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MINIMUM SPANNING TREES WITH NEIGHBORHOODS

VÍCTOR BLANCO, ELENA FERNÁNDEZ, AND JUSTO PUERTO

Abstract. This paper studies Minimum Spanning Trees under incomplete
information for its vertices. We assume that no information is available on the
precise placement of vertices so that it is only known that vertices belong to
some neighborhoods that are second order cone representable and distances
are measured with a ℓq-norm. Two mixed integer non linear mathematical
programming formulations are presented, based on alternative representations
of subtour elimination constraints. A solution scheme is also proposed, result-
ing from a reformulation suitable for a Benders-like decomposition, which is
embedded within an exact branch-and-cut framework. Furthermore, a math-
heuristic is developed, which alternates in solving convex subproblems in dif-
ferent solution spaces, and is able to solve larger instances. The results of
extensive computational experiments are reported and analyzed.

1. Introduction

Nowadays Combinatorial Optimization (CO) lies in the heart of multiple appli-
cations in the field of Operations Research. Many such applications can be formu-
lated as optimization problems defined on graphs where some particular structure
is sought satisfying some optimality property. Traditionally this type of problems
assumed implicitly the exact knowledge of all input elements, and, in particular,
of the precise position of vertices and edges. Nevertheless, this assumption does
not always hold, as uncertainty, lack of information, or some other factors may
affect the relative position of the elements of the input graph. Hence, new tools
are required to give adequate answers to these challenges, which have been often
ignored by standard CO tools.

A matter that, in this context, has attracted the interest of researchers over
the last years is the solution of certain CO problems when the exact position of
the vertices of the underlying graph is not known with certainty. If probabilistic
information is available, then stochastic programming tools can be used, and opti-
mization over expected values carried out. Moreover, even under the assumption of
incomplete information one could use a uniform distribution and still apply such an
approach. However, the use of probabilistic information and allowing to consider
all possible locations for the vertices is not always suitable. For instance, when
for each point of the input graph, a unique representative associated with it must
be determined. Scanning the related literature one can find papers applying both
methodologies. Examples of stochastic approaches are for instance [3] or [19]. Ex-
amples of the second type of approach arise in variants of the traveling salesman
problem (TSP), minimum spanning tree (MST), or facility location problems that
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deal with demand regions instead of demand points (see [1, 5, 7, 11, 24, 31, 36], to
mention just a few).

A relevant common question raised by the latter class of problems is how to
model and solve optimization problems on graphs when vertices are not points but
regions in a given domain. The above mentioned case of the TSP, first introduced
by Arkin and Hassin [1], has been addressed recently by a number of authors.
It generalizes the Euclidean TSP and the group Steiner tree problem, and has
applications in VLSI-design and other routing problems, in which only imprecise
information of the positions of the vertices is available. Several inapproximability
results and approximation algorithms have been developed for particular cases. The
case of the spanning tree problem with neighborhoods (MSTN) was first addressed
by Yang et al. [36], who proved that the general case of the problem in the plane is
NP-hard (result also reproved by Löffler and van Kreveld in [26]), and gave several
approximation algorithms and a PTAS for the particular case of disjoint unit disks
in the plane. Some extensions considering the maximization of the weights are
studied in Dorrigiv et. al [10]. In particular, they proved the non existence of
FPTAS for MSTN, for general disjoint disks, in the planar Euclidean case. Disser
et. al [9] consider the shortest path problem and the rectilinear MSTN, and give
some approximability results. To the best of our knowledge, Gentilini et al [20]
are the first authors to propose an exact Mixed Integer Non Linear Programming
(MINLP) formulation for the TSP with neighborhoods, but we are not aware of
any MINLP for the MSTN.

