence of 

changing environmental conditions and habitat heterogeneity (e.g., Fraser et al. 2001; 

Delgado and Penteriani 2008; Stamps and Groothuis 2010), when local conditions 

and resources are stable over time and homogeneously distributed in space, 

individual personalities may become more evident and may thus be one of the most 

crucial factors in determining the behavioural patterns of a population. 

 Despite this strong individual signature regarding home range behaviour, sex 

and health state represented two additional factors that contributed to shaping home 

range behaviour, which was in agreement with our predictions. First, sex-dependent 

tasks have the potential to affect movement decisions at both daily (e.g., rhythm of 

activities) and seasonal (e.g., movement patterns) temporal scales and, thus, 

contribute to differentiating the patterns of space use of males and females that we 

observed at the larger (overall) temporal scale. In addition, male home range 

behaviour may also reflect social constraints because of strong male territoriality 

(Penteriani et al. 2007a). For example, males exhibited smaller home ranges with a 

simpler internal structure in which core areas were smaller in size than was seen for 

females (which are allowed to intrude into the territories of neighbouring pairs with 

less conflict; Penteriani et al. 2007a). Because the home ranges of neighbouring owls 

in our population may overlap and are very close to each other (V. Penteriani, M.M. 
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Delgado and L. Campioni in preparation), the movements of males outside their own 

home range boundaries can lead to risky and dangerous encounters with other males, 

which can show extremely aggressive behaviour (Penteriani et al. 2007a). In contrast, 

the intrusion of a new female can represent the possibility of occasional bigamy 

(Dalbeck et al. 1998; V. Penteriani and M.M. Delgado unpublished data), and eagle owl 

females generally show low levels of aggression towards other females approaching 

their nesting site (Penteriani et al. 2007a). Finally, home range internal structure was 

related to differences in the state of individuals, with healthier owners being 

associated with a simpler internal home range structure. This relationship could 

suggest, for example, that the existence of fewer core areas and smaller distances 

between breeding and foraging sites may reduce movements and, consequently, 

minimise daily energetic expenditures allocated to unprofitable and costly activities 

(e.g., McNab 1963; Schoener 1968; Bell 1991).  

 Because of the plurality of behavioural and ecological processes 

simultaneously involved in the individual behavioural response to temporal and 

spatial variations of internal and external factors, home range behaviour remains one 

of the most appealing and challenging processes to study in the field of animal 

ecology. Our results provide strong empirical evidence of the crucial relevance of 

individual-level processes over time and space, suggesting that variation of space use 

patterns within the same population can be the fingerprint of individual- and site-

specific behavioural and ecological dynamics taking place under unique local 

conditions. In a time associated with great environmental changes, in which the 

majority of attention is currently focused on the effects of habitat heterogeneity, 

alterations and/or fragmentation, we emphasised the importance to still address our 

interest on favourable and homogeneous environmental conditions. Stable 

environments may provide a fertile context in which to re-direct our interest toward 

exploring and analytically capturing intraspecific differences in behaviour, which up 

to date, remain difficult to recognise as personality types, even though inter-

individual variation in behaviour is often distributed in a non-random manner, 
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suggesting that it is likely to have consistent ecological and evolutionary 

consequences (Sasha et al. 2004).  
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Durante esta tesis he estudiado las diferencias en el comportamiento de individuos 

pertenecientes a distintos grupos sociales en una especie territorial y de larga vida, el 

búho real (Bubo bubo). Entre los numerosos rasgos de comportamiento que 

caracterizan a esta rapaz, me he centrado en aquellos estrechamente relacionados a 

la selección de hábitat, el uso del espacio y los movimientos, caracterizados todos 

ellos en ser un reflejo de la relación entre el entorno externo, el entono social y las 

características individuales. En general, y a través del seguimiento intensivo de los 

individuos reproductores y dispersantes llevado a cabo durante 8 años he podido 

demostrar la existencia de dos estrategias de comportamiento ligadas a las distintas 

etapas de vida y al estatus social. Este resultado enfatiza la existencia de importantes 

relaciones entre conspecíficos, que podrían estar más estructuradas de la que al 

principio de este estudio pensábamos.  

