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First examples, I

Fekete, 1914
There exists a real power series

∑∞
n=1 anxn with the following

property: for each continuous function g : [−1,1]→ R with
g(0) = 0, there exists (nk ) ↑⊂ N such that

∑nk
n=1 anxn → g(x)

(k →∞) unif.

This is surprising, because every power series is the Taylor
series of some function in C∞(R).
[Borel, 1895]

Birkhoff, 1929
There exists an entire function f : C→ C such that the
sequence of its translates {z 7→ f (z + n) : n ∈ N} is dense in
H(C).
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First examples, II

MacLane, 1952
There exists an entire function f : C→ C such that the
sequence of its derivatives {f (n) : n ∈ N} is dense in H(C).

¿What do these 3 examples share?

They are objects with chaotic behaviour which, after a limit
process, approximate each element of a maximal class of
objects.

The preceding considerations lead to the following concept.

Bernal Universality and lineability



Universality and Hypercyclicity
Lineability

First examples, II

MacLane, 1952
There exists an entire function f : C→ C such that the
sequence of its derivatives {f (n) : n ∈ N} is dense in H(C).

¿What do these 3 examples share?

They are objects with chaotic behaviour which, after a limit
process, approximate each element of a maximal class of
objects.

The preceding considerations lead to the following concept.

Bernal Universality and lineability



Universality and Hypercyclicity
Lineability

First examples, II

MacLane, 1952
There exists an entire function f : C→ C such that the
sequence of its derivatives {f (n) : n ∈ N} is dense in H(C).

¿What do these 3 examples share?

They are objects with chaotic behaviour which, after a limit
process, approximate each element of a maximal class of
objects.

The preceding considerations lead to the following concept.

Bernal Universality and lineability



Universality and Hypercyclicity
Lineability

First examples, II

MacLane, 1952
There exists an entire function f : C→ C such that the
sequence of its derivatives {f (n) : n ∈ N} is dense in H(C).

¿What do these 3 examples share?

They are objects with chaotic behaviour which, after a limit
process, approximate each element of a maximal class of
objects.

The preceding considerations lead to the following concept.

Bernal Universality and lineability



Universality and Hypercyclicity
Lineability

Concepts

Definition
Assume that X and Y are TVs and that Tn : X → Y (n ≥ 1) is a
sequence of continuous mappings. We say that (Tn) is
universal provided that there is an element x0 ∈ X , called
universal for (Tn), such that {Tnx0 : n ∈ N} = Y .

Definition
If X is a TVS and T ∈ L(X ), then T is called hypercyclic
whenever the sequence of iterates T n : X → X (n ≥ 1) is
universal. The corresponding vectors x0 ∈ X with dense orbit
are called hypercyclic for T .
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Remarks

The word hypercyclic was coined by Beauzamy in 1980. It
reinforces the notion of cyclic operator: an operator
T ∈ L(X ) is called cyclic if there is a vector x0 ∈ X such
that span{x ,Tx ,T 2x , ...} = X .
With the preceding terminology, we get that the sequence
Tn : (an) ∈ RN 7→

∑n
k=1 akxk ∈ (C0[0,1], ‖ · ‖∞) (n ≥ 1) is

universal.
The traslation op. f 7→ f (·+ 1) and the differentiation
op. f 7→ f ′ are hypercyclic on H(C).
(Tn) universal =⇒ Y is separable.
If an operator T is hypercyclic, the set HC(T ) of HC
vectors is dense in X .
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A sufficient condition

Relation with the invariant subspace problem and the
invariant subset problem: Given T ∈ L(X ), each vector of
X \ {0} is cyclic [hypercyclic, resp.]⇐⇒ X lacks closed
T -invariant nontrivial subspaces [subsets, resp.]
Read (1988) found in `1 an operator for which any nonzero
vector is HC.

Birkhoff, 1920
Let Tn : X → Y (n ≥ 1) be a sequence of continuous mappings
between two TSs, with X Baire and Y 2nd countable. TFAE:
(a) The subset U((Tn)) of universal els. is dense in X .
(b) U((Tn)) is residual.
(c) (Tn) is transitive, that is, given nonempty open sets

U ⊂ X , V ⊂ Y , there exists n ∈ N such that Tn(U) ∩ V 6= ∅.

