
SABIO: SOFT AGENT FOR EXTENDED INFORMATION RETRIEVAL
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& In the current study, an integrated system called SABIO is presented. The current system
applies Information Retrieval (IR) techniques developed for collections of textual documents to non-
textual corpa. SABIO integrates a fuzzy logic-based procedure for IR. Its search algorithm improves
the IR efficiency and decreases the computational burden by using a fuzzy logic-based procedure for
IR. This procedure is integrated in a flexible and fault-tolerant, human-reasoning-based search
algorithm. The Accumulated Knowledge Set (AKS) of the system is sorted in a hierarchic
multilevel tree-structure-like ontology. The objects in the AKS are represented using a novel
human-reasoning-based-method. This representation takes into account the occurrence of related
terms. The system uses a novel fuzzy logic-based term-weighting (TW) method. The developed fuzzy
logic method improves the classical term frequency–inverse document frequency (TF=IDF) method,
generally used for TW. The abovementioned system is the core of a wizard for search into the website
of the University of Seville, www.us.es, which is currently in testing.

INTRODUCTION

The World Wide Web and the Internet allow users to access a wealth of
information. This fact and the large quantity, and ever-growing, amount
of information available make the demand for Information Retrieval (IR)
techniques to increase (Aronson Rindflesch, and Browne,1994; Liu et al.
2001). IR research deals mainly with documents. Achieving both high
recall and precision in IR is one of its most important aims. IR has been
widely used for text classification (Aronson et al. 1994; Liu et al. 2001)
introducing approaches such as Vector Space Model (VSM), k-nearest
neighbor method (KNN), Bayesian classification model and Support
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Address correspondence to Ariel Gómez, Departamento de Tecnologı́a Electrónica, Escuela
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Vector Machine (SVM; Lu et al. 2002). In another vein, text mining (TM)
techniques provide information derived as a result of the text document
contents.

Due to the container environment, retrieved objects are textual
(document, web pages, etc.). So, document retrieval systems are widely
developed and applied for textual-type set search. Mainly, there are two
approaches to the query: either the user provides a few keywords, or
the user provides a document to use as a model. The second type of
queries achieves a good degree of accuracy, but leads to an important
computational load. This method is not suitable for large sets of accumu-
lated knowledge. Furthermore, a keyword-based model has less computa-
tional burden and a similar structure to the question that a person would
make. This feature is significant in systems where the man-machine
interface is the natural language.

One of the most extended methods for keyword-based document
content identification is the vector space model (VSM; Raghavan and
Wong 1986). The method of representation of nontextual objects
proposed in the current study is based on the VSM. In VSM, each docu-
ment is represented by a set of words present in it (keywords). These key-
words are chosen with the help of a stop list. The VSM rejects every
matching word. Those remaining are called index terms and represent
the document in the system. However, not all index terms are equally
important for identifying the document they represent. So, it is necessary
to add a factor to indicate its importance. This factor is known as the
term-weight (TW).

One of the factors habitually used for term weighting in VSM is the
so-called term frequency-inverse document frequency (TF-IDF; Lee,
Chuang, and Seamons 1997). This scheme uses all the words present
in any document representation as a system vocabulary. Term frequency
(TF) is the number of occurrences of the index term in the represented
document. Inverse document frequency (IDF) is related to the number
of occurrences of the same index term in the other documents in the
Accumulated Knowledge Set (AKS; Salton and Buckley 1996). Term
weight is the product tf�idf. With this method of document represent-
ing, the vector length depends on the number of words present in the
document. This feature makes it difficult to compare the documents.
Length normalization is applied to equalize the number of terms in
all the vectors. However, the number of terms of a vector is usually quite
large due to the vocabulary size. This feature makes the computational
weight increase, and the method becomes impracticable for large corpa.
The similarity between the objects is the distance between both the vec-
torial representations. One of the most used functions is the cosine
similarity.
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Here, Q is the query representation, D is the document representation, N is
the number of index terms available in both representations, wqk is the
weight coefficient associated to the k-th index term of the query, and wdk
is the weight coefficient associated to the k-th index term of the document.

It should be noted that in the VSM method (and others) objects are
represented by parts of themselves, in other words, the words in the docu-
ment. The main objective of the current study is to develop an information
retrieval system that can manage information for any kind of knowledge
(objects, experience, legislation, professional execution best practices,
etc.) and not just in the textual form. In many cases, the representation
of the object cannot be made up of parts of the object itself. Human knowl-
edge is not achieved by incorporating parts of known reality. Humans trans-
late the impulses that they perceive through senses. These are encoded in
the protein chains that are stored in the brain (Kandel 2006; Hayashi and
Yoshida 2004). All the visitors to the Giralda in Seville stored the data of the
experience in their memories: architectural form, size, colors, history,
location, and so forth. However, none of the physical components of the
monument (bricks, marble piece, tile, plaster, or others) was added to
the knowledge base of people who visited. The visitors created a represen-
tation of the monument that is stored in their memories. In the same way,
in the proposed system, the representations of the real-world objects are
built by attributes that are not a part of the objects themselves. Among
the several possible ways of representing such objects, the system chooses
natural language (NL), because the user query is made that way.

The retrieval effectiveness of an IR method is given by two factors: first,
objects related with the query must be retrieved, and second, nonrelated
objects must be rejected. The recall parameter is defined as an estimator
of the first factor (Ruiz and Srinivasan 1998).

recall ¼ related retrieved objects

total related objects in AKS
ð2Þ

The precision parameter is defined as an estimator of the second factor.

precision ¼ related retrieved objects

total retrieved objects
ð3Þ

In the VSM approach and other IR methods, the query, or the
document used as a model, is compared with every document in the



collection. In the proposed fuzzy IR method, the query is compared
with only a few objects of the collection that represent the system
knowledge.