 Una primera evidencia de la importancia de la organización social en esta 

especie se intuyó ya hace unos años cuando con el estudio del uso de señales visuales 

(y vocales) por parte de los reproductores como medio de comunicación intra-

específica, subrayaron el peso que las interacciones sociales, la territorialidad y la 

dominancia podrían tener en las decisiones comportamentales tomadas por los 

individuos. Sin embargo, hasta ahora y en esta especie, nadie había profundizado el 

efecto que el contexto social puede tener en algunos comportamientos de los 

individuos no territoriales una vez empezada su etapa de dispersión.    

  En su conjunto los resultados apuntan a la existencia de un escenario en el 

que los factores sociales parecen regular algunos de los mecanismos que guían el 

comportamiento de los individuos. Contrariamente a nuestras predicciones, la 

abundancia de los recursos tróficos en nuestra área de estudio no parece ser un 

factor determinante del por qué y cómo los individuos utilizan el espacio. La súper-

abundancia de recursos en esta área, debida al constante manejo y suelta de conejos 

de campo (por ser nuestra área de estudio un área de caza menor), podría estar 

relajando las constricciones impuestas por el entorno externo (p. ej. competencia 

para los recursos tróficos) favoreciendo una elevada densidad de conspecíficos en un 
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espacio muy reducido. En mi opinión, esto ha representado una ventaja en el marco 

de este estudio, ya que nos ha permitido estudiar la organización social en un 

ambiente muy saturado (40 parejas/100 km2), en el que las interacciones sociales 

son muy frecuentes y donde la territorialidad sigue marcando el límite entre los 

recursos compartidos y aquellos de uso exclusivo.  

 En este escenario y según nuestras predicciones, los adultos territoriales 

(Capítulo 5) tienden a ocupar aéreas muy favorables para la reproducción, con al 

presentar una elevada densidad de presas. La alta densidad de individuos junto a la 

elevada densidad de recursos es probablemente la causa directa de que los individuos 

utilicen en general un espacio muy reducido (dominio vital medio ~ 300 ha). Frente 

al mosaico de territorios que nos hemos encontrado, las hembras - sexo caracterizado 

por sus menores restricciones sociales – han tendido a utilizar áreas más amplias y 

parcialmente compartidas con las de sus vecinos. Sin embargo, dentro del espacio 

denominado dominio vital, el comportamiento de los reproductores se ha visto 

sensiblemente afectado por factores no sociales como las necesidades biológicas y la 

identidad de los individuos mismos. De la misma forma, otros factores externos como 

el ciclo lunar (Capítulo 3) también modulan el tiempo y el esfuerzo que los 

reproductores dedican a actividades sociales (comunicarse) o necesidades 

fisiológicas (alimentarse). 

 Un resultado importante presentado en este trabajo es la gran capacidad que 

los individuos no territoriales tienen para adaptar su comportamiento a sus 

necesidades, según el entorno físico y social que les rodeas. Al igual que en otras 

especies territoriales, los flotantes de búho real también adoptan comportamientos 

crípticos, viviendo en un submundo paralelo al sector reproductor, en el que los 

individuos toman decisiones bajo normas impuestas por el contexto social (Capítulo 

1-2), la experiencia adquirida (Capítulo 4) y según las características del entorno 

externo en el que se mueven. Al final del viaje que representa la dispersión natal, el 

destino más probables para los flotante de nuestra población parece ser el encontrar 

un área próximas a la población natal donde asentarse de forma estable, a la espera 
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de un sitio y pareja donde y con quien reproducirse (Delgado et al 2010, Penteriani 

and Delgado en prensa). En conclusión, el estudio de las relaciones entre los animales 

y el entorno físico en el que se distribuyen y mueven es un ámbito que engloba 

ecología y comportamiento. En mi opinión, y tras este estudio, no podemos prescindir 

del contexto social si queremos entender procesos relacionados con la biología de las 

poblaciones, el flujo génico, la eficiencia ecológica o la distribución espacial de los 

individuos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Síntesis
 

 

- 168 - 
 

 

 





Conclusiones
 

 

- 169 - 
 

 Los resultados obtenidos en la presente tesis apoyan que: 

 1. El estatus social es un factor importante en el estudio del comportamiento 

de especies territoriales, afectando procesos elementales como la selección de hábitat 

y los patrones de movimientos. 