Bernal Universality and lineability



Universality and Hypercyclicity
Lineability

A sufficient condition

Relation with the invariant subspace problem and the
invariant subset problem: Given T ∈ L(X ), each vector of
X \ {0} is cyclic [hypercyclic, resp.]⇐⇒ X lacks closed
T -invariant nontrivial subspaces [subsets, resp.]
Read (1988) found in `1 an operator for which any nonzero
vector is HC.

Birkhoff, 1920
Let Tn : X → Y (n ≥ 1) be a sequence of continuous mappings
between two TSs, with X Baire and Y 2nd countable. TFAE:
(a) The subset U((Tn)) of universal els. is dense in X .
(b) U((Tn)) is residual.
(c) (Tn) is transitive, that is, given nonempty open sets

U ⊂ X , V ⊂ Y , there exists n ∈ N such that Tn(U) ∩ V 6= ∅.

Bernal Universality and lineability



Universality and Hypercyclicity
Lineability

A sufficient condition

Relation with the invariant subspace problem and the
invariant subset problem: Given T ∈ L(X ), each vector of
X \ {0} is cyclic [hypercyclic, resp.]⇐⇒ X lacks closed
T -invariant nontrivial subspaces [subsets, resp.]
Read (1988) found in `1 an operator for which any nonzero
vector is HC.

Birkhoff, 1920
Let Tn : X → Y (n ≥ 1) be a sequence of continuous mappings
between two TSs, with X Baire and Y 2nd countable. TFAE:
(a) The subset U((Tn)) of universal els. is dense in X .
(b) U((Tn)) is residual.
(c) (Tn) is transitive, that is, given nonempty open sets

U ⊂ X , V ⊂ Y , there exists n ∈ N such that Tn(U) ∩ V 6= ∅.

Bernal Universality and lineability



Universality and Hypercyclicity
Lineability

Necessary conditions

Thus, if X is a separable F-space we have: T ∈ L(X ) is HC
⇐⇒ T is transitive. In such a case, HC(T ) es residual.

Rolewicz, 1969
If T ∈ L(X ) is HC then dim(X ) =∞. If in addition X is locally
convex, then σP(T ∗) = ∅.

Kitai, 1982
If X is a complex Banach space and T ∈ L(X ) is HC then T
is not compact and σ(T ) ∩ T 6= ∅.

Rolewicz (1969) gave the 1st example of an HC operator on a
Banach space.
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Examples of HC operators, I

Rolewicz, 1969
If X = c0 or `p (1 ≤ `p <∞), |λ| > 1, and B denotes the
backward shift operator B : (x1, x2, x3, ...) ∈ X
7→ (x2, x3, x4, ...) ∈ X , then λB is HC.

Problem. Rolewicz, 1969
Given a separable Banach space X with dim(X ) =∞, does it
support a HC operator?

The main “testing fields” for the search of HC operators
are: backward shifts, differentiation operators and
composition operators.
If ϕ ∈ H(Ω,G), the composition operator associated to ϕ is
defined as Cϕ : f ∈ H(G) 7→ f ◦ ϕ ∈ H(Ω).
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Examples of HC operators, II

Seidel y Walsh, 1941

The non-euclidean translation operator Cϕ : H(D)→ H(D), where ϕ(z) = z+a
1+az

[a 6= 0, |a| < 1] is HC.

Godefroy and Shapiro, 1991

If Φ(z) =
∑

n=1 cnzn is an entire function of exponential type
[lı́m supr→∞ log M(r , f )/ log r <∞], then the operator
Φ(D) =

∑
n=1 cnDn : H(C)→ H(C) is HC.

Bourdon y Shapiro, 1993

If p ∈ [1,∞) and ϕ ∈ Aut(D) is non-elliptic, then the operator Cϕ : Hp −→ Hp is HC.

