Universality and lineability: new trends

Luis Bernal González

Departamento de Análisis Matemático Universidad de Sevilla

VIII Encuentro de la Red de Análisis Funcional La Manga del Mar Menor, Murcia, Spain, 19–21 April (2012)

・ 回 ト ・ ヨ ト ・ ヨ ト

Fekete, 1914

There exists a real power series $\sum_{n=1}^{\infty} a_n x^n$ with the following property: for each continuous function $g : [-1, 1] \to \mathbb{R}$ with g(0) = 0, there exists $(n_k) \uparrow \subset \mathbb{N}$ such that $\sum_{n=1}^{n_k} a_n x^n \to g(x)$ $(k \to \infty)$ unif.

This is surprising, because every power series is the Taylor series of some function in C[∞](ℝ).
 [Borel, 1895]

Birkhoff, 1929

There exists an entire function $f : \mathbb{C} \to \mathbb{C}$ such that the sequence of its translates $\{z \mapsto f(z + n) : n \in \mathbb{N}\}$ is dense in $H(\mathbb{C})$.

Fekete, 1914

There exists a real power series $\sum_{n=1}^{\infty} a_n x^n$ with the following property: for each continuous function $g : [-1, 1] \to \mathbb{R}$ with g(0) = 0, there exists $(n_k) \uparrow \subset \mathbb{N}$ such that $\sum_{n=1}^{n_k} a_n x^n \to g(x)$ $(k \to \infty)$ unif.

This is surprising, because every power series is the Taylor series of some function in C[∞](ℝ).
 [Borel, 1895]

Birkhoff, 1929

There exists an entire function $f : \mathbb{C} \to \mathbb{C}$ such that the sequence of its translates $\{z \mapsto f(z + n) : n \in \mathbb{N}\}$ is dense in $H(\mathbb{C})$.

Fekete, 1914

There exists a real power series $\sum_{n=1}^{\infty} a_n x^n$ with the following property: for each continuous function $g : [-1, 1] \to \mathbb{R}$ with g(0) = 0, there exists $(n_k) \uparrow \subset \mathbb{N}$ such that $\sum_{n=1}^{n_k} a_n x^n \to g(x)$ $(k \to \infty)$ unif.

This is surprising, because every power series is the Taylor series of some function in C[∞](ℝ).
 [Borel, 1895]

Birkhoff, 1929

There exists an entire function $f : \mathbb{C} \to \mathbb{C}$ such that the sequence of its translates $\{z \mapsto f(z + n) : n \in \mathbb{N}\}$ is dense in $H(\mathbb{C})$.

118

MacLane, 1952

There exists an entire function $f : \mathbb{C} \to \mathbb{C}$ such that the sequence of its derivatives $\{f^{(n)} : n \in \mathbb{N}\}$ is dense in $H(\mathbb{C})$.

¿What do these 3 examples share?

They are objects with chaotic behaviour which, after a limit process, approximate each element of a maximal class of objects.

The preceding considerations lead to the following concept.

▲ □ ▶ ▲ □ ▶ ▲

MacLane, 1952

There exists an entire function $f : \mathbb{C} \to \mathbb{C}$ such that the sequence of its derivatives $\{f^{(n)} : n \in \mathbb{N}\}$ is dense in $H(\mathbb{C})$.

¿What do these 3 examples share?

They are objects with chaotic behaviour which, after a limit process, approximate each element of a maximal class of objects.

The preceding considerations lead to the following concept.

◆ @ ▶ ◆ ⊇ ▶ ◆ ⊇ ♪

MacLane, 1952

There exists an entire function $f : \mathbb{C} \to \mathbb{C}$ such that the sequence of its derivatives $\{f^{(n)} : n \in \mathbb{N}\}$ is dense in $H(\mathbb{C})$.

¿What do these 3 examples share?

They are objects with chaotic behaviour which, after a limit process, approximate each element of a maximal class of objects.

The preceding considerations lead to the following concept.

MacLane, 1952

There exists an entire function $f : \mathbb{C} \to \mathbb{C}$ such that the sequence of its derivatives $\{f^{(n)} : n \in \mathbb{N}\}$ is dense in $H(\mathbb{C})$.

¿What do these 3 examples share?

They are objects with chaotic behaviour which, after a limit process, approximate each element of a maximal class of objects.

The preceding considerations lead to the following concept.

Concepts

Definition

Assume that X and Y are TVs and that $T_n : X \to Y \ (n \ge 1)$ is a sequence of continuous mappings. We say that (T_n) is universal provided that there is an element $x_0 \in X$, called universal for (T_n) , such that $\overline{\{T_n x_0 : n \in \mathbb{N}\}} = Y$.

Definition

If X is a TVS and $T \in L(X)$, then T is called hypercyclic whenever the sequence of iterates $T^n : X \to X \ (n \ge 1)$ is universal. The corresponding vectors $x_0 \in X$ with dense orbit are called hypercyclic for T.

イロト イポト イヨト イヨト

Concepts

Definition

Assume that X and Y are TVs and that $T_n : X \to Y \ (n \ge 1)$ is a sequence of continuous mappings. We say that (T_n) is universal provided that there is an element $x_0 \in X$, called universal for (T_n) , such that $\overline{\{T_n x_0 : n \in \mathbb{N}\}} = Y$.

Definition

If X is a TVS and $T \in L(X)$, then T is called hypercyclic whenever the sequence of iterates $T^n : X \to X \ (n \ge 1)$ is universal. The corresponding vectors $x_0 \in X$ with dense orbit are called hypercyclic for T.

- The word hypercyclic was coined by Beauzamy in 1980. It reinforces the notion of cyclic operator: an operator *T* ∈ *L*(*X*) is called cyclic if there is a vector *x*₀ ∈ *X* such that span{*x*, *Tx*, *T*²*x*, ...} = *X*.
- With the preceding terminology, we get that the sequence $T_n : (a_n) \in \mathbb{R}^{\mathbb{N}} \mapsto \sum_{k=1}^n a_k x^k \in (C_0[0, 1], \|\cdot\|_{\infty}) \ (n \ge 1)$ is universal.
- The traslation op. $f \mapsto f(\cdot + 1)$ and the differentiation op. $f \mapsto f'$ are hypercyclic on $H(\mathbb{C})$.
- (T_n) universal \implies Y is separable.
- If an operator *T* is hypercyclic, the set *HC*(*T*) of HC vectors is dense in *X*.

ヘロト ヘワト ヘビト ヘビト

- The word hypercyclic was coined by Beauzamy in 1980. It reinforces the notion of cyclic operator: an operator *T* ∈ *L*(*X*) is called cyclic if there is a vector *x*₀ ∈ *X* such that span{*x*, *Tx*, *T*²*x*, ...} = *X*.
- With the preceding terminology, we get that the sequence $T_n : (a_n) \in \mathbb{R}^{\mathbb{N}} \mapsto \sum_{k=1}^n a_k x^k \in (C_0[0,1], \|\cdot\|_{\infty}) \ (n \ge 1)$ is universal.
- The traslation op. $f \mapsto f(\cdot + 1)$ and the differentiation op. $f \mapsto f'$ are hypercyclic on $H(\mathbb{C})$.
- (T_n) universal \implies Y is separable.
- If an operator *T* is hypercyclic, the set *HC*(*T*) of HC vectors is dense in *X*.

ヘロト ヘワト ヘビト ヘビト

- The word hypercyclic was coined by Beauzamy in 1980. It reinforces the notion of cyclic operator: an operator *T* ∈ *L*(*X*) is called cyclic if there is a vector *x*₀ ∈ *X* such that span{*x*, *Tx*, *T*²*x*, ...} = *X*.
- With the preceding terminology, we get that the sequence $T_n : (a_n) \in \mathbb{R}^{\mathbb{N}} \mapsto \sum_{k=1}^n a_k x^k \in (C_0[0, 1], \|\cdot\|_{\infty}) \ (n \ge 1)$ is universal.
- The traslation op. $f \mapsto f(\cdot + 1)$ and the differentiation op. $f \mapsto f'$ are hypercyclic on $H(\mathbb{C})$.
- (T_n) universal \implies Y is separable.
- If an operator *T* is hypercyclic, the set *HC*(*T*) of HC vectors is dense in *X*.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- The word hypercyclic was coined by Beauzamy in 1980. It reinforces the notion of cyclic operator: an operator *T* ∈ *L*(*X*) is called cyclic if there is a vector *x*₀ ∈ *X* such that span{*x*, *Tx*, *T*²*x*, ...} = *X*.
- With the preceding terminology, we get that the sequence $T_n : (a_n) \in \mathbb{R}^{\mathbb{N}} \mapsto \sum_{k=1}^n a_k x^k \in (C_0[0, 1], \|\cdot\|_{\infty}) \ (n \ge 1)$ is universal.
- The traslation op. $f \mapsto f(\cdot + 1)$ and the differentiation op. $f \mapsto f'$ are hypercyclic on $H(\mathbb{C})$.
- (T_n) universal \implies Y is separable.
- If an operator *T* is hypercyclic, the set *HC*(*T*) of HC vectors is dense in *X*.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- The word hypercyclic was coined by Beauzamy in 1980. It reinforces the notion of cyclic operator: an operator *T* ∈ *L*(*X*) is called cyclic if there is a vector *x*₀ ∈ *X* such that span{*x*, *Tx*, *T*²*x*, ...} = *X*.
- With the preceding terminology, we get that the sequence $T_n : (a_n) \in \mathbb{R}^{\mathbb{N}} \mapsto \sum_{k=1}^n a_k x^k \in (C_0[0, 1], \|\cdot\|_{\infty}) \ (n \ge 1)$ is universal.
- The traslation op. $f \mapsto f(\cdot + 1)$ and the differentiation op. $f \mapsto f'$ are hypercyclic on $H(\mathbb{C})$.
- (T_n) universal \implies Y is separable.
- If an operator T is hypercyclic, the set HC(T) of HC vectors is dense in X.

イロト イポト イヨト イヨト

A sufficient condition

Relation with the invariant subspace problem and the invariant subset problem: Given *T* ∈ *L*(*X*), each vector of *X* \ {0} is cyclic [hypercyclic, resp.] ⇔ *X* lacks closed *T*-invariant nontrivial subspaces [subsets, resp.]
 Read (1988) found in ℓ₁ an operator for which any nonzero vector is HC

Birkhoff, 1920

Let $T_n : X \to Y$ $(n \ge 1)$ be a sequence of continuous mappings between two TSs, with *X* Baire and *Y* 2nd countable. TFAE: (a) The subset $U((T_n))$ of universal els. is dense in *X*. (b) $U((T_n))$ is residual. (c) (T_n) is transitive, that is, given nonempty open sets $U \subset X, V \subset Y$, there exists $n \in \mathbb{N}$ such that $T_n(U) \cap V \neq \emptyset$.