 2. En función del estatus social, los individuos pueden mostrar diferentes 

comportamientos relacionados a procesos de selección de hábitat a una escala 

espacial pequeña. En particular, los individuos reproductores podrían estar 

seleccionando aquellos posaderos que por sus características parecen ser más 

óptimos para el envío y recepción de señales visuales y vocales – posaderos en 

general dominantes y visibles. Sin embargo los dispersantes, con un estilo de vida 

más transitorio y no territorial, seleccionan posaderos menos visibles y menos 

dominantes durante toda la fase de dispersión natal. 

 3. En cuanto a la selección de los sitios de nidificación en hábitat forestales, 

los reproductores suelen elegir parcelas de bosque maduras, con una estructura 

vertical que les podría estar facilitando tareas asociadas a la defensa del territorio y a 

la reproducción. Por el contrario, los dispersantes utilizan parcelas de bosque en 

general más jóvenes y más densas, características que posiblemente les ayuda a 

reducir los costes asociados durante la dispersión y que les podrían facilitar el llevar 

un estilo de vida más secreto.  

 4. Factores externos, como los cambios en las condiciones de luminosidad 

debidas al ciclo lunar, pueden regular el patrón temporal de actividad de 

depredadores nocturnos. Sin embargo, reproductores y dispersantes no se ven 

afectados de la misma forma. Durante las fases lunares, la actividad de los 

reproductores refleja el tiempo y el esfuerzo que los individuos dedican a varias 

actividades relacionadas con sus necesidades más inmediatas. Por ejemplo, los 

individuos incrementan la actividad de canto y de caza en las fases de luna llena 

cuando su luminosidad aumenta la visibilidad de señales visuales y cuando las presas 
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se encuentran con mayores dificultades. Sin embargo, también en las noches de luna 

nueva los búhos presentan un pico en su actividad de caza ya que las presas son más 

difíciles de detectar. A diferencia de esto, el patrón de actividad de los dispersantes no 

parece estar afectado por el ciclo lunar. 

 5. La información espacial adquirida por los animales representa un elemento 

clave para una exploración y explotación eficiente de su entorno. De la misma forma, 

los patrones de movimiento pueden estar afectados por la familiaridad que los 

individuos tienen con su entorno. Aquellos individuos que durante su dispersión 

natal se encuentran prospectando nuevas áreas presentan movimientos exploratorios 

y diferentes a aquellos individuos que se asientan de forma estable, es decir, 

dispersantes en áreas temporales de asentamiento e individuos reproductores en sus 

territorios. Estos últimos, en general, presentan movimientos que reflejan una 

explotación de sus áreas.  

 6. El comportamiento de uso del dominio vital de los animales es el resultado 

de procesos dinámicos a diferentes niveles - espacio, tiempo e individuo – que 

originan diferencias en los patrones de movimiento, en el uso del espacio y en los 

ritmos de actividad. Estas diferencias en el comportamiento se encuentran además 

relacionadas con la estructura del hábitat, características internas de los individuos y 

por las distintas fases del ciclo biológico. Estos resultados soportan la necesidad de 

una aproximación integrada, que tenga en cuenta la pluralidad de los factores 

implicados en el comportamiento de uso del dominio vital. 

 7. La estructura social representa un elemento clave en la biología de las 

poblaciones animales, modulando procesos elementales del comportamiento espacial 

de los individuos. Por ello, subrayamos la necesidad de considerarla como una 

herramienta importante en el manejo y conservación de las poblaciones, cuya 

demografía, dinámica, estructura y persistencia depende en gran medida del 

comportamiento de los individuos. 
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Table 1 

Summary of a) fitted parameters employed in model formulation to analyse space use behaviour of eagle owl at both spatial (home range 

and core area) and temporal (overall and seasonal) scale; b) selected models (ΔAIC ≤ 2) with the relative (β ± SE), number of estimated 

parameters (K), AIC AICc, ΔAICc, AICcw values, r2, intraclass correlation coefficient (ICC) and R2 for random effect (owl ID) are showed.  