Gallardo and Montes (2004) gave a complete characterization of ϕ ∈ LFT (D)

generating HC Cϕ on Sν = {f (z) =
∑

n=0 anzn ∈ H(D) :
∑∞

n=0 |an|2(n + 1)ν <∞}.
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Examples of HC operators, III. Existence

Montes and LBG, 1995. Grosse-Erdmann and Mortini, 2009
Let G ⊂ C be a simply connected or a infinitely connected
domain, and (ϕn) ⊂ Aut(G). Then: Cϕn : H(G)→ H(G) (n ≥ 1)
is universal ⇐⇒ (ϕn) is runaway, that is, given a compact set
K ⊂ G, there is N = N(K ) ∈ N such that K ∩ ϕN(K ) = ∅.

Ansari and LBG, 1997; Bonet and Peris, 1998
If X is a separable Fréchet space with dim(X ) =∞ then there
exists some HC operator T on X .

T can be chosen to be onto. If X is Banach, T can be
chosen to be bijective and of the form T = I + K , with K
compact y nilpotent [σ(T ) = {0}].
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Existence and non-existence

Problem
Which [separable, infinite dimensional] TVSs support HC
operators?

[Bonet and Peris (1998)] ϕ = ⊕n∈NR does not carry a HC
operator.
[Grosse-Erdmann (1999)] Lp[0,1] (0 < p < 1) carries a HC
operator.
[Shkarin (2010)] Lp[0,1]⊕ R does not carry a HC operator.
[Shkarin (2010)] Every normed space with countable
dimension carries a HC operator.
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HC semigroups of operators

Definition
Let X be a TVS. A family {Tt}t≥0 ⊂ L(X ) is a strongly
continuous semigroup of operators in L(X) if T0 = I,
TtTs = Tt+s ∀t , s ≥ 0, and lı́mt→s Ttx = Tsx ∀s ≥ 0, x ∈ X . A
SCS {Tt}t≥0 is said to be hypercyclic if {Ttx : t ≥ 0} is dense
in X for some x ∈ X , called HC for (Tt ).

Conejero, Müller and Peris, 2007

Let X be an F-space and T = (Tt )t≥0 be a SCS on it. Then:
T is HC ⇐⇒ each Tu [u > 0] is HC ⇐⇒ some Tu is HC.
In this case, HC(Tu) = HC(T ) ∀u > 0.

... Hence, at least theoretically and in the setting of F-spaces, the problems that could

be posed for hypercyclicity of semigroups come down to problems for single operators.
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Holomorphic monsters, I

Luh, 1985
If G ⊂ C is a s.c. domain, a holomorphic monster on G is a
function f ∈ H(G) satisfying: given g ∈ H(D), ξ ∈ ∂G and any
derivative or antiderivative F of f of any order, there are
sequences an → 0 and bn → ξ such that anz + bn ∈ G
(n ≥ 1, z ∈ D) and

F (anz + bn)→ g(z) in H(D).

Luh, 1985. Grosse-Erdmann, 1987
There are holomorphic monsters, and in fact they form a
residual set in H(G).

M.C. Calderón and LBG (2000) conceived the notion of
holomorphic T -monster, where T ∈ L(H(G)): simply
replace F above by Tf .
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Holomorphic monsters, II

By considering countable families (Tn) ⊂ L(H(G)) and the theory of universality,
it is possible to extend the theory of holomorphic monsters.

Theorem
(a) [Calderón and LBG, 2000] If G ⊂ C is a domain, Φ 6= 0 is an
entire function of exponential type and λ ∈ C then there are
T -monsters in H(G) for the operators T = Φ(D) and
(Tf )(z) = λf (z) +

∫ z
a Φ(z − t)f (t) dt [here if G is s. connected].

(b) [Calderón and LBG, 2001] There are no Luh-monsters in Hp

(1 ≤ p <∞). For any polynomial P 6= 0, there are
P(D)-monsters in Hp.
(c) [Calderón, Grosse-E. and LBG, 2002] If ϕ ∈ H(G,G) then
there are Cϕ-monsters in H(G) ⇐⇒ for every V ∈ O(∂G) the
set ϕ(V ∩G) is not relatively compact in G.

There is residuality in all H(G)-cases.
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Universal Taylor series, I

In 1905 Porter discovered the phenomenon of
overconvergence: some power series possess
subsequences for their partial sums being convergent
beyond the circle of convergence.