ヘロト ヘアト ヘビト ヘビト

A sufficient condition

Relation with the invariant subspace problem and the invariant subset problem: Given *T* ∈ *L*(*X*), each vector of *X* \ {0} is cyclic [hypercyclic, resp.] ⇔ *X* lacks closed *T*-invariant nontrivial subspaces [subsets, resp.]
 Read (1988) found in ℓ₁ an operator for which any nonzero vector is HC.

Birkhoff, 1920

Let *T_n* : *X* → *Y* (*n* ≥ 1) be a sequence of continuous mappings between two TSs, with *X* Baire and *Y* 2nd countable. TFAE:
(a) The subset *U*((*T_n*)) of universal els. is dense in *X*.
(b) *U*((*T_n*)) is residual.
(c) (*T_n*) is transitive, that is, given nonempty open sets *U* ⊂ *X*, *V* ⊂ *Y*, there exists *n* ∈ ℕ such that *T_n*(*U*) ∩ *V* ≠ Ø.

ヘロト ヘアト ヘビト ヘビト

A sufficient condition

Relation with the invariant subspace problem and the invariant subset problem: Given *T* ∈ *L*(*X*), each vector of *X* \ {0} is cyclic [hypercyclic, resp.] ⇔ *X* lacks closed *T*-invariant nontrivial subspaces [subsets, resp.]
 Read (1988) found in ℓ₁ an operator for which any nonzero vector is HC.

Birkhoff, 1920

Let $T_n : X \to Y$ ($n \ge 1$) be a sequence of continuous mappings between two TSs, with X Baire and Y 2nd countable. TFAE: (a) The subset $U((T_n))$ of universal els. is dense in X. (b) $U((T_n))$ is residual. (c) (T_n) is transitive, that is, given nonempty open sets $U \subset X, V \subset Y$, there exists $n \in \mathbb{N}$ such that $T_n(U) \cap V \neq \emptyset$.

< ロ > < 同 > < 三 > .

• Thus, if X is a separable F-space we have: $T \in L(X)$ is HC $\iff T$ is transitive. In such a case, HC(T) es residual.

Rolewicz, 1969

If $T \in L(X)$ is HC then $\dim(X) = \infty$. If in addition X is locally convex, then $\sigma_P(T^*) = \emptyset$.

Kitai, 1982

If X is a complex Banach space and $T \in L(X)$ is HC then T is not compact and $\sigma(T) \cap \mathbb{T} \neq \emptyset$.

Rolewicz (1969) gave the 1st example of an HC operator on a Banach space.

ヘロト ヘアト ヘヨト ヘ

• Thus, if X is a separable F-space we have: $T \in L(X)$ is HC $\iff T$ is transitive. In such a case, HC(T) es residual.

Rolewicz, 1969

If $T \in L(X)$ is HC then $\dim(X) = \infty$. If in addition X is locally convex, then $\sigma_P(T^*) = \emptyset$.

Kitai, 1982

If X is a complex Banach space and $T \in L(X)$ is HC then T is not compact and $\sigma(T) \cap \mathbb{T} \neq \emptyset$.

Rolewicz (1969) gave the 1st example of an HC operator on a Banach space.

<ロ> (四) (四) (日) (日) (日)

• Thus, if X is a separable F-space we have: $T \in L(X)$ is HC $\iff T$ is transitive. In such a case, HC(T) es residual.

Rolewicz, 1969

If $T \in L(X)$ is HC then $\dim(X) = \infty$. If in addition X is locally convex, then $\sigma_P(T^*) = \emptyset$.

Kitai, 1982

If X is a complex Banach space and $T \in L(X)$ is HC then T is not compact and $\sigma(T) \cap \mathbb{T} \neq \emptyset$.

Rolewicz (1969) gave the 1st example of an HC operator on a Banach space.

(日)

• Thus, if X is a separable F-space we have: $T \in L(X)$ is HC $\iff T$ is transitive. In such a case, HC(T) es residual.

Rolewicz, 1969

If $T \in L(X)$ is HC then $\dim(X) = \infty$. If in addition X is locally convex, then $\sigma_P(T^*) = \emptyset$.

Kitai, 1982

If X is a complex Banach space and $T \in L(X)$ is HC then T is not compact and $\sigma(T) \cap \mathbb{T} \neq \emptyset$.

Rolewicz (1969) gave the 1st example of an HC operator on a Banach space.

Rolewicz, 1969

If $X = c_0$ or ℓ_p $(1 \le \ell_p < \infty)$, $|\lambda| > 1$, and *B* denotes the backward shift operator $B : (x_1, x_2, x_3, ...) \in X$ $\mapsto (x_2, x_3, x_4, ...) \in X$, then λB is HC.

Problem. Rolewicz, 1969

Given a separable Banach space X with $dim(X) = \infty$, does it support a HC operator?

• The main "testing fields" for the search of HC operators are: backward shifts, differentiation operators and composition operators.

If $\varphi \in H(\Omega, G)$, the composition operator associated to φ is defined as $C_{\varphi} : f \in H(G) \mapsto f \circ \varphi \in H(\Omega)$.

ヘロト ヘワト ヘビト ヘビト

Rolewicz, 1969

If $X = c_0$ or ℓ_p $(1 \le \ell_p < \infty)$, $|\lambda| > 1$, and *B* denotes the backward shift operator $B : (x_1, x_2, x_3, ...) \in X$ $\mapsto (x_2, x_3, x_4, ...) \in X$, then λB is HC.

Problem. Rolewicz, 1969

Given a separable Banach space X with $dim(X) = \infty$, does it support a HC operator?

• The main "testing fields" for the search of HC operators are: backward shifts, differentiation operators and composition operators.

If $\varphi \in H(\Omega, G)$, the composition operator associated to φ is defined as $C_{\varphi} : f \in H(G) \mapsto f \circ \varphi \in H(\Omega)$.

・ロト ・回ト ・ヨト ・ヨト

Rolewicz, 1969

If $X = c_0$ or ℓ_p $(1 \le \ell_p < \infty)$, $|\lambda| > 1$, and *B* denotes the backward shift operator $B : (x_1, x_2, x_3, ...) \in X$ $\mapsto (x_2, x_3, x_4, ...) \in X$, then λB is HC.

Problem. Rolewicz, 1969

Given a separable Banach space X with $dim(X) = \infty$, does it support a HC operator?

• The main "testing fields" for the search of HC operators are: backward shifts, differentiation operators and composition operators.

If $\varphi \in H(\Omega, G)$, the composition operator associated to φ is defined as $C_{\varphi} : f \in H(G) \mapsto f \circ \varphi \in H(\Omega)$.

ロトスプトメリトス

Seidel y Walsh, 1941

The non-euclidean translation operator $C_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$, where $\varphi(z) = \frac{z+a}{1+\overline{a}z}$ $[a \neq 0, |a| < 1]$ is HC.

Godefroy and Shapiro, 1991

If $\Phi(z) = \sum_{n=1} c_n z^n$ is an entire function of exponential type [lím sup_{$r\to\infty$} log $M(r, f)/\log r < \infty$], then the operator $\Phi(D) = \sum_{n=1} c_n D^n : H(\mathbb{C}) \to H(\mathbb{C})$ is HC.

Bourdon y Shapiro, 1993

If $p \in [1, \infty)$ and $\varphi \in Aut(\mathbb{D})$ is non-elliptic, then the operator $C_{\varphi} : H^p \longrightarrow H^p$ is HC.

Gallardo and Montes (2004) gave a complete characterization of $\varphi \in LFT(\mathbb{D})$ generating HC C_{φ} on $S_{\nu} = \{f(z) = \sum_{n=0} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2 (n+1)^{\nu} < 0$

<ロ> <四> <四> <四> <三</td>

Seidel y Walsh, 1941

The non-euclidean translation operator $C_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$, where $\varphi(z) = \frac{z+a}{1+\overline{a}z}$ $[a \neq 0, |a| < 1]$ is HC.

Godefroy and Shapiro, 1991

If $\Phi(z) = \sum_{n=1} c_n z^n$ is an entire function of exponential type [lím sup_{r→∞} log $M(r, f) / \log r < \infty$], then the operator $\Phi(D) = \sum_{n=1} c_n D^n : H(\mathbb{C}) \to H(\mathbb{C})$ is HC.

Bourdon y Shapiro, 1993

If $p \in [1, \infty)$ and $\varphi \in Aut(\mathbb{D})$ is non-elliptic, then the operator $C_{\varphi} : H^p \longrightarrow H^p$ is HC.

Gallardo and Montes (2004) gave a complete characterization of $\varphi \in LFT(\mathbb{D})$ generating HC C_{ω} on $S_{\nu} = \{f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2 (n+1)^{\nu} < 0$

<ロ> <四> <四> <四> <三</td>

Seidel y Walsh, 1941

The non-euclidean translation operator $C_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$, where $\varphi(z) = \frac{z+a}{1+\overline{a}z}$ $[a \neq 0, |a| < 1]$ is HC.

Godefroy and Shapiro, 1991

If $\Phi(z) = \sum_{n=1} c_n z^n$ is an entire function of exponential type [lím sup_{r→∞} log $M(r, f) / \log r < \infty$], then the operator $\Phi(D) = \sum_{n=1} c_n D^n : H(\mathbb{C}) \to H(\mathbb{C})$ is HC.

Bourdon y Shapiro, 1993

If $p \in [1, \infty)$ and $\varphi \in Aut(\mathbb{D})$ is non-elliptic, then the operator $C_{\varphi} : H^p \longrightarrow H^p$ is HC.

Gallardo and Montes (2004) gave a complete characterization of $\varphi \in LFT(\mathbb{D})$ generating HC C_{φ} on $S_{\nu} = \{f(z) = \sum_{n=0} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2 (n+1)^{\nu} < 0$

イロン 不得 とくほ とくほ とうほ

Seidel y Walsh, 1941

The non-euclidean translation operator $C_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$, where $\varphi(z) = \frac{z+a}{1+\overline{a}z}$ $[a \neq 0, |a| < 1]$ is HC.

Godefroy and Shapiro, 1991

If $\Phi(z) = \sum_{n=1} c_n z^n$ is an entire function of exponential type [lím sup_{r→∞} log $M(r, f) / \log r < \infty$], then the operator $\Phi(D) = \sum_{n=1} c_n D^n : H(\mathbb{C}) \to H(\mathbb{C})$ is HC.