To do this, the objects belonging to the AKS are grouped in a hierarch-
ical tree structure like ontology. This proposed structure has multiple levels
so that each set belonging to a level contains several sets of the lower level.
Figure 1 shows the proposed structure. Hierarchical classification of AKS is
detailed later in this article.

With the proposed four-level structure, it is simple to identify every
object in the AKS by successive approximations without having to analyze
all the objects of the knowledge. Figure 2 shows the presented system
procedure for recovering the information.

Another feature in the procedures for IR and TW presented in the cur-
rent study is that it takes into account the relationship between the terms
(Gómez et al. 2008). In other IR methods, terms are managed indepen-
dently from each other. This fact causes the loss of the information given
by the compound terms. The fact that the representation of the document
should correspond to the meaning must not be forgotten. Some authors
include a procedure to take account of the syntax of the sentences in the
methods (Chow et al. 2009; Song et al. 2008), others include concept net-
works to represent the knowledge base (Horng Chen, Chang, and Lee
2003; 2005). SABIO pays attention to this information during the process
of rendering objects.

The outcome of the previous IR processes was documents, however, the
goal of the TM techniques is to provide new information derived as a result
of the contents of the text documents (Ben-Dov and Feldman 2010). This
way, SABIO integrates the TM techniques with IR, as it finds new infor-
mation—objects—derived from text-normalized objects.

So, the current system applies the IR techniques developed for
collections of textual documents to nontextual corpa. The current
study develops a novel human reasoning-based method to represent

FIGURE 1 Hierarchical tree structure of the AKS. (Color figure available online.)



FIGURE 2 System procedure for recovering the information.



objects, taking into account the occurrence of related terms; proposes
a fuzzy logic-based term-weighting method; structures the accumulated
knowledge on several levels to improve the searches (Bathia and
Deogun 1998) and decrease the computational burden; develops a
fuzzy logic-based procedure to establish the similarity between a query
and an object; and finally, proposes a flexible and fault-tolerant human
reasoning-based search algorithm.

The next sections of the article are organized as follows. An accumu-
lated knowledge objects normalization algorithm is introduced in
‘‘Accumulated Knowledge Objects Normalization Algorithm.’’ Hierarch-
ical classification of the AKS is described in ‘‘Hierarchical Classification
of the AKS.’’ The initial configuration of the fuzzy logic-based engine
for retrieving the degree of certainty of relationships is explained in
‘‘Fuzzy Logic-Based Engine for Relationship Certainty Retrieval: Initial
Configuration.’’ The proposed information retrieval algorithm is
detailed in ‘‘Information Retrieval Algorithm.’’ Level weighting assig-
nation procedure is detailed in ‘‘Level Term Weighting.’’ The realized
tests, test-derivates system modifications, and model validation are
detailed in ‘‘Tests, Modifications, and Model Validation.’’ The article
ends with conclusions and future work proposals in ‘‘Conclusions.’’

ACCUMULATED KNOWLEDGE OBJECTS NORMALIZATION
ALGORITHM

In the above-mentioned IR methods, the objects of the AKS are usually
documents. Their representations are built with parts from the objects
themselves, in other words, the words contained in them. In SABIO, the
AKS objects are not necessarily text-type. Thus, the existing object represen-
tation methods are not directly applicable. A general method should be
proposed.

Just as the human brain transforms the received information by the
senses and stores it permanently in the hippocampus and other structures
(Kandel 2006; Hayashi and Yoshida 2004; Sato and Yamaguchi 2010) by
using its own cells and proteins, SABIO builds the object representation
using parts of the system itself. The bricks used by the system are the terms
belonging to its vocabulary. The object representation is not complete with-
out a term-weighting coefficient related to the importance of every word
present into the object representation.

So, as object representation, the system uses a set of tuples [a,b], where
‘‘a’’ is a word, and ‘‘b’’ is a related term-weighting coefficient. This
transformation procedure is called object normalization. The normalized
object representations are stored in a database for future retrieval.



Selection of Index Terms

In a general case of nontextual object, the process of choosing the NL
terms to build its description cannot be made independently by direct
analysis of the parts of the object itself. In this case, the choice of ‘‘a’’ terms
to represent the object within the system is determined as follows.

The person who describes the objects in the set of knowledge is usually
called the Knowledge Engineer (KE). The KE builds questions, which
answer in NL to describe the object. This kind of sentence is named as a
standard question. Another way of building a standard question is to just
describe the object. The object representation will be built from a few
standard questions.

From this set of standard questions, the KE must extract a few words,
rejecting all the words that do not have a real relationship with the
object. It should be noted that this fact excludes not only the stop words
that were defined earlier, but also more words. A word can be very signifi-
cant for the description of one object and nonrelevant for another one.
This word is kept in the first case and is rejected in the second. The selec-
ted set of words that appears in any of the standard questions describing
an object is called a set of index terms. Each of these words constitutes
the ‘‘a’’ elements of the tuple array that represents the object to the
system. In Figure 3 an index-terms selection for object normalization is
described.

FIGURE 3 Normalization process of the objects in AKS. (Color figure available online.)



It should be noted that using the complete set of index terms for the IR
does not make sense, as there is no request containing all the defined index
terms. It is obvious that not all the selected index terms have the same rel-
evance in the description of the object. So it is necessary to assign a term
weight ‘‘b’’ to each index term ‘‘a’’ to describe this feature (relationship).
All the index term sets build the vocabulary of the system. TW normaliza-
tion is not possible because the representation of the object is not unique.

Term-Weight ‘‘b’’ Purpose

The strength of the relationship between a keyword ‘‘a’’ and the object
is expressed by a coefficient. In the current system, this coefficient can take
values between 0 and 1. Assigning a 0.00 value means no index-term
relationship with the object, whereas assigning a value of 1.00 indicates
the highest possible degree of relationship. This concept is related with
the TW methods previously described as VSM. ‘‘Level Term Weighting’’
details the algorithm for calculating the ‘‘b’’ component of the tuple. Thus,
each object of the AKS is represented by a set of tuples [a,b], where ‘‘a’’ is
an index term, and ‘‘b’’ is the value representative of the degree of affinity
between the term ‘‘a’’ and the object.