Nestoridis, 1996
There are universal Taylor series (UTS) in H(D), that is,
functions f (z) =

∑∞
n=0 fnzn ∈ H(D) satisfying that, for every

compact set K ⊂ C \ D with C \ K connected and every
h ∈ A(K ) := C(K ) ∩ H(K 0), ∃ (λn) ↑⊂ N0 such that

S(λn, f , z) :=
∑λn

k=0 fkzk −→ h unif. on K .

Luh (1970) and Chui and Parnes (1971) had proved a
similar property but with K ⊂ C \ D.
The set of UTSs is in fact residual in H(D).
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Universal Taylor series, II

The last result can be extended by using summability methods.

Definition
Let A = [αnν ]∞n,ν=0 be an infinite matrix in C. We say that A is a
C-matrix if:

∀n ∈ N0, lı́mν→∞ |αnν |1/ν = 0.
∀ν ∈ N0, lı́mn→∞ αnν = 0.
lı́mn→∞

∑∞
ν=0 αnν ∈ C \ {0}.

If A is a C-matrix, a function f ∈ H(D) is called a A-universal
Taylor series if it satisfies the same property as a UTS but
replacing S(n, f , z) by SA(n, f , z) :=

∑∞
ν=0 αnνS(ν, f , z).

Melas and Nestoridis, 2001; Calderón, Luh and LBG, 2006
Given A as before, there is a residual subset in H(D) consisting
of A-UTSs.
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Frequent hypercyclicity, I

Bayart and Grivaux, 2006

Let X be a TVS. Then an operator T ∈ L(X ) is said to be
frequent hypercyclic if ∃x ∈ X s.t., for every nonempty open set

U ⊂ X , lı́m inf
n→∞

card {k ∈ {1, ...,n} : T kx ∈ U}
n

> 0.

• Replacing T n by Tn ∈ L(X ,Y ) one reaches the notion of frequent universal
sequence (FU) of mappings.

• Connection with Ergodic Theory: X separable F-space, T ∈ L(X) and ∃µ Borel

probability measure with supp(µ) = X s.t. T is µ-ergodic =⇒ T is FHC.

Bayart and Grivaux, 2006

The following ops. are FHC: any translation τaf = f (·+ a) on
H(C), any Cϕ on H(D) with non-elliptic ϕ ∈ Aut(D), and any
multiple λB (|λ| > 1) of the b.w.s. on c0 or `p (1 ≤ p <∞).
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Frequent hypercyclicity, II

Bonilla and Grosse-Erdmann, 2007
Assume that Φ is a nonconstant entire function of exponential
type. Then Φ(D) is FHC.

There is not residuality in these examples: FHC(τa),
FHC(Cϕ), FHC(λB) and FHC(Φ(D)) are of first category.

Theorem
(a) [Shkarin, 2009] There are Banach spaces which do not
support FHC operators.
(b) [De la Rosa, Frerick, Grivaux and Peris, 2011] Every
complex infinite dimensional Fréchet space with an
unconditional basis supports a FHC operator.
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Frequent hypercyclicity, III

Bonilla and LBG, 2010
Suppose that ϕ ∈ LFT (D) is not a parabolic automorphism. We
have: Cϕ is FHC on Sν ⇐⇒ Cϕ is HC.

LBG, 2012
If (an) ⊂ C is a sequence such that
lı́mk→∞ ı́nfn∈N |an+k − an| = +∞ then the sequence of
translations (τan ) is frequently universal on H(C).

Problems
•What sequences (ϕn(z) = anz + bn) ⊂ Aut(C) satisfy that
(Cϕn ) is FU on H(C)? Recall [Montes and LBG, 1995] that
(Cϕn ) is universal ⇐⇒ {mı́n{|bn|, |bn/an|}}n≥1 is unbounded.
Also, complete the parabolic case in Sν .
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Some problems and size of sets

Problems
• Characterize the class of TVSs supporting FHC operators.
• Are there FHC operators such that FHC(T ) is residual or
at least of 2nd category?