Bourdon y Shapiro, 1993

If $p \in [1, \infty)$ and $\varphi \in Aut(\mathbb{D})$ is non-elliptic, then the operator $C_{\varphi} : H^{p} \longrightarrow H^{p}$ is HC.

Gallardo and Montes (2004) gave a complete characterization of $\varphi \in LFT(\mathbb{D})$ generating HC C_{φ} on $S_{\nu} = \{f(z) = \sum_{n=0} a_n z^n \in H(\mathbb{D}) : \sum_{n=0}^{\infty} |a_n|^2 (n+1)^{\nu} < \infty\}.$

イロン 不得 とくほ とくほ とうほ

Examples of HC operators, III. Existence

Montes and LBG, 1995. Grosse-Erdmann and Mortini, 2009

Let $G \subset \mathbb{C}$ be a simply connected or a infinitely connected domain, and $(\varphi_n) \subset \operatorname{Aut}(G)$. Then: $C_{\varphi_n} : H(G) \to H(G) \ (n \ge 1)$ is universal $\iff (\varphi_n)$ is runaway, that is, given a compact set $K \subset G$, there is $N = N(K) \in \mathbb{N}$ such that $K \cap \varphi_N(K) = \emptyset$.

Ansari and LBG, 1997; Bonet and Peris, 1998

If X is a separable Fréchet space with $dim(X) = \infty$ then there exists some HC operator T on X.

T can be chosen to be onto. If *X* is Banach, *T* can be chosen to be bijective and of the form *T* = *I* + *K*, with *K* compact y nilpotent [σ(*T*) = {0}].

・ロト ・ 同ト ・ ヨト ・ ヨト

Examples of HC operators, III. Existence

Montes and LBG, 1995. Grosse-Erdmann and Mortini, 2009

Let $G \subset \mathbb{C}$ be a simply connected or a infinitely connected domain, and $(\varphi_n) \subset \operatorname{Aut}(G)$. Then: $C_{\varphi_n} : H(G) \to H(G) \ (n \ge 1)$ is universal $\iff (\varphi_n)$ is runaway, that is, given a compact set $K \subset G$, there is $N = N(K) \in \mathbb{N}$ such that $K \cap \varphi_N(K) = \emptyset$.

Ansari and LBG, 1997; Bonet and Peris, 1998

If X is a separable Fréchet space with $dim(X) = \infty$ then there exists some HC operator T on X.

T can be chosen to be onto. If *X* is Banach, *T* can be chosen to be bijective and of the form *T* = *I* + *K*, with *K* compact y nilpotent [σ(*T*) = {0}].

・ロト ・ 同ト ・ ヨト ・ ヨト

Examples of HC operators, III. Existence

Montes and LBG, 1995. Grosse-Erdmann and Mortini, 2009

Let $G \subset \mathbb{C}$ be a simply connected or a infinitely connected domain, and $(\varphi_n) \subset \operatorname{Aut}(G)$. Then: $C_{\varphi_n} : H(G) \to H(G) \ (n \ge 1)$ is universal $\iff (\varphi_n)$ is runaway, that is, given a compact set $K \subset G$, there is $N = N(K) \in \mathbb{N}$ such that $K \cap \varphi_N(K) = \emptyset$.

Ansari and LBG, 1997; Bonet and Peris, 1998

If X is a separable Fréchet space with $dim(X) = \infty$ then there exists some HC operator T on X.

T can be chosen to be onto. If *X* is Banach, *T* can be chosen to be bijective and of the form *T* = *I* + *K*, with *K* compact y nilpotent [σ(*T*) = {0}].

ヘロト ヘアト ヘヨト ヘ

Existence and non-existence

Problem

Which [separable, infinite dimensional] TVSs support HC operators?

- [Bonet and Peris (1998)] φ = ⊕_{n∈ℕ}ℝ does not carry a HC operator.
- [Grosse-Erdmann (1999)] L^p[0,1] (0
- [Shkarin (2010)] $L^p[0,1] \oplus \mathbb{R}$ does not carry a HC operator.
- [Shkarin (2010)] Every normed space with countable dimension carries a HC operator.

• Imp • • model • •

-∃=->

Existence and non-existence

Problem

Which [separable, infinite dimensional] TVSs support HC operators?

- [Bonet and Peris (1998)] φ = ⊕_{n∈ℕ}ℝ does not carry a HC operator.
- [Grosse-Erdmann (1999)] L^p[0, 1] (0
- [Shkarin (2010)] $L^p[0,1] \oplus \mathbb{R}$ does not carry a HC operator.
- [Shkarin (2010)] Every normed space with countable dimension carries a HC operator.

▲ □ ▶ ▲ □ ▶ ▲

-∃=->
Existence and non-existence

Problem

Which [separable, infinite dimensional] TVSs support HC operators?

- [Bonet and Peris (1998)] φ = ⊕_{n∈ℕ}ℝ does not carry a HC operator.
- [Grosse-Erdmann (1999)] L^p[0, 1] (0
- [Shkarin (2010)] $L^p[0,1] \oplus \mathbb{R}$ does not carry a HC operator.
- [Shkarin (2010)] Every normed space with countable dimension carries a HC operator.

< 回 > < 回 > .

Existence and non-existence

Problem

Which [separable, infinite dimensional] TVSs support HC operators?

- [Bonet and Peris (1998)] φ = ⊕_{n∈ℕ}ℝ does not carry a HC operator.
- [Grosse-Erdmann (1999)] L^p[0, 1] (0
- [Shkarin (2010)] $L^p[0,1] \oplus \mathbb{R}$ does not carry a HC operator.
- [Shkarin (2010)] Every normed space with countable dimension carries a HC operator.

< 🗇 > < 🖻 > .

-∃=->

Existence and non-existence

Problem

Which [separable, infinite dimensional] TVSs support HC operators?

- [Bonet and Peris (1998)] φ = ⊕_{n∈ℕ}ℝ does not carry a HC operator.
- [Grosse-Erdmann (1999)] L^p[0, 1] (0
- [Shkarin (2010)] $L^p[0,1] \oplus \mathbb{R}$ does not carry a HC operator.
- [Shkarin (2010)] Every normed space with countable dimension carries a HC operator.

Bernal

HC semigroups of operators

Definition

Let *X* be a TVS. A family $\{T_t\}_{t\geq 0} \subset L(X)$ is a strongly continuous semigroup of operators in L(X) if $T_0 = I$, $T_tT_s = T_{t+s} \forall t, s \geq 0$, and $\lim_{t\to s} T_t x = T_s x \forall s \geq 0, x \in X$. A SCS $\{T_t\}_{t\geq 0}$ is said to be hypercyclic if $\{T_t x : t \geq 0\}$ is dense in *X* for some $x \in X$, called HC for (T_t) .

Conejero, Müller and Peris, 2007

Let X be an F-space and $\mathcal{T} = (T_t)_{t \ge 0}$ be a SCS on it. Then: \mathcal{T} is HC \iff each $T_u [u > 0]$ is HC \iff some T_u is HC. In this case, $HC(T_u) = HC(\mathcal{T}) \forall u > 0$.

... Hence, at least theoretically and in the setting of F-spaces, the problems that could be posed for hypercyclicity of semigroups come down to problems for single operators.

イロト 不得 とくほ とくほ とうほ

HC semigroups of operators

Definition

Let *X* be a TVS. A family $\{T_t\}_{t\geq 0} \subset L(X)$ is a strongly continuous semigroup of operators in L(X) if $T_0 = I$, $T_tT_s = T_{t+s} \forall t, s \geq 0$, and $\lim_{t\to s} T_t x = T_s x \forall s \geq 0, x \in X$. A SCS $\{T_t\}_{t\geq 0}$ is said to be hypercyclic if $\{T_t x : t \geq 0\}$ is dense in *X* for some $x \in X$, called HC for (T_t) .

Conejero, Müller and Peris, 2007

Let *X* be an F-space and $\mathcal{T} = (T_t)_{t \ge 0}$ be a SCS on it. Then: \mathcal{T} is HC \iff each $T_u [u > 0]$ is HC \iff some T_u is HC. In this case, $HC(T_u) = HC(\mathcal{T}) \forall u > 0$.

... Hence, at least theoretically and in the setting of F-spaces, the problems that could be posed for hypercyclicity of semigroups come down to problems for single operators.

・ロト ・ 理 ト ・ ヨ ト ・

HC semigroups of operators

Definition

Let *X* be a TVS. A family $\{T_t\}_{t\geq 0} \subset L(X)$ is a strongly continuous semigroup of operators in L(X) if $T_0 = I$, $T_tT_s = T_{t+s} \forall t, s \geq 0$, and $\lim_{t\to s} T_t x = T_s x \forall s \geq 0, x \in X$. A SCS $\{T_t\}_{t\geq 0}$ is said to be hypercyclic if $\{T_t x : t \geq 0\}$ is dense in *X* for some $x \in X$, called HC for (T_t) .

Conejero, Müller and Peris, 2007

Let *X* be an F-space and $\mathcal{T} = (T_t)_{t \ge 0}$ be a SCS on it. Then: \mathcal{T} is HC \iff each $T_u [u > 0]$ is HC \iff some T_u is HC. In this case, $HC(T_u) = HC(\mathcal{T}) \forall u > 0$.

... Hence, at least theoretically and in the setting of F-spaces, the problems that could be posed for hypercyclicity of semigroups come down to problems for single operators.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Holomorphic monsters, I

Luh, 1985

If $G \subset \mathbb{C}$ is a s.c. domain, a holomorphic monster on G is a function $f \in H(G)$ satisfying: given $g \in H(\mathbb{D})$, $\xi \in \partial G$ and any derivative or antiderivative F of f of any order, there are sequences $a_n \to 0$ and $b_n \to \xi$ such that $a_n z + b_n \in G$ $(n \ge 1, z \in \mathbb{D})$ and $F(a_n z + b_n) \to g(z)$ in $H(\mathbb{D})$.

Luh, 1985. Grosse-Erdmann, 1987

There are holomorphic monsters, and in fact they form a residual set in H(G).

M.C. Calderón and LBG (2000) conceived the notion of holomorphic *T*-monster, where *T* ∈ *L*(*H*(*G*)): simply replace *F* above by *Tf*.

Holomorphic monsters, I

Luh, 1985

If $G \subset \mathbb{C}$ is a s.c. domain, a holomorphic monster on G is a function $f \in H(G)$ satisfying: given $g \in H(\mathbb{D})$, $\xi \in \partial G$ and any derivative or antiderivative F of f of any order, there are sequences $a_n \to 0$ and $b_n \to \xi$ such that $a_n z + b_n \in G$ $(n \ge 1, z \in \mathbb{D})$ and $F(a_n z + b_n) \to g(z)$ in $H(\mathbb{D})$.