Our goal in this paper is to develop MINLP formulations and solution methods
for the MSTN. We first present two MINLP formulations that allow to solve medium
size MSTN planar and 3D Euclidean instances with up to 20 vertices, for neigh-
borhoods of varying radii using an on-the-shelf solver. Furthermore, we develop an
effective branch-and-cut strategy, based on a generalized Benders decomposition
[2, 21], and compare its performance with that of the solver for the proposed for-
mulations. For this we present an alternative formulation for the MSTN, in which
the master problem consists in finding an MST with costs derived from a contin-
uous non linear (slave) subproblem, and we develop the expression and separation
of the cuts that are added in the solution algorithm. Given that both the solver
(for the two MINLP formulations) and the exact branch-and-cut algorithm can be
too demanding, in terms of their computing times, we have also developed an ef-
fective and efficient mathheuristic. The mathheuristic stems from the observation
that the subproblems defined in the solution spaces of each of the two main sets of
variables are convex (so they can be solved very efficiently); it alternates in solving
subproblems in each of these solution spaces.

The paper is organized as follows. Section 2 is devoted to introduce the MSTN
and to state a generic formulation. In Section 3 we present and compare two MINLP
formulations for the MSTN, based on alternative representations of the spanning
trees polytope. Section 4 develops the exact branch-and-cut algorithm, based on
a Benders-like decomposition scheme: we define the master and the non linear
subproblem, and derive the cuts and their separation. In Section 4.1 we first com-
pare the performance of the on-the-shelf solver with the two MINLP formulations,
and then we report the numerical results obtained with the exact row-generation
algorithm. The mathheuristic is presented in Section 5, where we also give the
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numerical results that it produces. The paper ends with some concluding remarks
and our list of references.

2. Minimum Spanning Trees with Neighborhoods

Let G = (V,E) be a connected undirected graph, whose vertices are embedded
in Rd, i.e., v ∈ Rd for all v ∈ V . Associated with each vertex v ∈ V , let Nv ⊆ Rd

denote a convex set containing v in its interior. Let also ‖ · ‖ denote a given norm.
Feasible solutions to the Minimum Spanning Tree with Neighborhoods (MSTN)

problem consist of a set of points, Y ∗ = {yv ∈ Nv | v ∈ V }, together with a spanning
tree T ∗ on the graph G∗ = (Y ∗, E∗), with edge set E∗ = {{yv, yw} : {v, w} ∈ E}.
Edges lengths are given by the norm-based distance between the selected points
relative to ‖ · ‖, i.e.:

d(yv, yw) = ‖yv − yw‖, for all {yv, yw} ∈ E∗.

The overall cost of (Y ∗, T ∗) is therefore

d(T ∗) =
∑

e={yv ,yw}∈T∗

d(yv, yw).

The MSTN is to find a feasible solution, (Y ∗, T ∗), of minimum total cost.

Particular cases of the MSTN have been studied in the literature for planar
graphs. Disser et. al [9] studied the case when the sets Nv are rectilinear neigh-
borhoods centered at v ∈ V . Dorrigiv et. al [10] addressed the problem when the
sets Nv are disjoint Euclidean disks. Both referenced works study the complexity
of the considered problems but do not attempt to develop MINLP formulations or
solution methods for it.

In this paper, we consider the general case where the graph G is embedded in
Rd. Even if our developments can be extended to generic convex sets, we focus
on the case where Nv is second order cone (SOC) representable [25]. The main
reason for this is that state-of-the-art solvers incorporate mixed integer non-linear
implementations of SOC constraints. Such a modeling assumption could be readily
overcome if on-the-shelf solvers incorporated more general tools to deal with convex
sets.

Observe that SOC representable neighborhoods allow to model, as a particular
case, centered balls of a given radius rv, associated with the standard ℓp-norm
with p ∈ [1,∞] in Rd, that we denote by ‖ · ‖p, i.e., neighborhoods in the form
Nv = {x ∈ Rd : ‖x− v‖p ≤ rv}, where

‖z‖p =





(
d∑

k=1

|zk|
p

) 1
p

if p < ∞

max
k∈{1,...,d}

|zk| if p = ∞

.