 

 

 

 

 

 

 

 

 



 

                            

Temporal  Dependent  
Parameters 

Set of  Selected  
β ± SE K AICc ΔAICc AICc w r² 

  
Ranking 

scale variable models models   

 
 

            

overall 

Home range sizeª 

IKA, sex, HT, edge density, 

12 

intercept 15.956 ± 0.557 

3 54.4 0 0.85 0.23 
 

1 dense vegetation, edge density -0.006 ± 0.003  
sparse scrabes + trees sexd -0.596 ± 0.299  

             

Core area sizeª 

IKA, sex, HT, 

11 

intercept 14.472 ± 0.520 
2 61.1 0 0.61 0.37  1 

edge density -0.008 ± 0.002  

edge density,          
intercept 14.571 ± 0.535 

3 62.8 1.7 0.26 0.36 
 

2 
sparse scrabs + trees 

edge density -0.007 ± 0.002  
sexd -0.330 ± 0.373  

             

Core area-nest distanceª   
IKA, sex, HT, edge density,   

12 

intercept 7.929 ± 0.896 

3 55.0 0 0.60 0.26 
 

1 dense vegetation, HT -0.053 ± 0.018  
sparse scrubs + trees sexd 0.753 ± 0.317   

             

Core area numberc 

IKA, sex, HT,  

11 

intercept -9.083 ± 5.256 
2 29.1 0 0.43 .  1 

HT 0.207 ± 0.111  

edge density,          
intercept -8.530 ± 5.229 

3 30.5 1.4 0.21 . 
 

2 
sparse scrubs + trees 

HT 0.216 ± 0.111  
sexd -1.293 ± 1.296  

           ICC R²              

seasonal 

Home range sizeb 
 IKA, sex, HT,  

9 
intercept  14.136 ± 0.130 3 123.4 0 0.65 0.63 . 1 
         age, PERIODs intercept 14.413 ± 0.287 4 124.9 1.5 0.30 0.63 0.71 2 sexd -0.349 ± 0.322 

             Core area sizeb  IKA, sex, HT, age, PERIODs 9 intercept 12.324 ± 0.159 3 144.5 0 0.72 0.63 . 1 

             Core area-nest distanceb  IKA, sex, HT, age, PERIODs 9 intercept 5.979 ± 0.116 3 151.8 0 0.73 0.22 . 1 

             

Core area numberc 

 IKA, sex, 

9 

intercept -5.074 ± 2.112 2 87.4 0 0.52 . . 1 HT 0.105 ± 0.042 
HT, age,           intercept -4.146 ± 2.017 

3 88.1 0.7 0.37 . . 2 PERIODs HT 0.122 ± 0.045  
sexd -0.918 ± 0.763 

                            
               



 

a = Linear Model 
b = Linear Mixed-Effect Model 
c = General Linear Model 
d = Reference level female  

ICC and R2 = Calculated for random term (owl ID) 

Set of models is the number of formulated models always including the only-intercept and the full models 

 

 

 

 

Table S2. 

Summary of a) fitted parameters employed in model formulation to analyze movement behaviour of eagle owl at both spatial 

(home range and core area) and temporal (overall and seasonal) scale; b) selected models (ΔAIC ≤ 2) with the relative (β ± SE),  

number of estimated parameters (K), AIC, ΔAIC, AICw values, intraclass correlation coefficient (ICC) and R2 for random effect (owl 

ID) are showed.  

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spatial  Dependent  Parameters Set of  Selected  β ± SE K AIC ΔAIC AIC w ICC R² Ranking scale Variable models Models 

             

home range 

Total distancea 
IKA, sex, HT, edge density, dense vegetation 

14 

intercept 8.757 ± 0.060 

6 340.8 0.0 0.93 0.21 0.25 1 PERIOD2d 0.228 ± 0.078 

sparse scrubs + trees, age, PERIODs PERIOD3d 0.134 ± 0.099 
PERIOD4d -0.121 ± 0.060 

            

Step lengtha 

IKA, sex, HT, edge density,  

14 

intercept 5.706 ± 0.044  4 12358 0.0 0.53 0.05  1 

         
dense vegetation, sparse scrubs + trees,  intercept 5.661 ± 0.050 

6 12359 1.0 0.33 0.05 0.05 2 PERIOD2d 0.191 ± 0.048 

 age, PERIODs PERIOD3d 0.086 ± 0.064 
PERIOD4d 0.016 ± 0.039 

            

Speeda 

IKA, sex, HT, edge density, 

14 

intercept 3.147 ± 0.144  5 14546 0.0 0.59 0.06 0.04 1 dense vegetation,   age -0.117 ± 0.039 
sparse scrubs + trees,          age, PERIODs intercept 2.794 ± 0.076 4 14547 1.0 0.30 0.04 . 2 