Luh, 1985. Grosse-Erdmann, 1987

There are holomorphic monsters, and in fact they form a residual set in H(G).

M.C. Calderón and LBG (2000) conceived the notion of holomorphic *T*-monster, where *T* ∈ *L*(*H*(*G*)): simply replace *F* above by *Tf*.

Holomorphic monsters, I

Luh, 1985

If $G \subset \mathbb{C}$ is a s.c. domain, a holomorphic monster on G is a function $f \in H(G)$ satisfying: given $g \in H(\mathbb{D})$, $\xi \in \partial G$ and any derivative or antiderivative F of f of any order, there are sequences $a_n \to 0$ and $b_n \to \xi$ such that $a_n z + b_n \in G$ $(n \ge 1, z \in \mathbb{D})$ and $F(a_n z + b_n) \to g(z)$ in $H(\mathbb{D})$.

Luh, 1985. Grosse-Erdmann, 1987

There are holomorphic monsters, and in fact they form a residual set in H(G).

M.C. Calderón and LBG (2000) conceived the notion of holomorphic *T*-monster, where *T* ∈ *L*(*H*(*G*)): simply replace *F* above by *Tf*.

Holomorphic monsters, II

• By considering countable families $(T_n) \subset L(H(G))$ and the theory of universality, it is possible to extend the theory of holomorphic monsters.

Theorem

There is residuality in all H(G)-cases.

ヘロト ヘアト ヘヨト ヘ

3

Holomorphic monsters, II

• By considering countable families $(T_n) \subset L(H(G))$ and the theory of universality, it is possible to extend the theory of holomorphic monsters.

Theorem

(a) [Calderón and LBG, 2000] If $G \subset \mathbb{C}$ is a domain, $\Phi \neq 0$ is an entire function of exponential type and $\lambda \in \mathbb{C}$ then there are *T*-monsters in H(G) for the operators $T = \Phi(D)$ and $(Tf)(z) = \lambda f(z) + \int_{a}^{z} \Phi(z-t)f(t) dt$ [here if G is s. connected]. (b) [Calderón and LBG, 2001] There are no Luh-monsters in H^p $(1 \le p < \infty)$. For any polynomial $P \ne 0$, there are P(D)-monsters in H^p . (c) [Calderón, Grosse-E. and LBG, 2002] If $\varphi \in H(G, G)$ then there are C_{α} -monsters in $H(G) \iff$ for every $V \in O(\partial G)$ the set $\varphi(V \cap G)$ is not relatively compact in G.

There is residuality in all H(G)-cases.

ヘロト ヘアト ヘヨト ヘ

Holomorphic monsters, II

• By considering countable families $(T_n) \subset L(H(G))$ and the theory of universality, it is possible to extend the theory of holomorphic monsters.

Theorem

(a) [Calderón and LBG, 2000] If $G \subset \mathbb{C}$ is a domain, $\Phi \neq 0$ is an entire function of exponential type and $\lambda \in \mathbb{C}$ then there are *T*-monsters in H(G) for the operators $T = \Phi(D)$ and $(Tf)(z) = \lambda f(z) + \int_{z}^{z} \Phi(z-t)f(t) dt$ [here if G is s. connected]. (b) [Calderón and LBG, 2001] There are no Luh-monsters in H^p $(1 \le p < \infty)$. For any polynomial $P \ne 0$, there are P(D)-monsters in H^p . (c) [Calderón, Grosse-E. and LBG, 2002] If $\varphi \in H(G, G)$ then there are C_{α} -monsters in $H(G) \iff$ for every $V \in O(\partial G)$ the set $\varphi(V \cap G)$ is not relatively compact in G.

• There is residuality in all H(G)-cases.

 In 1905 Porter discovered the phenomenon of overconvergence: some power series possess subsequences for their partial sums being convergent beyond the circle of convergence.

Nestoridis, 1996

There are universal Taylor series (UTS) in $H(\mathbb{D})$, that is, functions $f(z) = \sum_{n=0}^{\infty} f_n z^n \in H(\mathbb{D})$ satisfying that, for every compact set $K \subset \mathbb{C} \setminus \mathbb{D}$ with $\mathbb{C} \setminus K$ connected and every $h \in A(K) := C(K) \cap H(K^0), \exists (\lambda_n) \uparrow \subset \mathbb{N}_0$ such that $S(\lambda_n, f, z) := \sum_{k=0}^{\lambda_n} f_k z^k \longrightarrow h$ unif. on K.

- Luh (1970) and Chui and Parnes (1971) had proved a similar property but with $K \subset \mathbb{C} \setminus \overline{\mathbb{D}}$.
- The set of UTSs is in fact residual in $H(\mathbb{D})$.

 In 1905 Porter discovered the phenomenon of overconvergence: some power series possess subsequences for their partial sums being convergent beyond the circle of convergence.

Nestoridis, 1996

There are universal Taylor series (UTS) in $H(\mathbb{D})$, that is, functions $f(z) = \sum_{n=0}^{\infty} f_n z^n \in H(\mathbb{D})$ satisfying that, for every compact set $K \subset \mathbb{C} \setminus \mathbb{D}$ with $\mathbb{C} \setminus K$ connected and every $h \in A(K) := C(K) \cap H(K^0), \exists (\lambda_n) \uparrow \subset \mathbb{N}_0$ such that $S(\lambda_n, f, z) := \sum_{k=0}^{\lambda_n} f_k z^k \longrightarrow h$ unif. on K.

• Luh (1970) and Chui and Parnes (1971) had proved a similar property but with $K \subset \mathbb{C} \setminus \overline{\mathbb{D}}$.

Bernal

• The set of UTSs is in fact residual in $H(\mathbb{D})$.

< 🗇 🕨 🔸

 In 1905 Porter discovered the phenomenon of overconvergence: some power series possess subsequences for their partial sums being convergent beyond the circle of convergence.

Nestoridis, 1996

There are universal Taylor series (UTS) in $H(\mathbb{D})$, that is, functions $f(z) = \sum_{n=0}^{\infty} f_n z^n \in H(\mathbb{D})$ satisfying that, for every compact set $K \subset \mathbb{C} \setminus \mathbb{D}$ with $\mathbb{C} \setminus K$ connected and every $h \in A(K) := C(K) \cap H(K^0), \exists (\lambda_n) \uparrow \subset \mathbb{N}_0$ such that $S(\lambda_n, f, z) := \sum_{k=0}^{\lambda_n} f_k z^k \longrightarrow h$ unif. on K.

- Luh (1970) and Chui and Parnes (1971) had proved a similar property but with K ⊂ C \ D.
- The set of UTSs is in fact residual in $H(\mathbb{D})$.

 In 1905 Porter discovered the phenomenon of overconvergence: some power series possess subsequences for their partial sums being convergent beyond the circle of convergence.

Nestoridis, 1996

There are universal Taylor series (UTS) in $H(\mathbb{D})$, that is, functions $f(z) = \sum_{n=0}^{\infty} f_n z^n \in H(\mathbb{D})$ satisfying that, for every compact set $K \subset \mathbb{C} \setminus \mathbb{D}$ with $\mathbb{C} \setminus K$ connected and every $h \in A(K) := C(K) \cap H(K^0), \exists (\lambda_n) \uparrow \subset \mathbb{N}_0$ such that $S(\lambda_n, f, z) := \sum_{k=0}^{\lambda_n} f_k z^k \longrightarrow h$ unif. on K.

- Luh (1970) and Chui and Parnes (1971) had proved a similar property but with K ⊂ C \ D.
- The set of UTSs is in fact residual in $H(\mathbb{D})$.

• The last result can be extended by using summability methods.

Definition

Let $\mathcal{A} = [\alpha_{n\nu}]_{n,\nu=0}^{\infty}$ be an infinite matrix in \mathbb{C} . We say that \mathcal{A} is a C-matrix if:

• $\forall n \in \mathbb{N}_0$, $\lim_{\nu \to \infty} |\alpha_{n\nu}|^{1/\nu} = 0$.

• $\forall \nu \in \mathbb{N}_0$, $\lim_{n \to \infty} \alpha_{n\nu} = 0$.

• $\lim_{n\to\infty}\sum_{\nu=0}^{\infty}\alpha_{n\nu}\in\mathbb{C}\setminus\{0\}.$

If \mathcal{A} is a C-matrix, a function $f \in H(\mathbb{D})$ is called a \mathcal{A} -universal Taylor series if it satisfies the same property as a UTS but replacing S(n, f, z) by $S_{\mathcal{A}}(n, f, z) := \sum_{\nu=0}^{\infty} \alpha_{n\nu} S(\nu, f, z)$.

Melas and Nestoridis, 2001; Calderón, Luh and LBG, 2006

Given \mathcal{A} as before, there is a residual subset in $H(\mathbb{D})$ consisting of \mathcal{A} -UTSs.

• The last result can be extended by using summability methods.

Definition

Let $\mathcal{A} = [\alpha_{n\nu}]_{n,\nu=0}^{\infty}$ be an infinite matrix in \mathbb{C} . We say that \mathcal{A} is a C-matrix if:

• $\forall n \in \mathbb{N}_0$, $\lim_{\nu \to \infty} |\alpha_{n\nu}|^{1/\nu} = 0$.

•
$$\forall \nu \in \mathbb{N}_0$$
, $\lim_{n \to \infty} \alpha_{n\nu} = 0$.

•
$$\lim_{n\to\infty}\sum_{\nu=0}^{\infty}\alpha_{n\nu}\in\mathbb{C}\setminus\{0\}.$$

If \mathcal{A} is a C-matrix, a function $f \in H(\mathbb{D})$ is called a \mathcal{A} -universal Taylor series if it satisfies the same property as a UTS but replacing S(n, f, z) by $S_{\mathcal{A}}(n, f, z) := \sum_{\nu=0}^{\infty} \alpha_{n\nu} S(\nu, f, z)$.

Melas and Nestoridis, 2001; Calderón, Luh and LBG, 2006

Given \mathcal{A} as before, there is a residual subset in $H(\mathbb{D})$ consisting of \mathcal{A} -UTSs.

• The last result can be extended by using summability methods.

Definition

Let $\mathcal{A} = [\alpha_{n\nu}]_{n,\nu=0}^{\infty}$ be an infinite matrix in \mathbb{C} . We say that \mathcal{A} is a C-matrix if:

• $\forall n \in \mathbb{N}_0$, $\lim_{\nu \to \infty} |\alpha_{n\nu}|^{1/\nu} = 0$.