Normalization of the Query by the System

As mentioned previously, the SABIO Human Machine Interface (HMI)
is natural language. So, information retrieval is made by a user query in NL.
This query will not match exactly with one of the system-defined standard
questions to extract object representations. Thus, it must be processed by
the system. It is therefore necessary to model the received query but not
to classify it, as in Chali (2009), because the answer isn’t a document. This
modeling process is called query normalization. The representation of the
query is the set of words present in the query that match any of those
belonging to the vocabulary of the system. SABIO considers only the words
that make sense to wake up its memory. It may be noticed that the index
terms in a query do not have any associated ‘‘b’’ coefficients.

HIERARCHICAL CLASSIFICATION OF THE AKS

Once all of the objects in the AKS are normalized, there is a whole bag
of tuples. Each of them represents an object. When the system receives a
query, it must establish the relationship with every object in its AKS. If
the system behaved as the current IR methods do, it should make an esti-
mate for every object of AKS. However, if the objects were previously



grouped (by some suitable criterion), the system could determine the affin-
ity of the query with some of the elements of each group, by a single esti-
mate. This argument has two flaws. If small groups are formed, then the
procedure is not effective, and if groups are big, the precision of the IR
is poor. However, this method should be useful to exclude many objects
not related to the received query by a single estimate. This feature causes
the rejection of a significant number of objects, reducing the computa-
tional burden and processing time for IR. The objects belonging to the sub-
sets not previously rejected could be treated as in the previous case. For this
purpose, all objects in a subset should be grouped into smaller subsets
defining a second level of grouping. Every set in the second subdivision
contains fewer objects than those of the previous level. So fewer objects
will be rejected if no relationship with the query is established, but the pre-
cision improves. If the last level of aggregation contains singletons, each set
corresponds to a single object and the recursive application of this method
identifies the objects in the AKS by successive approximations.

It is necessary to find the suitable number of levels of grouping
objects so that the identification process provides advantages over the
existing ones. It is also necessary to define a clustering approach. Another
aspect to determine is the representation format of every group of
objects.

Suitable Number of Hierarchic Levels

SABIO proposes to group objects into different sets for every con-
sidered level. The common feature for the objects belonging to a set is
the existence of the same or similar index terms in their representations
in NL. Every set is represented by the union of the NL representations of
their component objects. This grouping provides a level of classification
with a lower resolution than the previous one.

‘‘Conclusions’’ validates that grouping the AKS objects in a three-level
structure (called topic, section, and object) is enough to improve the
efficiency of the subsequent information retrieval about a specific area.
The addition of a fourth level (family) of classification of objects should
be necessary when the system needs to extract knowledge from significantly
different areas.

Representation of the Subsets

In the level structure described, Level N is the highest level (object
representation). At this level all the subsets are singletons and the rep-
resentation is the bag of tuples for every object of the AKS. The next



level (Level N-1) groups, from the previous level, objects that have
some common properties. Level N-1 is called the section level. Each subset
in this section level must have a representation in order to allow the
system to determine the relationship with the query. In order to use
the same method to establish the relationship to the query, represen-
tation of each section subset must have the same structure as that of
the objects.

Therefore, the representation of each section consists of an array of
tuples [as, bs] (another bag of tuples) The terms ‘‘as’’ correspond to union
of the the terms ‘‘a’’ present in the representations of the objects belonging
to the section. The terms ‘‘bs’’ establish the relationship of each term ‘‘as’’
with the objects included in the section. The number of tuples in the array
is determined by the union of the terms ‘‘a’’ of representations of objects
belonging to the section. The term ‘‘bs’’ associated with each indexterm
‘‘as’’ is determined by the values ‘‘b’’ of the representations of objects in
which the term ‘‘a’’ appears. Level weighting is detailed in ‘‘Level Term
Weighting.’’

The process of grouping several subgroups of AKS in sets contain-
ing more objects can be repeated as many times as necessary. At the
end of the overall process, the AKS is clustered in different ways at
the various levels. Overlapping levels have a pyramid shape. The num-
ber of objects in each level is always the same, but the number of
subsets grows when closer to the level N. This structure improves the
retrieval procedure.

The relationship between an index term ‘‘a’’ with a subset of the AKS is
not the same for all the levels because the relevance of the term ‘‘a’’ varies
according to the subset in which representation appears. Thus, the ‘‘b’’
term weighing will be different for each level, and the tuples are not the
same for every level of the hierarchically structured AKS.

Clustering Criteria

Grouping procedure involves two revisions over the objects of the
AKS. The first one is top–down made. Objects are grouped by thematic
affinities: topic and section. Once this provisional classification is made,
a second bottom–up step is done. Refining criterion is used to put those
objects together with the maximum number of common ‘‘a’’ terms in
their representations. This criterion is applied only to the grouping of
the N-1 level. Most objects are well grouped after the first revision
because the common topic usually implies the presence of similar terms.
However, at this second step, some objects could be moved from one
group to another.



FUZZY LOGIC-BASED ENGINE FOR RELATIONSHIP CERTAINTY
RETRIEVAL: INITIAL CONFIGURATION

The aim of the developed system is to answer queries from users with-
out an extensive knowledge of any subject. Therefore, in some cases consul-
tations are expected to be vague and=or nonspecific. Fuzzy logic techniques
are suitable for managing this kind of information (Yager and Larsen
1993). The system core is a fuzzy logic engine (FE). FE establishes the
degree of relationship between a query and an object or a set of objects
in the AKS. The FE receives as input the ‘‘b’’ term of each tuple belonging
to the representation of the object to be related; which term ‘‘a’’ matches
with any word belonging to the query representation. This process is also
applied not only for objects, but for every level of knowledge.