The reader is referred to [4] for further details on the SOC constraints that
allow to represent (as intersections of second order cone and/or rotated second
order cone constraints) such norm-based neighborhoods. Indeed, we can also easily
handle neighborhoods defined as bounded polyhedra in Rd, as well as intersections
of polyhedra and balls. Hence, more sophisticated convex neighborhoods can be
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suitably represented or approximated using elements from the above mentioned
families of sets.

Two extreme situations that can be modeled within our framework are the fol-
lowing. If the neighborhood for each vertex v ∈ V is the singleton Nv = {v}, then
MSTN becomes the classical MST problem with edge lengths given by the norm-
based distances between each pair of vertices. On the other hand, if the considered
neighborhoods are big enough so that

⋂
v∈V Nv 6= ∅, then the problem reduces to

finding a degenerate one-vertex tree and the solution to the MSTN is that vertex
with cost 0.

Throughout this paper we use the following notation:

• ST G as the set of incidence vectors associated with spanning trees on G,

i.e. ST G = {x ∈ R
|E|
+ : x is a spanning tree on G}

• Y =
∏

v∈V

Nv, where Nv is the neighborhood associated to vertex v, which

contains the possible sets of vertices for the spanning trees of MSTN.

Then, the MSTN can be stated as:

min
∑

e∈E

d(yv, yw)xe(MSTN)

s.t. x ∈ ST G, y ∈ Y.

Several observations follow from the formulation above:

(1) Fixing x ∈ ST G in MSTN results in a continuous SOC problem, which is
well-known to be convex [25]. On the other hand, fixing y ∈ Y results in
a standard MST problem. It is a well-known that MST admits continuous
linear programming representations [14, 28]. Thus, MSTN can be seen as
a biconvex optimization problem, which is neither convex nor concave [22].

(2) Due to the expression of its objective function, MSTN is not separable,
even if each of its sets of variables x and y belong to convex domains in
different spaces.

(3) Since MSTN combines the above two subproblems, it is suitable to be rep-
resented as a MINLP.

The following example illustrates the MSTN.

Example 2.1. Let us consider a graph with eight vertices and 14 edges, G = (V,E)
embedded in R2. The graph G and an Euclidean Minimum Spanning Tree for this
graph are shown in Figure 1(A).

Figure 1(B) shows the input graph together with the neighborhoods Nv associ-
ated with the vertices v ∈ V . The neighborhoods are (Euclidean) balls centered
at the original vertices, each of them with a different radius. Figure 2 shows an
optimal MSTN solution: the location of the vertex selected in each neighborhood,
as well as the final spanning tree (both in gray).

Observe that the optimal spanning tree to the classical MST problem in the orig-
inal input graph shown in Figure 1(A), with edges lengths given by the Euclidean
distances between the initial vertices, is no longer valid for the MSTN. The reason
is that the actual distances have been updated in order to consider the coordinates
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(A) Input graph G and Euclidean MST
(black lines).

(B) Neighborhoods of the vertices.
abcdefg

Figure 1. Data for Example 2.1.

Figure 2. A MSTN for the data in Example 2.1.

of the selected vertices, which are unknown beforehand. Note also that the struc-
ture of the original graph is somehow broken, since in the final solution some of the
“initial” vertices are merged into a single one (note that the MST in Figure 2 has
seven vertices while the original graph had eight). This is possible only when some
of the neighborhoods have a non-empty intersection.

In Figure 3 we show an optimal solution to the MSTN in the same input graph,
for a different definition of the neighborhoods. Now they are defined as boxes in
the form Nv = {z ∈ R2 : |zk − vk| ≤ rv, k = 1, 2}.

As we see below, some of the properties of the standard MST extend to MSTN.
In particular, the cut and cycle properties that allow reducing the dimensionality
of MSTN by discarding edges that will not appear in an optimal solution as well
as those edges that will appear in it. Before, we introduce the additional notation
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Figure 3. A MSTN for the data in Example 2.1 for polyhedral
neighborhoods.

associated with each edge e = {v, w} ∈ E.