•
$$\forall \nu \in \mathbb{N}_0$$
, $\lim_{n \to \infty} \alpha_{n\nu} = 0$.

•
$$\lim_{n\to\infty}\sum_{\nu=0}^{\infty}\alpha_{n\nu}\in\mathbb{C}\setminus\{0\}.$$

If \mathcal{A} is a C-matrix, a function $f \in H(\mathbb{D})$ is called a \mathcal{A} -universal Taylor series if it satisfies the same property as a UTS but replacing S(n, f, z) by $S_{\mathcal{A}}(n, f, z) := \sum_{\nu=0}^{\infty} \alpha_{n\nu} S(\nu, f, z)$.

Melas and Nestoridis, 2001; Calderón, Luh and LBG, 2006

Given A as before, there is a residual subset in $H(\mathbb{D})$ consisting of A-UTSs.

Bayart and Grivaux, 2006

Let X be a TVS. Then an operator $T \in L(X)$ is said to be frequent hypercyclic if $\exists x \in X$ s.t., for every nonempty open set $U \subset X$, $\liminf_{n \to \infty} \frac{\operatorname{card} \{k \in \{1, ..., n\} : T^k x \in U\}}{n} > 0.$

• Replacing T^n by $T_n \in L(X, Y)$ one reaches the notion of frequent universal sequence (FU) of mappings.

• Connection with Ergodic Theory: *X* separable F-space, $T \in L(X)$ and $\exists \mu$ Borel

probability measure with supp(μ) = X s.t. T is μ -ergodic \implies T is FHC.

Bayart and Grivaux, 2006

The following ops. are FHC: any translation $\tau_a f = f(\cdot + a)$ on $H(\mathbb{C})$, any C_{φ} on $H(\mathbb{D})$ with non-elliptic $\varphi \in \operatorname{Aut}(\mathbb{D})$, and any multiple λB ($|\lambda| > 1$) of the b.w.s. on c_0 or ℓ_p ($1 \le p < \infty$).

・ロット (雪) (山) (日)

Bayart and Grivaux, 2006

Let X be a TVS. Then an operator $T \in L(X)$ is said to be frequent hypercyclic if $\exists x \in X$ s.t., for every nonempty open set $U \subset X$, $\liminf_{n \to \infty} \frac{\operatorname{card} \{k \in \{1, ..., n\} : T^k x \in U\}}{n} > 0.$

• Replacing T^n by $T_n \in L(X, Y)$ one reaches the notion of frequent universal sequence (FU) of mappings.

• Connection with Ergodic Theory: *X* separable F-space, $T \in L(X)$ and $\exists \mu$ Borel

probability measure with supp $(\mu) = X$ s.t. T is μ -ergodic \implies T is FHC.

Bayart and Grivaux, 2006

The following ops. are FHC: any translation $\tau_a f = f(\cdot + a)$ on $H(\mathbb{C})$, any C_{φ} on $H(\mathbb{D})$ with non-elliptic $\varphi \in \operatorname{Aut}(\mathbb{D})$, and any multiple λB ($|\lambda| > 1$) of the b.w.s. on c_0 or ℓ_p ($1 \le p < \infty$).

・ ロ ア ・ 雪 ア ・ 雪 ア ・ 日 ア

Bayart and Grivaux, 2006

Let X be a TVS. Then an operator $T \in L(X)$ is said to be frequent hypercyclic if $\exists x \in X$ s.t., for every nonempty open set $U \subset X$, $\liminf_{n \to \infty} \frac{\operatorname{card} \{k \in \{1, ..., n\} : T^k x \in U\}}{n} > 0.$

• Replacing T^n by $T_n \in L(X, Y)$ one reaches the notion of frequent universal sequence (FU) of mappings.

• Connection with Ergodic Theory: X separable F-space, $T \in L(X)$ and $\exists \mu$ Borel

probability measure with supp(μ) = X s.t. T is μ -ergodic \implies T is FHC.

Bayart and Grivaux, 2006

The following ops. are FHC: any translation $\tau_a f = f(\cdot + a)$ on $H(\mathbb{C})$, any C_{φ} on $H(\mathbb{D})$ with non-elliptic $\varphi \in \operatorname{Aut}(\mathbb{D})$, and any multiple λB ($|\lambda| > 1$) of the b.w.s. on c_0 or ℓ_p ($1 \le p < \infty$).

・ ロ ア ・ 雪 ア ・ 雪 ア ・ 日 ア

Bayart and Grivaux, 2006

Let X be a TVS. Then an operator $T \in L(X)$ is said to be frequent hypercyclic if $\exists x \in X$ s.t., for every nonempty open set $U \subset X$, $\liminf_{n \to \infty} \frac{\operatorname{card} \{k \in \{1, ..., n\} : T^k x \in U\}}{n} > 0.$

• Replacing T^n by $T_n \in L(X, Y)$ one reaches the notion of frequent universal sequence (FU) of mappings.

• Connection with Ergodic Theory: X separable F-space, $T \in L(X)$ and $\exists \mu$ Borel

probability measure with supp(μ) = X s.t. T is μ -ergodic \implies T is FHC.

Bayart and Grivaux, 2006

The following ops. are FHC: any translation $\tau_a f = f(\cdot + a)$ on $H(\mathbb{C})$, any C_{φ} on $H(\mathbb{D})$ with non-elliptic $\varphi \in \operatorname{Aut}(\mathbb{D})$, and any multiple λB ($|\lambda| > 1$) of the b.w.s. on c_0 or ℓ_p ($1 \le p < \infty$).

ヘロン 人間 とくほとく ほう

Bonilla and Grosse-Erdmann, 2007

Assume that Φ is a nonconstant entire function of exponential type. Then $\Phi(D)$ is FHC.

There is not residuality in these examples: *FHC*(τ_a),
 FHC(C_φ), *FHC*(λB) and *FHC*(Φ(D)) are of first category.

Theorem

(a) [Shkarin, 2009] There are Banach spaces which do not support FHC operators.

(b) [De la Rosa, Frerick, Grivaux and Peris, 2011] Every complex infinite dimensional Fréchet space with an unconditional basis supports a FHC operator.

イロト イポト イヨト イヨト

Bonilla and Grosse-Erdmann, 2007

Assume that Φ is a nonconstant entire function of exponential type. Then $\Phi(D)$ is FHC.

There is not residuality in these examples: *FHC*(τ_a),
 FHC(C_φ), *FHC*(λB) and *FHC*(Φ(D)) are of first category.

Theorem

(a) [Shkarin, 2009] There are Banach spaces which do not support FHC operators.

(b) [De la Rosa, Frerick, Grivaux and Peris, 2011] Every complex infinite dimensional Fréchet space with an unconditional basis supports a FHC operator.

イロト イポト イヨト イヨト

Bonilla and Grosse-Erdmann, 2007

Assume that Φ is a nonconstant entire function of exponential type. Then $\Phi(D)$ is FHC.

There is not residuality in these examples: *FHC*(τ_a),
 FHC(C_φ), *FHC*(λB) and *FHC*(Φ(D)) are of first category.

Theorem

(a) [Shkarin, 2009] There are Banach spaces which do not support FHC operators.
(b) [De la Rosa, Frerick, Grivaux and Peris, 2011] Every complex infinite dimensional Fréchet space with an unconditional basis supports a FHC operator.

ヘロト ヘワト ヘビト ヘビト

Bonilla and LBG, 2010

Suppose that $\varphi \in LFT(\mathbb{D})$ is not a parabolic automorphism. We have: C_{φ} is FHC on $S_{\nu} \iff C_{\varphi}$ is HC.

LBG, 2012

If $(a_n) \subset \mathbb{C}$ is a sequence such that $\lim_{k\to\infty} \inf_{n\in\mathbb{N}} |a_{n+k} - a_n| = +\infty$ then the sequence of translations (τ_{a_n}) is frequently universal on $H(\mathbb{C})$.

Problems

• What sequences $(\varphi_n(z) = a_n z + b_n) \subset \operatorname{Aut}(\mathbb{C})$ satisfy that (C_{φ_n}) is FU on $H(\mathbb{C})$? Recall [Montes and LBG, 1995] that (C_{φ_n}) is universal $\iff \{\min\{|b_n|, |b_n/a_n|\}\}_{n\geq 1}$ is unbounded. Also, complete the parabolic case in S_{ν} .

Bonilla and LBG, 2010

Suppose that $\varphi \in LFT(\mathbb{D})$ is not a parabolic automorphism. We have: C_{φ} is FHC on $S_{\nu} \iff C_{\varphi}$ is HC.

LBG, 2012

If $(a_n) \subset \mathbb{C}$ is a sequence such that $\lim_{k\to\infty} \inf_{n\in\mathbb{N}} |a_{n+k} - a_n| = +\infty$ then the sequence of translations (τ_{a_n}) is frequently universal on $H(\mathbb{C})$.

Problems

• What sequences $(\varphi_n(z) = a_n z + b_n) \subset \operatorname{Aut}(\mathbb{C})$ satisfy that (C_{φ_n}) is FU on $H(\mathbb{C})$? Recall [Montes and LBG, 1995] that (C_{φ_n}) is universal $\iff \{\min\{|b_n|, |b_n/a_n|\}\}_{n \ge 1}$ is unbounded. Also, complete the parabolic case in S_{ν} .

Bonilla and LBG, 2010

Suppose that $\varphi \in LFT(\mathbb{D})$ is not a parabolic automorphism. We have: C_{φ} is FHC on $S_{\nu} \iff C_{\varphi}$ is HC.

LBG, 2012

If $(a_n) \subset \mathbb{C}$ is a sequence such that $\lim_{k\to\infty} \inf_{n\in\mathbb{N}} |a_{n+k} - a_n| = +\infty$ then the sequence of translations (τ_{a_n}) is frequently universal on $H(\mathbb{C})$.

Problems

• What sequences $(\varphi_n(z) = a_n z + b_n) \subset \operatorname{Aut}(\mathbb{C})$ satisfy that (C_{φ_n}) is FU on $H(\mathbb{C})$? Recall [Montes and LBG, 1995] that (C_{φ_n}) is universal $\iff \{\min\{|b_n|, |b_n/a_n|\}\}_{n\geq 1}$ is unbounded. Also, complete the parabolic case in S_{ν} .

118

Problems

Characterize the class of TVSs supporting FHC operators.
Are there FHC operators such that FHC(T) is residual or at least of 2nd category?

Recall that if X is an F-space and $T \in L(X)$ is HC then HC(T) is residual, that is, topologically large. Might it be, in some sense, algebraically large? A handicap: HC(T) is not a vector space and $0 \notin HC(T)$. But ... is it possible to find "large" vector spaces contained, except for 0, in HC(T)? This question can be put into a more general setting ...