As said in ‘‘Term-Weight ‘‘b’’ Purpose,’’ ‘‘b’’ coefficient represents the
strength of the relationship between the term ‘‘a’’ and the objects belong-
ing to a certain set. The term ‘‘b’’ is transformed into a linguistic variable
that expresses the degree of membership of the term ‘‘a’’ with respect to
the subset evaluated. This variable can take three linguistic values: low,
medium, and high. Figure 4 shows the aspect of the universe of discourse
of this variable.

To answer a user query, the system needs to determine the relationship
between the query and one of the objects present in its corresponding AKS.
For this task, the system has an FE capable of establishing the degree of cer-
tainty for the relationship between the query and one object in the AKS.
The determining FE parameters are the number of inputs, the number
of outputs, the inference rules, the type of fuzzyficator, and the type of
defuzzyficator. The different processes involved in the determination of
these parameters are described in the following section.

Fuzzy Logic Rules

To oversimplify, the methodology for determining the degree of
relationship between the query and an object in the AKS is based on the
values of the chosen ‘‘b’’ terms. Frequently, the higher the ‘‘b’’ terms, the
higher the degree of certainty.

FIGURE 4 Universe of discourse of the input. (Color figure available online.)



The inference rules determine the degree of certainty in the relation-
ship between the query and the object. Obviously, this way of describing
the degree of relationship determines fuzzy logic as the better way to solve
the proposed task. Thus, the rules that decide the relationship degree
between the query and the object will be expressed as: ‘‘IF . . .THEN . . . .’’
sentences. The generally used criterion for defining the rules is as follows:
the more inputs with high values, the higher the value of the relationship.
The deployment of this approach results in a number of rules depending
on the number of FE inputs.

Inputs Number of the Fuzzy Logic Engine

The inputs to the FE are the ‘‘b’’ terms extracted from the query.
Ideally, the query should correspond exactly with any of the KE defined
standard-questions. Thus, the FE input number is conditioned by the
number of words appearing in the representation of objects. This
should be sufficient to consider for calculating all of the ‘‘b’’ terms
of the tuples of the representation, for every standard question. In
most cases, 3 to 5 words are extracted from each defined standard
question. Therefore, the use of a three-input engine was initially pro-
posed to assess the certainty of the relationship between an object
and the query.

The FE final configuration and the reasoning for it are detailed in
‘‘Conclusions.’’

Fuzzy Logic Engine Output

As described in ‘‘Effect of threshold value,’’ the FE has to show a single
output: the degree of certainty of the relationship between the query and
an object of the AKS. By the nature of the fuzzy rules, the output is a fuzzy
value. Thus, its expression is provided by a linguistic expression. The
linguistic variable called ‘‘certainty of relationship’’ can take four linguistic
values: Low, Medium-Low, Medium-High, and High. Graphically, the shape
of this output is shown in the Figure 5.

FIGURE 5 Shape of certainty degree of relationship. (Color figure available online.)



Fuzzyfication and Defuzzyfication Methods

Once the input and output numbers and the inference rules are speci-
fied, the fuzzyfication and defuzzyfication methods remain to be chosen.
Because the output value has to be related to the set of all inputs, and
not only to a dominant one, the center of gravity (COG), and mean of
maximum (MOM) are considered as the defuzzyfication methods. Initially,
the chosen method is COG. For the fuzzyfication method, a generic single-
ton is elected. ‘‘Conclusions’’ details the tests that lead to the final configur-
ation of the system.

Relationship Certainty Retrieval Algorithm

Determination of the certainty of relationship between the received
query and the corresponding subset of the AKS algorithm includes the
following steps:

1. Query normalization as described in. ‘‘Normalization of the Query
by the System’’ In the end, the query is represented by a word
array.

2. Selection of tuples belonging to the evaluated subset representation that
term ‘‘a’’ matches with any of the terms of the query representation. If
the query representation involves more tuples than FE inputs, those
tuples whose ‘‘b’’ terms are lower are rejected. This condition occurs
when the number of selected tuples is higher than the FE inputs
number.

3. The ‘‘b’’ terms of the selected tuples are the input values to the FE. If any
FE input has no associated ‘‘b’’ value, 0.00 is taken as the associated
input value. This condition is presented when the number of selected
tuples is lower than the FE inputs number.

4. In general, the returned value by the FE is the degree of certainty asso-
ciated with the relationship of the query with any of the objects con-
tained in the considered subset. Figure 6 shows the described
procedure.

INFORMATION RETRIEVAL ALGORITHM

At this point, there is a hierarchically structured AKS. It is structured in
several levels, considering three levels for the example given following.
There is also a system capable of evaluating the certainty degree of the
relationship between a query and a subset of the AKS. There is a need to
describe the full information retrieval algorithm used by the system intelli-
gently. The main goal of the algorithm is to be able to discard many of the



objects in the AKS in the early steps. To do this task, the system begins eval-
uating the certainty degree of the relationship between the query and every
first-level subset to see which is the largest by applying the algorithm
described in ‘‘Relationship Certainty Retrieval Algorithm.’’

A threshold value is established for every level. The purpose of this
threshold is to reject those subsets with a lower certainty of relationship
obtained in the previous step. In this manner, many objects are rejected
by only one estimation. Thus, the computational efficiency of the algorithm
increases. Now, the process is applied again to those subsets that obtained a
degree of certainty higher than the threshold, but using the next level of
classification. The aim of the process is to approach the query-related
objects without evaluating every object of the AKS. This search refines
the results using the subsets present in the following levels. Only subsets
corresponding to the accepted sets of the previous level are considered.
Figure 7 illustrates the procedure, considering a three-level structured AKS.

The first step is to normalize the query. The representation of the query
consists of a word array without the associated coefficients instead of a set of

FIGURE 7 Three-level structured AKS. (Color figure available online.)

FIGURE 6 Certainty of relationship retrieval algorithm.



tuples. As mentioned previously, selected words should be contained in the
system vocabulary.