• Ũe and ũe respectively denote the maximum and minimum distance between
any pair of points in the neighborhoods of the end-vertices of e. That is,

Ũe = max{d(yv, yw) : yv ∈ Bp
r(v), yw ∈ Bp

r(w)} and ũe = min{d(yv, yw) :
yv ∈ Bp

r(v), yw ∈ Bp
r(w)}.

Property 1.

(a) Let C be a cycle of G = (V,E) and e ∈ C such that ũe > mine′∈E{Ũe′ :
e′ ∈ C, e′ 6= e}. Then, e does not belong to a MSTN.

(b) Let S ⊂ V and (S, V \S) = {e = {v, w} ∈ E | v ∈ S and w ∈ V \S} be

its associated cutset. Let e = {v, w} ∈ (S, V \S) be such that Ũe <

mine′∈E{ũe′ : e′ = {v′, w′} ∈ E, e′ 6= e, v′ ∈ S,w′ ∈ V \S}. Then, e

belongs to any MSTN.

Proof.

(a) Let C be a cycle of G = (V,E) and e ∈ C such that ũe > mine∈E{Ũe′ : e
′ ∈

C, e′ 6= e}.
Suppose, there is an MSTN of G, T with e ∈ T . Then, for any other edge
e′ in the cycle C, the tree T ′ = T ∪ {e′}\{e} satisfies that:

d(T ′) ≤ d(T ) + Ũe′ − ũe < d(T ).

Thus, the cost of T ′ is strictly smaller than the cost of T , contradicting the
optimality of T . Hence e will not appear in T .

(b) Let T be a MSTN of G with e 6∈ T . Since T is a tree, the unique cycle of
T ∪{e} contains both e and the unique path in G connecting v and w, that
does not contain e. Let e′ the edge in such a path crossing the cut, i.e.,
e′ = {v′, w′} with v′ ∈ S and w′ in V \S. Then, T ′ = T ∪ {e}\{e′} is a tree
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and such that

d(T ′) ≤ d(T ) + Ũe − ũe′ < d(T ),

so T ′ has an overall distance smaller than T , contradicting its optimality.
Hence e will appear in T .

�

3. Mixed Integer Non Linear Programming Formulations

In this section we present alternative MINLP formulations for the MSTN that
will be compared computationally in later sections. All formulations use the fol-
lowing sets of decision variables:

• Binary variables xe ∈ {0, 1}, e ∈ E, to represent the edges of the spanning
trees.

• Continuous variables yv ∈ Nv, v ∈ V , to represent the point selected in
each neighborhood.

• Continuous variables ue ≥ 0, e = {v, w} ∈ E, to represent the distance
d(yv, yw) between the pairs of selected points.

Properties 1(a) and (b) can be exploited in order to reduce the number of x
variables in the formulations. In particular, we only need to define variables xe

associated with edges that do not satisfy the condition 1(a). On the other hand,
we can set at value 1 all variables xe associated with edges that satisfy 1(b).

Let U = {u ∈ R
|E|
+ : ue ≥ d(yv, yw), for all e = {v, w} ∈ E, for some y ∈ Y}

denote implicitly the domain for the feasibility of the u variables. Then, a generic
bilinear formulation for MSTN is

min
∑

e∈E

uexe(Pxu)

s.t. x ∈ ST G, u ∈ U .

In the following we resort to McCormick’s envelopes [29] for the linearization of
the bilinear terms of the objective function. For this, we define an additional set of
continuous decision variables θe ≥ 0, e ∈ E to represent the products uexe. Then
the linearization of the generic formulation Pxu is:

min Θ =
∑

e∈E

θe(RL−MSTN)

s.t. θe ≥ ue − Ũe(1 − xe), ∀e ∈ E,(LIN−Mc)

x ∈ ST G, u ∈ U , θe ≥ 0, e ∈ E.

Furthermore, throughout we will describe the set U using the set of constraints

‖yv − yw‖ ≤ ue, ∀e = {v, w} ∈ E,(U1)

y ∈ Y,(U2)

which set the distance values and impose that the y points belong to the appropri-
ate neighborhoods, respectively.
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Note that the above formulation (RL−MSTN) can be reinforced by adding the
following valid inequalities: θe ≥ ũexe, for all e ∈ E.