▲ @ ▶ ▲ ⊇ ▶

Problems

- Characterize the class of TVSs supporting FHC operators.
- Are there FHC operators such that FHC(T) is residual or at least of 2nd category?

Recall that if X is an F-space and $T \in L(X)$ is HC then HC(T) is residual, that is, topologically large. Might it be, in some sense, algebraically large? A handicap: HC(T) is not a vector space and $0 \notin HC(T)$. But ... is it possible to find "large" vector spaces contained, except for 0, in HC(T)? This question can be put into a more general setting ...

▲ @ ▶ ▲ ⊇ ▶

Problems

- Characterize the class of TVSs supporting FHC operators.
- Are there FHC operators such that FHC(T) is residual or at least of 2nd category?

Recall that if X is an F-space and $T \in L(X)$ is HC then HC(T) is residual, that is, topologically large.

Might it be, in some sense, algebraically large? A handicap: HC(T) is not a vector space and $0 \notin HC(T)$. But ... is it possible to find "large" vector spaces contained, except for 0, in HC(T)?

This question can be put into a more general setting ...

▲ @ ▶ ▲ ⊇ ▶

Problems

- Characterize the class of TVSs supporting FHC operators.
- Are there FHC operators such that FHC(T) is residual or at least of 2nd category?

Recall that if X is an F-space and $T \in L(X)$ is HC then HC(T) is residual, that is, topologically large. Might it be, in some sense, algebraically large? A handicap: HC(T) is not a vector space and $0 \notin HC(T)$. But ... is it possible to find "large" vector spaces contained, except for 0, in HC(T)? This question can be put into a more general setting ...

▲ (型) ▲ (三) ▲

Problems

- Characterize the class of TVSs supporting FHC operators.
- Are there FHC operators such that FHC(T) is residual or at least of 2nd category?

Recall that if X is an F-space and $T \in L(X)$ is HC then HC(T) is residual, that is, topologically large. Might it be, in some sense, algebraically large? A handicap: HC(T) is not a vector space and $0 \notin HC(T)$. But ... is it possible to find "large" vector spaces contained, except for 0, in HC(T)? This question can be put into a more general setting ...

< 同 > < 三 >

Problems

- Characterize the class of TVSs supporting FHC operators.
- Are there FHC operators such that FHC(T) is residual or at least of 2nd category?

Recall that if X is an F-space and $T \in L(X)$ is HC then HC(T)is residual, that is, topologically large. Might it be, in some sense, algebraically large? A handicap: HC(T) is not a vector space and $0 \notin HC(T)$. But ... is it possible to find "large" vector spaces contained, except for 0, in HC(T)?

This question can be put into a more general setting ...

Lineability: definitions

Aron, Bayart, Gurariy, PérezG^a, Quarta, Seoane, LBG. 2004-10

Assume that X is a TVS and μ is a cardinal number. A subset $A \subset X$ is called:

- μ-lineable if A ∪ {0} contains a vector space M with dim(M) = μ,
- dense-lineable whenever A ∪ {0} contains a dense vector subspace of X,
- maximal dense-lineable if A ∪ {0} contains a dense vector subspace M of X with dim(M) = dim(X)
 [⇔ dim (M) = c, if X a sep. inf-dim. F-space],
- spaceable whenever A ∪ {0} contains a closed infinite dimensional vector subspace of X, and
- algebrable if *X* is a function space and *A* ∪ {0} contains some infinitely generated algebra.

Aron, Bayart, Gurariy, PérezG^a, Quarta, Seoane, LBG. 2004-10

- μ-lineable if A ∪ {0} contains a vector space M with dim(M) = μ,
- dense-lineable whenever A ∪ {0} contains a dense vector subspace of X,
- maximal dense-lineable if A ∪ {0} contains a dense vector subspace M of X with dim(M) = dim(X)
 [⇐⇒ dim (M) = c, if X a sep. inf-dim. F-space],
- spaceable whenever A ∪ {0} contains a closed infinite dimensional vector subspace of X, and
- algebrable if *X* is a function space and *A* ∪ {0} contains some infinitely generated algebra.

Aron, Bayart, Gurariy, PérezG^a, Quarta, Seoane, LBG. 2004-10

- μ-lineable if A ∪ {0} contains a vector space M with dim(M) = μ,
- dense-lineable whenever A ∪ {0} contains a dense vector subspace of X,
- maximal dense-lineable if A ∪ {0} contains a dense vector subspace M of X with dim(M) = dim(X)
 [⇐⇒ dim (M) = c, if X a sep. inf-dim. F-space],
- spaceable whenever A ∪ {0} contains a closed infinite dimensional vector subspace of X, and
- algebrable if *X* is a function space and *A* ∪ {0} contains some infinitely generated algebra.

Aron, Bayart, Gurariy, PérezG^a, Quarta, Seoane, LBG. 2004-10

- μ-lineable if A ∪ {0} contains a vector space M with dim(M) = μ,
- dense-lineable whenever A ∪ {0} contains a dense vector subspace of X,
- maximal dense-lineable if A ∪ {0} contains a dense vector subspace M of X with dim(M) = dim(X)
 [⇔ dim (M) = c, if X a sep. inf-dim. F-space],
- spaceable whenever A ∪ {0} contains a closed infinite dimensional vector subspace of X, and
- algebrable if *X* is a function space and *A* ∪ {0} contains some infinitely generated algebra.

Aron, Bayart, Gurariy, PérezG^a, Quarta, Seoane, LBG. 2004-10

- μ-lineable if A ∪ {0} contains a vector space M with dim(M) = μ,
- dense-lineable whenever A ∪ {0} contains a dense vector subspace of X,
- maximal dense-lineable if A ∪ {0} contains a dense vector subspace M of X with dim(M) = dim(X)
 [⇔ dim (M) = c, if X a sep. inf-dim. F-space],
- spaceable whenever A ∪ {0} contains a closed infinite dimensional vector subspace of X, and
- algebrable if *X* is a function space and *A* ∪ {0} contains some infinitely generated algebra.

• With this terminology, let's go back to hypercyclicity.

Herrero-Bourdon-Bès-Wengenroth, 1991-1993-1999-2003 *X* TVS and $T \in L(X)$ HC \implies *HC*(*T*) is dense-lineable.

• Their construction gives a subspace M with dim $(M) = \omega$.

LBG, 2000

X Banach space and $T \in L(X)$ HC \implies HC(T) is maximal dense-lineable.

• Extendable to Fréchet spaces?

Montes-LBG, 1995

• With this terminology, let's go back to hypercyclicity.

Herrero-Bourdon-Bès-Wengenroth, 1991-1993-1999-2003

X TVS and $T \in L(X)$ HC \implies *HC*(*T*) is dense-lineable.

• Their construction gives a subspace *M* with dim $(M) = \omega$.

LBG, 2000

X Banach space and $T \in L(X)$ HC \implies HC(T) is maximal dense-lineable.

• Extendable to Fréchet spaces?

Montes-LBG, 1995

• With this terminology, let's go back to hypercyclicity.

Herrero-Bourdon-Bès-Wengenroth, 1991-1993-1999-2003

X TVS and $T \in L(X)$ HC \implies HC(T) is dense-lineable.

• Their construction gives a subspace M with dim $(M) = \omega$.

LBG, 2000

X Banach space and $T \in L(X)$ HC \implies HC(T) is maximal dense-lineable.

• Extendable to Fréchet spaces?

Montes-LBG, 1995

• With this terminology, let's go back to hypercyclicity.

Herrero-Bourdon-Bès-Wengenroth, 1991-1993-1999-2003

X TVS and $T \in L(X)$ HC \implies HC(T) is dense-lineable.

• Their construction gives a subspace M with dim $(M) = \omega$.

LBG, 2000

X Banach space and $T \in L(X)$ HC \implies HC(T) is maximal dense-lineable.

• Extendable to Fréchet spaces?

Montes-LBG, 1995

• With this terminology, let's go back to hypercyclicity.

Herrero-Bourdon-Bès-Wengenroth, 1991-1993-1999-2003

X TVS and $T \in L(X)$ HC \implies HC(T) is dense-lineable.

• Their construction gives a subspace M with dim $(M) = \omega$.

LBG, 2000

X Banach space and $T \in L(X)$ HC \implies HC(T) is maximal dense-lineable.

• Extendable to Fréchet spaces?

Montes-LBG, 1995

• With this terminology, let's go back to hypercyclicity.

Herrero-Bourdon-Bès-Wengenroth, 1991-1993-1999-2003

X TVS and $T \in L(X)$ HC \implies HC(T) is dense-lineable.

• Their construction gives a subspace M with dim $(M) = \omega$.

LBG, 2000

X Banach space and $T \in L(X)$ HC \implies HC(T) is maximal dense-lineable.

• Extendable to Fréchet spaces?

Montes-LBG, 1995

 $G \subset \mathbb{C}$ is a simply or infinitely connected domain and $(\varphi_n) \subset$ Aut(G) runaway $\implies U((C_{\varphi_n}))$ is spaceable.

Montes, 1996. Bonet-MartínezG-Peris, 2004

Let X be a separable Fréchet space with a continuous norm, and $T \in L(X)$. Suppose that there are X_0 , Y_0 dense in X, $(n_k) \uparrow \subset \mathbb{N}$ and an inf-dim closed subspace $M_0 \subset X$ satisfying: (a) $T^{n_k}x \to 0 \forall x \in X_0$, (b) for each $y \in Y_0$ there is $(x_k) \subset X_0$ with $x_k \to 0$ and $T^{n_k}x_k \to y$, (c) $T^{n_k}x \to 0 \forall x \in M_0$. Then HC(T) is spaceable.

• [Montes, 1996] If *B* is the b.w.s. on c_0 then HC(2B) is not spaceable.

• Sufficient conditions for FHC(T) to be spaceable have been found by Bonilla and Grosse-Erdmann (2011). They apply to τ_a and $\Phi(D)$ with Φ entire transcendental. But, is FHC(D)spaceable in $H(\mathbb{C})$? [HC(D) is spaceable (Shkarin, 2010)]

Montes, 1996. Bonet-MartínezG-Peris, 2004

Let X be a separable Fréchet space with a continuous norm, and $T \in L(X)$. Suppose that there are X_0 , Y_0 dense in X, $(n_k) \uparrow \subset \mathbb{N}$ and an inf-dim closed subspace $M_0 \subset X$ satisfying: (a) $T^{n_k}x \to 0 \forall x \in X_0$, (b) for each $y \in Y_0$ there is $(x_k) \subset X_0$ with $x_k \to 0$ and $T^{n_k}x_k \to y$, (c) $T^{n_k}x \to 0 \forall x \in M_0$. Then HC(T) is spaceable.