Recall that if X is an F-space and T ∈ L(X ) is HC then HC(T )
is residual, that is, topologically large.
Might it be, in some sense, algebraically large?
A handicap: HC(T ) is not a vector space and 0 /∈ HC(T ).
But ... is it possible to find “large” vector spaces contained,
except for 0, in HC(T )?
This question can be put into a more general setting ...
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Lineability: definitions
Aron, Bayart, Gurariy, PérezGa, Quarta, Seoane, LBG. 2004-10
Assume that X is a TVS and µ is a cardinal number. A subset
A ⊂ X is called:
• µ-lineable if A ∪ {0} contains a vector space M with

dim(M) = µ,
• dense-lineable whenever A ∪ {0} contains a dense vector

subspace of X ,
• maximal dense-lineable if A ∪ {0} contains a dense vector

subspace M of X with dim(M) = dim(X )
[⇐⇒ dim (M) = c, if X a sep. inf-dim. F-space],

• spaceable whenever A ∪ {0} contains a closed infinite
dimensional vector subspace of X , and
• algebrable if X is a function space and A ∪ {0} contains
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Universality and Hypercyclicity
Lineability

Lineability and HC vectors, I

•With this terminology, let’s go back to hypercyclicity.

Herrero-Bourdon-Bès-Wengenroth, 1991-1993-1999-2003

X TVS and T ∈ L(X ) HC =⇒ HC(T ) is dense-lineable.

• Their construction gives a subspace M with dim (M) = ω.

LBG, 2000
X Banach space and T ∈ L(X ) HC =⇒ HC(T ) is maximal
dense-lineable.

• Extendable to Fréchet spaces?

Montes-LBG, 1995
G ⊂ C is a simply or infinitely connected domain and (ϕn) ⊂
Aut(G) runaway =⇒ U((Cϕn )) is spaceable.
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Montes-LBG, 1995
G ⊂ C is a simply or infinitely connected domain and (ϕn) ⊂
Aut(G) runaway =⇒ U((Cϕn )) is spaceable.

Bernal Universality and lineability



Universality and Hypercyclicity
Lineability

Lineability and HC vectors, I

•With this terminology, let’s go back to hypercyclicity.

Herrero-Bourdon-Bès-Wengenroth, 1991-1993-1999-2003

X TVS and T ∈ L(X ) HC =⇒ HC(T ) is dense-lineable.

• Their construction gives a subspace M with dim (M) = ω.

LBG, 2000
X Banach space and T ∈ L(X ) HC =⇒ HC(T ) is maximal
dense-lineable.

• Extendable to Fréchet spaces?
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Lineability and HC vectors, II

Montes, 1996. Bonet-Martı́nezG-Peris, 2004
Let X be a separable Fréchet space with a continuous norm,
and T ∈ L(X ). Suppose that there are X0,Y0 dense in X ,
(nk ) ↑⊂ N and an inf-dim closed subspace M0 ⊂ X satisfying:
(a) T nk x → 0 ∀x ∈ X0,

(b) for each y ∈ Y0 there is (xk ) ⊂ X0 with xk → 0 and T nk xk → y ,

(c) T nk x → 0 ∀x ∈ M0.

Then HC(T ) is spaceable.

• [Montes, 1996] If B is the b.w.s. on c0 then HC(2B) is not
spaceable.
• Sufficient conditions for FHC(T ) to be spaceable have been
found by Bonilla and Grosse-Erdmann (2011). They apply to τa
and Φ(D) with Φ entire transcendental. But, is FHC(D)
spaceable in H(C)? [HC(D) is spaceable (Shkarin, 2010)]
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Lineability and universality

CalderónM-LBG, 1999/2002.
Let X and Y be TVSs and (Tn) ⊂ L(X ,Y ).
(a) If Y is metrizable and (Tnk ) is universal for each (nk ) ↑⊂ N
then U((Tn)) is lineable.
(b) If X ,Y are metrizable and X is separable and U((Tnk )) is
dense for each (nk ) ↑⊂ N then U((Tn)) is dense-lineable.
(c) If X ,Y are metrizable, X is Baire and separable and, for
each ν ∈ N, (Tn,ν)n≥1 ⊂ L(X ,Y ) and U((Tnk ,ν)) is dense for
each (nk ) ↑⊂ N then

⋂
ν≥1 U((Tn,ν)) is dense-lineable.