            

Turning angleb 

IKA, sex, HT,  

14 

intercept -0.024 ± 0.050 2 6534.5 0.0 0.37 . . 1 edge density, dense vegetation 0.004 ± 0.001 
dense vegetation,            sparse scrubs + trees, intercept -0.008 ± 0.050 2 6535.7 1.20 0.20 . . 2 age, PERIODs sparce scrubs 0.004 ± 0.002 

            

Time stepa 

IKA, sex, HT, edge density,  

14 
intercept 2.900 ± 0.078 

10 12749 0.0 0.77 0.02 0.02 1 dense vegetation,   
sparse scrubs + trees, age 0.082 ± 0.021 age, PERIODs 

             

core area 

Step lengtha 
 IKA, sex, HT, edge density, 

14 

intercept 4.976 ± 0.091 6 2492 0.0 0.58 0.35 . 1 

         
sparse scrabs + trees, age, PERIODs intercept 5.196 ± 0.177 7 2493 1.0 0.31 0.35 0.21 2 sexe -0.295 ± 0.201 

            
Speeda  IKA, sex, HT, edge density, 14 intercept 2.308 ± 0.109 5 2704 0.0 0.73 0.94 . 1 sparse scrubs + trees, age, PERIODs 

            
Turning anglec  IKA, sex, HT, edge density, 14 intercept 0.053 ± 0.065 1 1371 0.0 0.32 . . 1 sparse scrubs + trees, age, PERIODs 

            

Time stepa 
 IKA, sex, HT, edge density, 

14 

intercept 3.181 ± 0.051 5 2690 0.0 0.76 0.06 . 1 

         
sparse scrubs + trees, age, PERIODs intercept 3.352 ± 0.118 6 2692 2.0 0.25 0.06 0.10 2 sexe -0.206 ± 0.125 

                          
              



a = Linear Mixed-Effect Model 
b = General Linear Model 
c = Generalized Linear Model 
d = Reference level PERIOD1 
e = Reference level female 

ICC= Calculated for random term (owl ID) 

Set of models is the number of formulated models always including the only-intercept and the full models 

 

 

Table S3. 

Summary of a) fitted parameters employed in model formulation to analyse the activity rhythms of eagle owl at both spatial (home range and 

core area) and temporal (overall and seasonal) scale; b) selected models (ΔAIC ≤ 2) with the relative estimate (β ± SE), number of estimated 

parameters (K), AIC, AICc, ΔAIC, AICw values, r2 and the intraclass correlation coefficient (ICC) are showed.  

 

 

 

 

 

 

 

 

  
 

  
  

       

Spatial scale Dependent variable Parameters 
Set of  

 Selected Models β ± SE K AIC ΔAIC AIC w ICC Ranking 
models 

 
           

home range Movement ratea 
IKA, sex, HT, edge density, 

13 
intercept 0.023 ± 0.001 

4 1832.4 0 0.43 0.10 1 
age, PERIODs sexc 0.005 ± 0.001  

    
 

     r²  
    

 
      

core area 

Movement rateb 
IKA, sex, HT, edge density 

13 
intercept 0.508 ± 0.067 

2 56.0 0 0.38 0.1 1 
age, PERIODs edge density -0.0005 ± 0.0003 

            
Core area activityb 

IKA, sex, HT, edge density 
13 

intercept 0.3285 ± 0.0413 
2 -194.6 0 0.45 0.2 1 

age, PERIODs edge density -0.0004 ± 0.0002 

                        

     
       

 



a = Linear Mixed-Effect Models 
b = Linear Models 
c = Reference level: female 

ICC = = Calculated for random term (year)  

Set of models is the number of formulated models always including the only-intercept and the full models 

 

 
Table S4. 

Summary of a) fitted parameters employed in model formulation to analyze the breeding phenology and performance of eagle owl (from 2004 

to 2010); selected models (ΔAIC ≤ 2) with the relative estimate (β ± SE), number of estimated parameters (K), AIC, AICc, ΔAICc, AICcw values 

and r2 are showed.  