• [Montes, 1996] If *B* is the b.w.s. on c_0 then HC(2B) is not spaceable.

• Sufficient conditions for FHC(T) to be spaceable have been found by Bonilla and Grosse-Erdmann (2011). They apply to τ_a and $\Phi(D)$ with Φ entire transcendental. But, is FHC(D)spaceable in $H(\mathbb{C})$? [HC(D) is spaceable (Shkarin, 2010)]

Montes, 1996. Bonet-MartínezG-Peris, 2004

```
Let X be a separable Fréchet space with a continuous norm,
and T \in L(X). Suppose that there are X_0, Y_0 dense in X,
(n_k) \uparrow \subset \mathbb{N} and an inf-dim closed subspace M_0 \subset X satisfying:
(a) T^{n_k}x \to 0 \forall x \in X_0,
(b) for each y \in Y_0 there is (x_k) \subset X_0 with x_k \to 0 and T^{n_k}x_k \to y,
(c) T^{n_k}x \to 0 \forall x \in M_0.
Then HC(T) is spaceable.
```

• [Montes, 1996] If *B* is the b.w.s. on c_0 then HC(2B) is not spaceable.

• Sufficient conditions for FHC(T) to be spaceable have been found by Bonilla and Grosse-Erdmann (2011). They apply to τ_a and $\Phi(D)$ with Φ entire transcendental. But, is FHC(D)spaceable in $H(\mathbb{C})$? [HC(D) is spaceable (Shkarin, 2010)]

Lineability and universality

CalderónM-LBG, 1999/2002.

Let X and Y be TVSs and $(T_n) \subset L(X, Y)$.

(a) If *Y* is metrizable and (T_{n_k}) is universal for each $(n_k) \uparrow \subset \mathbb{N}$ then $U((T_n))$ is lineable.

(b) If *X*, *Y* are metrizable and *X* is separable and $U((T_{n_k}))$ is dense for each $(n_k) \uparrow \subset \mathbb{N}$ then $U((T_n))$ is dense-lineable. (c) If *X*, *Y* are metrizable, *X* is Baire and separable and, for each $\nu \in \mathbb{N}$, $(T_{n,\nu})_{n\geq 1} \subset L(X, Y)$ and $U((T_{n_k,\nu}))$ is dense for each $(n_k) \uparrow \subset \mathbb{N}$ then $\bigcap_{\nu>1} U((T_{n,\nu}))$ is dense-lineable.

Consequences

(a) [Calderón and LBG, 2002] The family of Luh-monsters is dense-lineable.

(b) [Bayart, 2005] The class of universal Taylor series is dense-lineable. [He also proved that it is spaceable].

Lineability and universality

CalderónM-LBG, 1999/2002.

Let X and Y be TVSs and $(T_n) \subset L(X, Y)$.

(a) If *Y* is metrizable and (T_{n_k}) is universal for each $(n_k) \uparrow \subset \mathbb{N}$ then $U((T_n))$ is lineable.

(b) If *X*, *Y* are metrizable and *X* is separable and $U((T_{n_k}))$ is dense for each $(n_k) \uparrow \subset \mathbb{N}$ then $U((T_n))$ is dense-lineable. (c) If *X*, *Y* are metrizable, *X* is Baire and separable and, for each $\nu \in \mathbb{N}$, $(T_{n,\nu})_{n\geq 1} \subset L(X, Y)$ and $U((T_{n_k,\nu}))$ is dense for each $(n_k) \uparrow \subset \mathbb{N}$ then $\bigcap_{\nu>1} U((T_{n,\nu}))$ is dense-lineable.

Consequences

(a) [Calderón and LBG, 2002] The family of Luh-monsters is dense-lineable.

(b) [Bayart, 2005] The class of universal Taylor series is dense-lineable. [He also proved that it is spaceable].

• Trivially, the set of differentiable functions on [0, 1] is dense-lineable in C[0, 1], but it is not spaceable [Gurariy, 1966].

Fonf-Gurariy-Kadec-LRodríguezP. 1994/9

The set of nowhere differentiable functions is spaceable in C[0, 1]. In fact, any separable inf-dim Banach space is isometrically isomorphic to a space of nowhere differenciable functions $\cup \{0\}$.

Aron, D. García and Maestre, 2001

Assume that $G \subset \mathbb{C}^N$ is a domain of holomorphy. Then the set of functions which cannot be holomorphically continued beyond any point of ∂G is dense-lineable and spaceable in H(G).

• Trivially, the set of differentiable functions on [0, 1] is dense-lineable in C[0, 1], but it is not spaceable [Gurariy, 1966].

Fonf-Gurariy-Kadec-LRodríguezP. 1994/9

The set of nowhere differentiable functions is spaceable in C[0, 1]. In fact, any separable inf-dim Banach space is isometrically isomorphic to a space of nowhere differenciable functions $\cup \{0\}$.

Aron, D. García and Maestre, 2001

Assume that $G \subset \mathbb{C}^N$ is a domain of holomorphy. Then the set of functions which cannot be holomorphically continued beyond any point of ∂G is dense-lineable and spaceable in H(G).

• Trivially, the set of differentiable functions on [0, 1] is dense-lineable in C[0, 1], but it is not spaceable [Gurariy, 1966].

Fonf-Gurariy-Kadec-LRodríguezP. 1994/9

The set of nowhere differentiable functions is spaceable in C[0, 1]. In fact, any separable inf-dim Banach space is isometrically isomorphic to a space of nowhere differenciable functions $\cup \{0\}$.

Aron, D. García and Maestre, 2001

Assume that $G \subset \mathbb{C}^N$ is a domain of holomorphy. Then the set of functions which cannot be holomorphically continued beyond any point of ∂G is dense-lineable and spaceable in H(G).

• Trivially, the set of differentiable functions on [0, 1] is dense-lineable in C[0, 1], but it is not spaceable [Gurariy, 1966].

Fonf-Gurariy-Kadec-LRodríguezP. 1994/9

The set of nowhere differentiable functions is spaceable in C[0, 1]. In fact, any separable inf-dim Banach space is isometrically isomorphic to a space of nowhere differenciable functions $\cup \{0\}$.

Aron, D. García and Maestre, 2001

Assume that $G \subset \mathbb{C}^N$ is a domain of holomorphy. Then the set of functions which cannot be holomorphically continued beyond any point of ∂G is dense-lineable and spaceable in H(G).

• Trivially, the set of differentiable functions on [0, 1] is dense-lineable in C[0, 1], but it is not spaceable [Gurariy, 1966].

Fonf-Gurariy-Kadec-LRodríguezP. 1994/9

The set of nowhere differentiable functions is spaceable in C[0, 1]. In fact, any separable inf-dim Banach space is isometrically isomorphic to a space of nowhere differenciable functions $\cup \{0\}$.

Aron, D. García and Maestre, 2001

Assume that $G \subset \mathbb{C}^N$ is a domain of holomorphy. Then the set of functions which cannot be holomorphically continued beyond any point of ∂G is dense-lineable and spaceable in H(G).

• [LBG, 2005] Extension to some subspaces of $H(\mathbb{D})$.

Bernal

CalderónM, PradoB and LBG, 2004

Assume that $G \subset \mathbb{C}$ is a Jordan domain. Then the set of MCS(G) of $f \in H(G)$ having maximal cluster set at any $\xi \in \partial G$ along any curve $\Gamma \subset G$ tending to ∂G with $\partial G \setminus \overline{\Gamma} \neq \emptyset$ is dense-lineable.

• Combinations: [Bonilla-CalderónM-PradoB-LBG, 2009/12] $MCS(\mathbb{D}) \cap UTS(\mathbb{D})$ and $MCS(G) \cap U((C_{\varphi_n}))$ [*G* Jordan domain, $(\varphi_n) \subset Aut(G)$ runaway] are spaceable and maximal dense-lineable.

• Aron, Conejero, Peris and Seoane (2007) proved that $f^2 \notin HC(\tau_1)$ for any *f* entire and τ_1 -HC, but there are *D*-HC functions *f* with $f^k \in HC(D)$ for all $k \in \mathbb{N}$.

Is HC(D) algebrable?

イロト イポト イヨト イヨト

CalderónM, PradoB and LBG, 2004

Assume that $G \subset \mathbb{C}$ is a Jordan domain. Then the set of MCS(G) of $f \in H(G)$ having maximal cluster set at any $\xi \in \partial G$ along any curve $\Gamma \subset G$ tending to ∂G with $\partial G \setminus \overline{\Gamma} \neq \emptyset$ is dense-lineable.

• Combinations: [Bonilla-CalderónM-PradoB-LBG, 2009/12] $MCS(\mathbb{D}) \cap UTS(\mathbb{D})$ and $MCS(G) \cap U((C_{\varphi_n}))$ [*G* Jordan domain, $(\varphi_n) \subset Aut(G)$ runaway] are spaceable and maximal dense-lineable.

• Aron, Conejero, Peris and Seoane (2007) proved that $f^2 \notin HC(\tau_1)$ for any *f* entire and τ_1 -HC, but there are *D*-HC functions *f* with $f^k \in HC(D)$ for all $k \in \mathbb{N}$.

ls HC(D) algebrable?

CalderónM, PradoB and LBG, 2004

Assume that $G \subset \mathbb{C}$ is a Jordan domain. Then the set of MCS(G) of $f \in H(G)$ having maximal cluster set at any $\xi \in \partial G$ along any curve $\Gamma \subset G$ tending to ∂G with $\partial G \setminus \overline{\Gamma} \neq \emptyset$ is dense-lineable.

• Combinations: [Bonilla-CalderónM-PradoB-LBG, 2009/12] $MCS(\mathbb{D}) \cap UTS(\mathbb{D})$ and $MCS(G) \cap U((C_{\varphi_n}))$ [*G* Jordan domain, $(\varphi_n) \subset Aut(G)$ runaway] are spaceable and maximal dense-lineable.

• Aron, Conejero, Peris and Seoane (2007) proved that $f^2 \notin HC(\tau_1)$ for any f entire and τ_1 -HC, but there are D-HC functions f with $f^k \in HC(D)$ for all $k \in \mathbb{N}$.

Is HC(D) algebrable?

・ 同 ト ・ ヨ ト ・ ヨ ト

Aron, Pérez García and Seoane, 2006

Given $E \subset \mathbb{T}$ of measure 0, the set $\{f \in C(\mathbb{T}) :$ the Fourier series associated to *f* diverges at each $t \in E\}$ is algebrable. The algebra can be obtained dense in $C(\mathbb{T})$.