The second step is to determine the degree of certainty that the query is
related to any of the objects in first-level subset (Topic). For every subset in
this level, the system takes the set of tuples representing the subset for
which the relationship is being evaluated. The system selects those tuples
whose ‘‘a’’ term matches any word present in the representation of the
query.

In the next step, the FE inputs are fed with the associated ‘‘b’’ terms of
the previously selected tuples. FE output is the degree of certainty of the
relationship between the query and some of the objects in the specific sub-
set. This procedure is applied one by one to every first-level subset. At the
end, the system has a certainty value associated with each first-level subset.

The last step for this level is to reject those subsets whose associated cer-
tainty value is lower than a predetermined threshold. In Figure 8, only the
first and the last subsets are above the threshold. Thus, the remaining
subsets are rejected.

The same procedure is applied to each Level-2 subset belonging to
those Level-1 subsets for which the certainty value was higher than the
threshold. As a result, a new array of certainty values decides which Level-2
subsets are rejected. Only those Level-2 subsets whose associated value is
greater than the Level-2 threshold will remain. Note that the threshold
for Level-1 does not have to be the same as that of Level-2.

In Figure 9, only the second and the third Level-2 subsets are accepted.
Those remaining are rejected.

At this point, only three objects of the AKS would be related with the
query. To determine which are finally related, the above procedure is
applied one more time to the objects belonging to the remaining subsets.
This time, Level-3 subsets are the object representations themselves. All

FIGURE 8 Example of first-level evaluation. (Color figure available online.)



those objects whose value of certainty exceeds the Level-3 threshold are
identified as related to the query.

Effect of Threshold Value

The threshold value can significantly affect the operation of the system.
If a high value is set, only the objects that are strongly related to the query
are considered. If the setting is low, fewer objects are rejected, thereby
decreasing the efficiency and precision parameters. Thus, it might seem
that high values would improve the efficiency of the system. Nevertheless,
it should not be forgotten that the HMI is the natural language, and the
user is not necessary skilled in the art. If the query is vague or imprecise,
the recall parameter would decrease significantly. The test results showed
0.5, 0.55, and 0.65 threshold values for Level 1, Level 2, and Level 3,
respectively, which is a configuration that leads to good results when the
users have some knowledge about the subject being queried. Fixing the
threshold value to 0.5 for all the levels is a more general configuration that
also shows good results. In this case, no special requirements are needed
from the users.

Another problem related to the thresholds occurs when none of the
subsets of a given level has a certainty value higher than the required
threshold. In this case, the system response would be: none object related.
However, the real problem could be a too-high threshold value, a weak
relation, or a missed coefficient in the database.

In order to avoid quitting the procedure in the early stages, the system
applies a human reasoning so-called inkling theory (Gabora 2000). When a
person is asked about something and is obviously reminiscent, a relation-
ship between the question and the memories can be established with great
certainty. However, when a person is unable to relate any memories so

FIGURE 9 Example of second-level evaluation. (Color figure available online.)



strongly, an attempt is made to link weak memories. In fact, the followed
process reduces the level of demand to the certainty of the relationship
between the question and the related memory. The analogous process fol-
lowed in the system is to automatically lower the threshold value at the level
where none of the subsets takes a value of certainty sufficient to reach the
initially set threshold. When none of the subsets in a level take a value of
certainty to reach the threshold, SABIO decreases the threshold value on
0.05 steps. This reduction takes place until one of the subsets obtains a
value that reaches the new threshold. It should be noted that the other
threshold levels remain unchanged, and the modified threshold assumes
its original value for new queries. Often, more than one object exceeds
the reduced threshold. All of them are accepted and the others are
rejected.

LEVEL TERM WEIGHTING

As a result of the procedure described in ‘‘Information Retrieval
Algorithm,’’ every object representation needs a ‘‘b’’ coefficient for every
defined level. So, for each level, a ‘‘b’’ coefficient associated to the ‘‘a’’ terms
belonging to each subset must be calculated. This calculation is one of the
most important tasks for IR. To solve the problem, many authors have con-
sidered VSM and, specifically, have used the TF-IDF method. In this section,
a novel alternative fuzzy logic-based method for TW has been proposed.

In the current proposal, not just the statistical parameters are included
in the weighting calculation, but the meaning of the term ‘‘a’’ and the possi-
bility of it being part of a compound term is also taken into account. Thus,
TW includes the influence of the affinity between the meaning of the index
term and the object itself. The proposed TW scheme is a fuzzy logic-based
product of the two meaning-based parameters mentioned earlier, plus two
other TF-IDF–based statistical parameters.

Therefore, in the proposed weighting method, the assigned value for
the coefficient ‘‘b’’ is related to four parameters that can take values
between 0.00 and 1.00. The four proposed parameters and their influence
are detailed in the next subsection.

Weighting Related Parameters

The first and most significant parameter is the degree to which the term
‘‘a’’ undoubtedly identifies the object without any other term present in the
query. The more identification, the higher is the parameter value. This
parameter is a new approach for introducing semantic information in
the object representation. An expert in the matter should intuitively



evaluate the importance of the ‘‘a’’ terms. This method is simple, but it has
the disadvantage of depending exclusively on the KE. It is very subjective
and not possible to completely automate the method. This parameter has
no correspondence to any previous method in IR.

The parameter value is given by Table 1.
The second parameter depends on the frequency of occurrence of the

term ‘‘a’’ in the representations of the other subsets at the same level in the
AKS. The higher the frequency, the lower is the parameter value. This para-
meter is related with the classical VSM concept of IDF but, in the current
case, the assigned value is obtained through a table, and not by any of
the usual formulae.