Consequences

(a) [Calderón and LBG, 2002] The family of Luh-monsters is
dense-lineable.

(b) [Bayart, 2005] The class of universal Taylor series is
dense-lineable. [He also proved that it is spaceable].
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Lineability in function spaces, I

• Trivially, the set of differentiable functions on [0,1] is
dense-lineable in C[0,1], but it is not spaceable [Gurariy, 1966].

Fonf-Gurariy-Kadec-LRodrı́guezP. 1994/9
The set of nowhere differentiable functions is spaceable in
C[0,1]. In fact, any separable inf-dim Banach space is
isometrically isomorphic to a space of nowhere differenciable
functions ∪{0}.

Aron, D. Garcı́a and Maestre, 2001

Assume that G ⊂ CN is a domain of holomorphy. Then the set
of functions which cannot be holomorphically continued beyond
any point of ∂G is dense-lineable and spaceable in H(G).

• [LBG, 2005] Extension to some subspaces of H(D).
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Lineability in function spaces, II

CalderónM, PradoB and LBG, 2004
Assume that G ⊂ C is a Jordan domain. Then the set of
MCS(G) of f ∈ H(G) having maximal cluster set at any ξ ∈ ∂G
along any curve Γ ⊂ G tending to ∂G with ∂G \ Γ 6= ∅ is
dense-lineable.

• Combinations: [Bonilla-CalderónM-PradoB-LBG, 2009/12]
MCS(D) ∩UTS(D) and MCS(G) ∩U((Cϕn )) [G Jordan domain,
(ϕn) ⊂ Aut(G) runaway] are spaceable and maximal
dense-lineable.
• Aron, Conejero, Peris and Seoane (2007) proved that
f 2 /∈ HC(τ1) for any f entire and τ1-HC, but there are D-HC
functions f with f k ∈ HC(D) for all k ∈ N.

Is HC(D) algebrable?
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Algebrability in function spaces

Aron, Pérez Garcı́a and Seoane, 2006
Given E ⊂ T of measure 0, the set {f ∈ C(T) : the Fourier
series associated to f diverges at each t ∈ E} is algebrable.
The algebra can be obtained dense in C(T).

• Aron, Conejero, Peris and Seoane (2010) have proved that the family of everywhere

surjective functions C→ C contains, except for 0, an uncountable generated algebra.

Bartoszewicz, Glab, Pellegrino and Seoane, 2011

The set {f : C→ C : ∀ perfect set P ⊂ C and ∀r ∈ C,
card{z ∈ P : f (z) = r} = c} is 2c-algebrable.

Dense-lin. criterium. Aron-Garcı́aPacheco-PérezGa-Seoane
If A,B ⊂ X , with X a separable F-space, A lineable, B
dense-lineable and A ⊃ A + B then A is dense-lineable.
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Lineability criteria

• Example: Lp[0,1] \
⋃

q>p Lq[0,1] is dense-lineable.

Spaceability criteria

(a) [Kalton and Wilansky, 1975] If X is a Fréchet space and Y ⊂ X is a closed linear
subspace, with infinite codimension then X \ Y is spaceable.
(b) [Ordóñez and LBG, 2012] Assume that (E , ‖ · ‖) is a Banach space of fs X → K
and that A is a cone in E satisfying:
• Convergence in E implies pointwise convergence of a subsequence.
• ∃C ∈ (0,+∞) s.t. ‖f + g‖ ≥ C‖f‖ ∀f , g ∈ E with supp(f )∩ supp(g) = ∅.
• If f , g ∈ E are such that f + g ∈ A and supp(f )∩ supp(g) = ∅ then f , g ∈ A.
• ∃(fn) ⊂ E \ A with pairwise disjoint supports.
Then E \ A is spaceable.

• Example: Lp[0,1] \
⋃

q>p Lq[0,1] is spaceable
[Botelho-Fávaro-Pellegrino-Seoane-Ordóñez-LBG, 2012].
• It would be interesting to dispose of more dense-lineability,
spaceability criteria, and al least one algebrability criterium.
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