• Aron, Conejero, Peris and Seoane (2010) have proved that the family of everywhere surjective functions $\mathbb{C} \to \mathbb{C}$ contains, except for 0, an uncountable generated algebra.

Bartoszewicz, Glab, Pellegrino and Seoane, 2011

The set $\{f : \mathbb{C} \to \mathbb{C} : \forall \text{ perfect set } P \subset \mathbb{C} \text{ and } \forall r \in \mathbb{C}, \text{ card} \{z \in P : f(z) = r\} = c\}$ is 2^{*c*}-algebrable.

Dense-lin. criterium. Aron-GarcíaPacheco-PérezG^a-Seoane If $A, B \subset X$, with X a separable F-space, A lineable, B dense-lineable and $A \supset A + B$ then A is dense-lineable.

Aron, Pérez García and Seoane, 2006

Given $E \subset \mathbb{T}$ of measure 0, the set $\{f \in C(\mathbb{T}) :$ the Fourier series associated to *f* diverges at each $t \in E\}$ is algebrable. The algebra can be obtained dense in $C(\mathbb{T})$.

• Aron, Conejero, Peris and Seoane (2010) have proved that the family of everywhere surjective functions $\mathbb{C} \to \mathbb{C}$ contains, except for 0, an uncountable generated algebra.

Bartoszewicz, Glab, Pellegrino and Seoane, 2011

The set $\{f : \mathbb{C} \to \mathbb{C} : \forall \text{ perfect set } P \subset \mathbb{C} \text{ and } \forall r \in \mathbb{C}, \text{ card} \{z \in P : f(z) = r\} = c\}$ is 2^{*c*}-algebrable.

Dense-lin. criterium. Aron-GarcíaPacheco-PérezG^a-Seoane If $A, B \subset X$, with X a separable F-space, A lineable, B dense-lineable and $A \supset A + B$ then A is dense-lineable.

Aron, Pérez García and Seoane, 2006

Given $E \subset \mathbb{T}$ of measure 0, the set $\{f \in C(\mathbb{T}) :$ the Fourier series associated to *f* diverges at each $t \in E\}$ is algebrable. The algebra can be obtained dense in $C(\mathbb{T})$.

• Aron, Conejero, Peris and Seoane (2010) have proved that the family of everywhere surjective functions $\mathbb{C} \to \mathbb{C}$ contains, except for 0, an uncountable generated algebra.

Bartoszewicz, Glab, Pellegrino and Seoane, 2011

The set $\{f : \mathbb{C} \to \mathbb{C} : \forall \text{ perfect set } P \subset \mathbb{C} \text{ and } \forall r \in \mathbb{C}, \text{ card} \{z \in P : f(z) = r\} = c\}$ is 2^{*c*}-algebrable.

Dense-lin. criterium. Aron-GarcíaPacheco-PérezG^a-Seoane If $A, B \subset X$, with X a separable F-space, A lineable, B dense-lineable and $A \supset A + B$ then A is dense-lineable.

Aron, Pérez García and Seoane, 2006

Given $E \subset \mathbb{T}$ of measure 0, the set $\{f \in C(\mathbb{T}) :$ the Fourier series associated to *f* diverges at each $t \in E\}$ is algebrable. The algebra can be obtained dense in $C(\mathbb{T})$.

• Aron, Conejero, Peris and Seoane (2010) have proved that the family of everywhere surjective functions $\mathbb{C} \to \mathbb{C}$ contains, except for 0, an uncountable generated algebra.

Bartoszewicz, Glab, Pellegrino and Seoane, 2011

The set $\{f : \mathbb{C} \to \mathbb{C} : \forall \text{ perfect set } P \subset \mathbb{C} \text{ and } \forall r \in \mathbb{C}, \text{ card} \{z \in P : f(z) = r\} = c\}$ is 2^{*c*}-algebrable.

Dense-lin. criterium. Aron-GarcíaPacheco-PérezG^a-Seoane

If $A, B \subset X$, with X a separable F-space, A lineable, B dense-lineable and $A \supset A + B$ then A is dense-lineable.

118

• Example: $L^{p}[0,1] \setminus \bigcup_{q>p} L^{q}[0,1]$ is dense-lineable.

Spaceability criteria

(a) [Kalton and Wilansky, 1975] If X is a Fréchet space and Y ⊂ X is a closed linear subspace, with infinite codimension then X \ Y is spaceable.
(b) [Ordóñez and LBG, 2012] Assume that (E, || · ||) is a Banach space of fs X → K and that A is a cone in E satisfying:
Convergence in E implies pointwise convergence of a subsequence.
∃C ∈ (0, +∞) s.t. ||f + g|| ≥ C||f|| ∀f, g ∈ E with supp(f) ∩ supp(g) = Ø.
If f, g ∈ E are such that f + g ∈ A and supp(f) ∩ supp(g) = Ø then f, g ∈ A.
∃(f_n) ⊂ E \ A with pairwise disjoint supports.

Example: L^p[0, 1] \ ∪_{q>p} L^q[0, 1] is spaceable
[Botelho-Fávaro-Pellegrino-Seoane-Ordóñez-LBG, 2012].
It would be interesting to dispose of more dense-lineability, spaceability criteria, and al least one algebrability criterium.

• Example: $L^{p}[0,1] \setminus \bigcup_{q>p} L^{q}[0,1]$ is dense-lineable.

Spaceability criteria

(a) [Kalton and Wilansky, 1975] If X is a Fréchet space and Y ⊂ X is a closed linear subspace, with infinite codimension then X \ Y is spaceable.
(b) [Ordóñez and LBG, 2012] Assume that (E, || · ||) is a Banach space of fs X → K and that A is a cone in E satisfying:

- Convergence in *E* implies pointwise convergence of a subsequence.
- $\exists C \in (0, +\infty)$ s.t. $||f + g|| \ge C ||f|| \ \forall f, g \in E$ with $\operatorname{supp}(f) \cap \operatorname{supp}(g) = \emptyset$.
- If $f, g \in E$ are such that $f + g \in A$ and $supp(f) \cap supp(g) = \emptyset$ then $f, g \in A$.
- $\exists (f_n) \subset E \setminus A$ with pairwise disjoint supports.
- Then $E \setminus A$ is spaceable.

Example: L^p[0,1] \ U_{q>p} L^q[0,1] is spaceable
[Botelho-Fávaro-Pellegrino-Seoane-Ordóñez-LBG, 2012].
It would be interesting to dispose of more dense-lineability, spaceability criteria, and al least one algebrability criterium.

• Example: $L^{p}[0,1] \setminus \bigcup_{q>p} L^{q}[0,1]$ is dense-lineable.

Spaceability criteria

(a) [Kalton and Wilansky, 1975] If X is a Fréchet space and Y ⊂ X is a closed linear subspace, with infinite codimension then X \ Y is spaceable.
(b) [Ordóñez and LBG, 2012] Assume that (E, || · ||) is a Banach space of fs X → K and that A is a cone in E satisfying:
Convergence in E implies pointwise convergence of a subsequence.
∃C ∈ (0, +∞) s.t. ||f + g|| ≥ C||f|| ∀f, g ∈ E with supp(f) ∩ supp(g) = Ø.
If f, g ∈ E are such that f + g ∈ A and supp(f) ∩ supp(g) = Ø then f, g ∈ A.

- $\exists (f_n) \subset E \setminus A$ with pairwise disjoint supports.
- Then $E \setminus A$ is spaceable.

• Example: $L^{p}[0,1] \setminus \bigcup_{q>p} L^{q}[0,1]$ is spaceable [Botelho-Fávaro-Pellegrino-Seoane-Ordóñez-LBG, 2012].

• It would be interesting to dispose of more dense-lineability, spaceability criteria, and al least one algebrability criterium.

• Example: $L^{p}[0,1] \setminus \bigcup_{q>p} L^{q}[0,1]$ is dense-lineable.

Spaceability criteria

(a) [Kalton and Wilansky, 1975] If X is a Fréchet space and Y ⊂ X is a closed linear subspace, with infinite codimension then X \ Y is spaceable.
(b) [Ordóñez and LBG, 2012] Assume that (E, || · ||) is a Banach space of fs X → K and that A is a cone in E satisfying:
Convergence in E implies pointwise convergence of a subsequence.
∃C ∈ (0, +∞) s.t. ||f + g|| ≥ C||f|| ∀f, g ∈ E with supp(f) ∩ supp(g) = Ø.
If f, g ∈ E are such that f + g ∈ A and supp(f) ∩ supp(g) = Ø then f, g ∈ A.
∃(f_n) ⊂ E \ A with pairwise disjoint supports. Then E \ A is spaceable.

Example: L^p[0,1] \ ∪_{q>p} L^q[0,1] is spaceable
[Botelho-Fávaro-Pellegrino-Seoane-Ordóñez-LBG, 2012].
It would be interesting to dispose of more dense-lineability, spaceability criteria, and al least one algebrability criterium.

・ロト ・ 同ト ・ ヨト ・ ヨト

Bibliography

R.M. Aron, V.I. Gurariy and J.B. Seoane

Lineability and spaceability of sets of functions on **R**. Proc. Amer. Math. Soc. **133** (2005), 795–803.

R.M. Aron, D. Pérez-García and J.B. Seoane

Algebrability of the set of non-convergent Fourier series. Studia Math. **175** (2006), 83–90.

F. Bayart and E. Matheron

Dynamics of Linear Operators. Cambridge Tracts in Mathematics, Cambridge University Press, 2009.

K.G. Grosse-Erdmann

Universal families and hypercyclic operators. Bull. Amer. Math. Soc. N. S. **36** (1999), 345–381.

K.G. Grosse-Erdmann and A. Peris

Linear Chaos. Springer, New York, 2011.

-∃=->

Bibliography

R.M. Aron, V.I. Gurariy and J.B. Seoane

Lineability and spaceability of sets of functions on **R**. Proc. Amer. Math. Soc. **133** (2005), 795–803.

R.M. Aron, D. Pérez-García and J.B. Seoane

Algebrability of the set of non-convergent Fourier series. Studia Math. **175** (2006), 83–90.

F. Bayart and E. Matheron

Dynamics of Linear Operators. Cambridge Tracts in Mathematics, Cambridge University Press, 2009.

K.G. Grosse-Erdmann

Universal families and hypercyclic operators. Bull. Amer. Math. Soc. N. S. **36** (1999), 345–381.

K.G. Grosse-Erdmann and A. Peris

Linear Chaos. Springer, New York, 2011.

THANK YOU