For the construction of the table it was considered that 1% of the
most-frequently used words present in the vocabulary define the border
for the value 0.00. The most-frequently used words should be understood
as those belonging to a higher number of other subset representations.
This ranking is made for every considered level. For example, if the vocabu-
lary is 1000 words in size, the one that ranks tenth in the number of appear-
ances in the other subsets of a specific level indicates the number of
occurrences for which the parameter value is 0.0 for the considered level.

Continuing the example, it is assumed that the tenth word belongs to
the representation of thirteen subsets. An ‘‘a’’ frequency of occurrence
greater than or equal to 13 leads to a 0.0 value for this second parameter.
This parameter is easily computable by the system, so the table will have 13
columns and 2 rows. The number of occurrences is in the first row, while
the associated second parameter value is in the second one. The 0.00 to
1.00 range is divided among the thirteen possible values. The values for
the considered example are shown in Table 2.

The third parameter depends on the number of object representations
belonging to the same subset where the ‘‘a’’ term appears. The more
objects in a set an ‘‘a’’ term belongs to, the higher the value for the corre-
sponding parameter value. This parameter is related with the classical VSM
concept of TF but, in our case, the assigned value is again obtained through
Table 3.

In the same manner, 1% of the most-often used words define the
boundary value 1.00. Consider the same example given previously. In the
new most-often used word list, the tenth one sets the number of occur-
rences from which the parameter value is 1.00. Now, the most-often used

TABLE 1 First Weighting Parameter Value

Does this ‘‘a’’ term undoubtedly define the object by itself? Yes Rather No

1st parameter value 1.0 0.5 0.0



words should be intended as those belonging to a higher number of
object representations, in the same subset, for the considered level. If the
tenth ‘‘a’’ term belongs to five object representations, any ‘‘a’’ term repre-
senting six or more objects in a subset takes a value of 1.00 for this
parameter.

This parameter is easily computable by the system. Note that this para-
meter is senseless at the level of the object because all of the subsets are
singletons.

The fourth parameter is related to the possibility that the term ‘‘a’’
belongs to a compound term, (i.e., web, mail, and web mail). This para-
meter increases the semantics precision of the representative ghost of the
object. Four cases are considered and the corresponding parameter value
is shown in Table 4.

A different approach of including the related terms effect can be found
in Chow, Zhang, and Rahman (2009). The system related in the current
study is not capable of evaluating this parameter by itself because of the
nature of the representation of the objects. Because the relationship
between the value of the four parameters involved in the TW task and
the final value of ‘‘b’’ term weight coefficient is difficult to express numeri-
cally, it seems more appropriate to use a fuzzy reasoning. So, the FE
described in ‘‘Accumulated Knowledge Objects Normalization Algorithm’’
is adapted to determine the ‘‘b’’ term value using the four described
parameter values as inputs.

Fuzzy Weighting Rules

Now, the FE inputs are the four weighting-parameter values, and the
possible input values are High (H), Medium (M), and Low (L). The new
output is the ‘‘b’’ value. The possible output values of ‘‘b’’ are High (H),
Medium-High (MH), Medium-Low (ML), and Low (L).

TABLE 2 Second Weighting Parameter Value

Subsets
representation to
which ‘‘a’’ belongs

0 1 2 3 4 5 6 7 8 9 10 11 12 �13

2nd Parameter
Value

1.00 0.90 0.80 0.70 0.64 0.59 0.53 0.47 0.41 0.36 0.30 0.20 0.10 0.00

TABLE 3 Third Weighting Parameter Value

Object representation to which ‘‘a’’ belongs 1 2 3 4 5 �6

3rd Parameter Value 0.00 0.30 0.45 0.60 0.70 1.00



Another set of rules is defined for the new purpose. Table 5 summarizes
the rules.

A system prototype was created to test the performance of the weight-
ing method proposed. This prototype was implemented using Borland
CþþBuilder.

Reduction of Human Dependence

The first and fourth parameters described in ‘‘Weighting Related
Parameters’’ require the intervention of a person, preferably a KE, to assign
a specific value to them. To avoid this dependence as much as possible and
minimize the qualification of the person in charge, the specification
requirement is reduced to answering two questions in NL. The first ques-
tion is: ‘‘Does this ‘‘a’’ term undoubtedly define the object by itself?’’ The
response has only three possible values: Yes, Rather, or No. Those values
correspond to inputs High, Medium, or Low, respectively. Table 1 shows
the possible numerical values for this parameter.

The second question is: ‘‘Is this ‘‘a’’ term tied to another one?’’ The
response has only four possible values: ‘‘to none,’’ ‘‘to another one,’’ ‘‘to
another two,’’ or ‘‘to more than 2.’’ Table 4 shows the possible numerical
values for this parameter. These questions are easy enough for anyone
introducing knowledge into the system to be able to answer without any
special requirements. The goal is to answer these two questions when the
object is added to the AKS system as an integral part of the process of add-
ing new objects. With these two parameters, the system has all the data to

TABLE 4 Fourth Weighting Parameter Value

Number of tied ‘‘a’’ terms to the considered one 0 1 2 >2

4th Parameter value 1.00 0.70 0.30 0.00

TABLE 5 TW Rules

Rule n� Rule definition Output

R1 IF P2¼H, AND P3 6¼ L At least MH
R2 IF P2¼M, AND P3¼H At least MH
R3 IF P2¼L, AND P3¼L Depends on other questions
R4 If P2¼H, AND P3¼H Depends on other questions
R5 IF P1¼H At least MH
R6 IF P4¼L Descends a level
R7 IF P4¼M If the output is ML, it descends to L
R8 IF (R1 and R2) OR (R1 and R5)

OR (R2 and R5)
H

R9 Any other case ML



determine by itself the last level of ‘‘b’’ term values. For higher levels of the
AKS, the value taken by the ‘‘b’’ term is the average of the lower levels.

Additionally, there are two important advantages for the new method.
On the one hand, TW is close to being automatic, whereas on the other
hand, the level of required expertise is much lower. This is because there
is no need for an operator to know much about the way FE works, but only
to know how many times a keyword appears in every set and the answer to
two simple questions: ‘‘Does a keyword undoubtedly define an object by
itself?’’ and ‘‘Is a keyword tied to another one?’’