 

 

 

 

 
 

 

 

 

    
        

Dependent variable Parameters Set of 
models  Selected Models β ± SE AICc ΔAICc AICc w ICC Ranking 

          

Laying datea  
% rabbit biomass, mean core area size 

9 intercept 5·064 ± 0·030 -21.6 0.001 0.95 0.05 1 
HT, mean core area-nest distance 

    
 

   r²  
         

Number of chicksb  

  

9 

intercept 2·09 ± 0·21 39.7 0 0.27 0.15 1 
% rabbit biomass,  mean core area size 0·000001 ± 0·00000  

mean core area size        
mean core area-nest distance, intercept 1·92 ± 3·05 40.4 1 0.19 0.13 2 

mean movement rate % rabbit biomass 0·00002 ± 0·00001 
                    

 
 

        
 



a = Linear Mixed-Effect Models 
b = Linear Models 

ICC = Calculated for random term (nest)  

Set of models is the number of formulated models including always the only-intercept and the full models 

 

 



 







Mario (Melletti), l'elemento scatenante del mio arrivo a Siviglia! se non fosse stato per 

te Mario, sarei ancora a "Fresisuit" come la chiamano alcuni, tra ciociarotti e burinetti, 

come dicono altri! La tua capacitá di persuasione e convinzione ha avuto molto 

successo, forse anche troppo visto che quei 12 mesi di esperienza all'estero stanno 

per compiere 6 anni!!! Ma non é solamente merito di Mario, se non fosse stato per 

Vincenzo, per la  sua disponbilitá e pazienza ora non sarei arrivata a questo punto! Ví, 

me has ofrecido la oportunidad, durante éstos 2+4 años, de vivir algo único y al 

mismo tiempo de apasionarme a este trabajo. Gracias por haber tenido mucha 

paciencia conmigo con mi record de 8-10 ruedas pinchadas, con los coches y ventanas 

rotas, con mis viajes-estancias y gracias por emocionarte como yo cuando 

nombramos caffé y mozzarella!! En el grupo no podía faltar "Maricarmen" jeje.. (cómo 

siguen llamándola algunos guardas de las fincas) o más bien María del Mar que no 

solamente se ha preocupado de enseñarme todo lo que sabía sobre el 

radioseguimiento si no también se ha ocupado de enriquecer mi vocabulario 

castellano con palabras claves como "eucalipteto". Es broma, si no fuera por ella esta 

tesis estaría redactada en itañolo. Gracias por todo lo que has querido compartir 

conmigo, por las frías y largas noches de búhos que hemos pasado en el campo y por 

los buenos momentos que nos han acompañado. Gracias también a todos los 

compañeros de campo que han trabajado conmigo sobre todo a Rui, Chiara, Giulia y 

Bruno en la mítica época de los "Garrapateros". Gracias de corazón a mis dos familias, 

la italiana que no obstante mi ausencia de casa siempre me ha hecho sentir apoyada 

durante estos años; siempre ha estado presente físicamente y telefónicamente no 

obstante la distancia. A la "familia española" de adopción que se ha ido ampliando, 

modificando, reduciendo durante los años y que me ha hecho sentir como en casa, 

rodeadas de amigos, compañeros y colegas en cada momento. Gracias porque me he 

formado teniendo a mi lado los mejores ejemplo de fiesteros, bebedores y amigos que 

habría podido esperar jamás. No obstante los numerosos años que he echado en 

Sevilla todavía falta el canto de un duro para llegar a vuestros niveles, pero he 

aprendido que cada día, en algún sitio habrá que cenar, que nunca es la última, que lo 

que quiero es un corazón contento lleno de alegría.., que da igual si eres secca, tronca o 



quilla, rubia de bote o morenote...  porque a quien le importa lo que yo haga o lo que yo 

diga, yo soy así, así seguiré nunca cambiaré. ¡¡¡Gracias a todos los guiris  como yo, 

porque me han enriquecido mogollón!! Sin embargo, la pandilla de italianos no ha 

faltado nunca en mis días. Thanks to the people that I have met during my chilly 

visiting to Scotland, Finland and Sweden and to those people I have met during the 

warm austral summer in Argentina. Por último gracias a mi segunda casa el Alfalfa 

donde en todos momentos sabía que podía acudir y donde me han enseñado que ¡¡¡Si 

la vida te da caña, bébetela!!! jejejeje... 
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