In ‘‘Term Weighting Test,’’ a test comparing the TF-IDF method and the
fuzzy logic-based one was performed.

TESTS, MODIFICATIONS, AND MODEL VALIDATION

A desktop application was created to test the performance of the whole
proposed method. This prototype was implemented using Borland
CþþBuilder. Figures 10 and 11 shows its main windows.

The prototype can generate a report detailing the reasoning followed
by the system, as shown in Figure 12. This feature has proven to be very
helpful in debugging the faults found by determining the failure causes
and correcting them.

FIGURE 10 Main window application for testing the proposed TW method. (Color figure available
online.)



FIGURE 11 Main window of application for testing whole proposed method. (Color figure available online.)

FIGURE 12 Report of the reasoning applied. (Color figure available online.)



For the initial tests, a FAQ set was taken as an AKS system. Every question
was treated as an object. All of these objects were normalized, and many
standard questions were added to take into account other same-meaning
expressions. For this initial test, the TW assignment was manually made,
and all the coefficients were kept in a Microsoft Access data base.

The AKS system was built in a three-level structure: Topic, Section, and
Object. The system consists of 12 Topics. Every topic is divided into a num-
ber between 3 and 12 Sections, and each Section contains between one and
eight Objects.

The used validation test was called a ‘‘self-test.’’ It consists of feeding the
system with its own standard questions. Although potential users probably
would not use the exact same standard questions, the aim of this test is
obvious: the system must identify the normalized representation of each
object in the AKS. Thus, the system’s standard questions will be used as a
query. Moreover, the certainty of the recognition should have a high value,
over 0.7.

The prototype is provided with an interface to change the relevant para-
meters of its configuration. Thus, when the partial test result was admiss-
ible, an entire self-test was made.

The position in which the correct answer appeared among the retrieved
answers is considered in order to compare the self-test results. The results
are grouped into five categories. If the test result belongs to one of the first
four (a, b, c, d), it is considered satisfactory. On the contrary, if it belongs to
the last (e), the result is considered unsatisfactory. The meaning of each
category is shown in Table 6.

For the self test, the configuration of the FE was as follows: input num-
ber–3; output number–1; fuzzyficator–singleton; defuzzyficator–COG;
thresholds–0.5, 0.5, 0.5 fixed. The obtained results for the first test are
shown in Table 7. The test results show a good performance of the method
when the object is represented from two to four tuples. For the objects
represented by more tuples, the system displays a tendency to consider
them related, even when they are not related or are just nearly related.

TABLE 6 Possible Test Results Grouped by Categories

Category Meaning

a The correct answer is retrieved as the only answer or it is the one that has a higher degree of
certainty among the answers retrieved by the system.

b The correct answer is retrieved among the two with a higher degree of certainty—excluding
the previous case.

c The correct answer is retrieved among the three with a higher degree of certainty—excluding
the previous case.

d The correct answer is retrieved, but not among the three with a higher degree of certainty.
e The correct answer is not retrieved by the system.



The test was repeated using a five-input FE and the same settings for the
rest of the parameters. The obtained results for this second test are also
shown in Table 7. A positive observed effect is that the ‘‘a’’ category
improved their performance, which means that the precision increases.
On the other hand, the ‘‘e’’ category increases their matching, thereby indi-
cating that recall gets worse. Analyzing the reasoning reports of the system
results belonging to the category ‘‘e,’’ it becomes clear that the failure
appears because none of the subsets exceed the required threshold in some
stage of the procedure. This fact encourages changing the algorithm
for determining the relationship. According to this, if no subset has a
relationship certainty above the required threshold, the threshold value
is decreased in 0.05 steps until any subset exceeds it.

A third test was done using the adaptive threshold algorithm and the
same configuration as above. The test results are also shown in Table 7.
Many more answers were observed in the ‘‘a’’ category, whereas many fewer
answers were observed in the ‘‘e’’ category. This means that the introduced
changes to the algorithm improve recall and precision. Analyzing the
reasoning report provided by the system, applied to the objects of the
category ‘‘e,’’ it is clear that the procedure assigns a lower value for the cer-
tainty of relationship in a query when the object is represented by three or
fewer tuples. This finding encourages a new change in the IR procedure.
According to this fact, if the object representation has three or fewer
tuples, a three-input FE is used to determine the degree of certainty of
relationship in a query. Otherwise, a five-input FE is used. This new modi-
fication is related in the same manner with the VSM normalization con-
cept. However, the proposed scheme is significantly simpler and does not
require a recalculation of all the coefficients in the case of a change in
the vocabulary of the system. In both cases the adaptive thresholds algor-
ithm is applied.

A fourth test—another autotest— was made using the last procedure
modification. The configuration of the FE was as follows: number of
inputs–either three or five, depending on the index terms extracted from
a query; number of outputs–1; fuzzyficator–singleton; defuzzyficator–COG;
thresholds–0.5, 0.5, 0.5 adjustable. The obtained results are shown in
Table 7.

TABLE 7 Categorized Results of Self-Tests

Category a (%) b (%) c (%) d (%) e (%)

1st test 43.51 24.22 8.59 11.72 10.16
2nd test 54.89 12.03 3.01 0.75 29.32
3rd test 69.93 14.29 3.00 0.75 12.03
4th test 77.44 15.79 4.51 0.75 1.51



The obtained results with this last configuration show significant improve-
ment over any one of the earlier configurations. An increase in both recall
(98.49%) and precision (77.44%) was observed. Therefore, it is considered
that the results validate the algorithm for determining the degree of certainty
of the relationship with the query, and the proposed IR procedure.

Fuzzy Logic Engine Optimization

Once the IR process is set and validated, it is desirable to optimize the
FE core. A battery of tests is specified to determine the best fuzzyficator,
defuzzyficator, and the most suitable type of universe for the inputs and
the output. Table 8 shows the settings of the six proposed self-tests.

The autotests results are shown in Table 9.
The analysis of these results shows the following:

. The couple triangle fuzzyficator and COG defuzzyficator obtain more ‘‘e’’
category results regardless of the type of universe of the inputs and the
output.

. The couple singleton and COG obtain more ‘‘a’’ category results in the
curved universe for the inputs and the output.

. The couple singleton and COG obtain more ‘‘a’’ þ ‘‘b’’ þ ‘‘c’’ categories
results in the orthogonal universe for the inputs and the output.

. The couple singleton and COG obtain fewer ‘‘d’’ þ ‘‘e’’ categories results
in the orthogonal universe for the inputs and the output.

Thus, it was concluded that the optimal configuration uses a singleton fuz-
zyficator, a COG defuzzyficator, a straight input universe, and a straight out-
put universe.

Term Weighting Test

To validate the usefulness of the proposed fuzzy logic-based weighting
method, a comparative test between the classical TF-IDF method and the
proposed one was suggested. Some of these results were presented in

TABLE 8 Proposed Self-Test to Improve the FE Core Performance

Test n� Fuzzyficator Defuzzyficator Input universe Output universe

1 Singleton COG Straight Straight
2 Triangle COG Straight Straight
3 Singleton MOM Straight Straight
4 Singleton COG Curved Curved
5 Triangle COG Curved Curved
6 Singleton MOM Curved Curved



advance in Ropero et al. (2009). A new AKS was built using the objects
belonging to the web portal of the University of Seville. This web portal
has 50,000 daily visits, which qualifies it into the 10% most visited university
portals, and it is ranked 190 among more than 20,000 Universities in the
Webometrics rankings for Universities’ web impact (Webometrics 2011).
Becasue the information in the university web portal is abundant, 253
objects grouped in 12 topics were defined. All these groups were made
up of a variable number of sections and objects. 2107 standard questions
surged from these 253 objects. However, slightly more than half of these
questions were eliminated for these tests because of being very similar to
others. Eventually, the tests consisted of 914 possible user queries.

The formula to obtain the TW coefficient using the TF-IDF product has
been modified and improved by many authors to achieve better results in
IR and IE. Eventually, the chosen formula for the current tests was the
one proposed by Liu et al. (2001)

Wik ¼
tfik � log N =nk þ 0:01ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 ðtfik � logðN =nk þ 0:01ÞÞ2

q ; ð4Þ

where tfik is the ith term frequency of occurrence in the kth subset— Topic=
Section=Object—and nk is the number of subsets to which the term Tk is
assigned in a collection of N objects. Consequently, it has been taken into
account that a term might be present in other sets of the collection.

It was suggested to present between 1 and 5 answers, depending on the
number of related Objects. The results of the consultation were sorted in

TABLE 10 Categorized Results of TF-IDF vs. SABIO Self-Test

Category a b c d e

TF-IDF 466 (50.98%) 223 (24.40%) 53 (5.80%) 79 (10.18%) 93 (10.18%)
SABIO 710 (77.68%) 108 (11.82%) 27 (2.95%) 28 (3.06%) 41 (4.49%)

TABLE 9 Categorized Results of Improvement of the FE Core Performance Self-Tests

Category
test n� a b c d e

1 77.44 15.79 4.51 0.75 1.51
2 69.17 18.05 3.76 5.26 3.67
3 68.42 15.04 6.77 7.16 2.26
4 75.94 15.79 4.51 1.50 1.50
5 84.21 8.21 1.50 2.26 3.76
6 65.41 18.78 6.02 8.27 1.50



FIGURE 13 Wizard for navigation on the website of the University of Seville. (Color figure available
online.)



the same five categories as those in Table 6, titled ‘‘Possible Test Results
Grouped by Categories.’’ The ideal situation comes when the desired
Object is retrieved as ‘‘a,’’ though ‘‘b’’ and ‘‘c’’ would be reasonably accept-
able. The obtained results are shown in Table 10.

Although the obtained results with the TF-IDF method are quite
reasonable, 81.18% of the objects being retrieved among the first five
options and more as ‘‘a’’ category, the fuzzy logic-based method turns out
to be clearly better, with 92.45% of the desired objects retrieved and more
than three-quarters as the first option.

CONCLUSIONS

The current study presents an Information Retrieval system that is able
to manage information relating to any kind of knowledge (objects, experi-
ence, legislation, professional execution best practices, etc.), and not only
to textual knowledge. The human-system interface is natural language.

The hierarchical structure for information classification and storage
proposal, in conjunction with the retrieval procedure of the objects related
to the query, leads to a lower required computational load, unlike most of
the existing procedures.

A novel fuzzy logic-based algorithm for determining the certainty of the
relationship between a query and its corresponding subset of the AKS is
developed.

The article also presents a novel fuzzy logic-based term weighting algor-
ithm. This novel TW algorithm is easy to use and requires no specialized
knowledge. Tests show that this novel algorithm improves the performance
when compared to the widely spread classical TF-IDF.

The system described in the current study is being implemented in the
development of a Wizard of contents for the website of the University of
Seville. At the present time, the Wizard is in a state of internal testing
and will shortly be put into production. Figure 13 shows the appearance
of the prototype of the application. In the same manner, the presented sys-
tem can be used to manage information relating to any matter if queries
utilize natural language.

The system presented can also be integrated in a multiagent system
(MAS) environment in order to manage more complex knowledge. To
achieve this goal, complex knowledge has to be able to be split into several
simple components parts. Once the complex information is split into
several simple faces, the MAS dedicates a soft agent to manage every simple
aspect of the whole knowledge. The MAS system should be provided with a
special agent to manage and split the received user query. Other special
agents in charge of composing the received simple information should also



exist. A more complex answer must be built from the received information
from the several existing soft agents.
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