The two formulations below differ from each other in the representation of sub-
tour elimination constraints (SEC). One of them uses the classical representation
of [14], which consists of a family with an exponential number of inequalities. The
other one uses a compact formulation based on the well-knownMiller-Tucker-Zemlin
(MTZ) constraints [30]. Despite having a weaker linear programming bound than
the subtour elimination representation for the classical MST problem, we use this
formulation since, in practice, it has given quite good results for other problems
related to spanning trees [27, 15]. Indeed, other compact representations could be
used, like for instance, the one by Martin [28]. In our experience, [30] gives a good
tradeoff between the number of variables it requires and the bounds it produces.

3.1. MSTN formulation based on classical representation of SECs.

min Θ =
∑

e∈E

θe(SEC−MSTN)

s.t. (LIN−Mc), (U1), (U2),
∑

e∈E

xe = |V | − 1,(ST1)

∑

e={v,w}:v,w∈S

xe ≤ |S| − 1, ∀S ⊂ V,(ST2)

u, θ ∈ R
|E|
+ , y ∈ R|V |×d, x ∈{0, 1}|E|.(D1)

Constraints (ST1) impose that exactly |V | − 1 edges are selected and subtours
are prevented by (ST2). (D1) define the domain of the variables.

As mentioned, the number of constraints in (ST2) is exponential on |V |, so
a separation procedure (e.g. max flow - min cut) to certify whether a solution
is feasible or otherwise, to provide a violated constraint, is needed to solve this
formulation. This is avoided in the next formulation, which uses the MTZ compact
representation of SECs [30].

3.2. MSTN formulation based on Miller-Tucker-Zemlin. The formulation
based on the MTZ representation of SECs builds a tree rooted at an arbitrarily
selected vertex where the arcs of the tree are oriented towards the root. In our case
we set vertex 1 as the root of the trees. Associated with each edge {v, w} ∈ E we
define two additional binary decision variables, zvw and zwv, to indicate whether or
not (v, w) (resp. (w, v)) is used as a directed arc. The set of such arcs is denoted by
A. As it is usual for the representation of the SEC constraints we use continuous
variables sv, v ∈ V , associated with the vertices. The MTZ-MSTN formulation is:
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min Θ =
∑

e∈E

θe(MTZ−MSTN)

s.t. (LIN−Mc), (U1), (U2),

xe = zuv + zvu, ∀e = {u, v} ∈ E,(MTZ1)
∑

(v,1)∈δ−(1)

zv1 ≥ 1,(MTZ2)

∑

(v,w)∈δ−(u)

zvw = 1, ∀v ∈ V \{1},(MTZ3)

|V |zvw + sv − sw ≤ |V | − 1, ∀(v, w) ∈ A,(MTZ4)

s1 = 1; 2 ≤ su ≤ |V |, ∀u ∈ V \{1},(MTZ5)

u, θ ∈ R
|E|
+ , y ∈ R|V |×d, x ∈ {0, 1}|E|,(D1)

z ∈ {0, 1}|E|, s ∈ R
|V |
+ .(D2)

The meaning of the new constraints is as follows. Constraints (MTZ1) relate the
edge and arc decision variables. The connectivity with the root is guaranteed by
(MTZ2)-(MTZ3). Subtours are eliminated by (MTZ4) -(MTZ5), where the later
set appropriate bounds for the vertex variables s. The domain of the new variables
is set by (D2).

As mentioned, the two formulations presented above use the norm constraints
(U1) and (U2) to represent both the distance measure for the edges and the neigh-
borhoods. As we see below both sets of constraints can also be handled by using
either SOC or linear constraints. The following remarks show the explicit repre-
sentation of some general cases of this type of constraints.

Remark 3.1 (ℓq-norm representation). As shown in [4, Lemma 3], if the norm ‖ · ‖

is a ℓq-norm with q ∈ Q and q =
r

s
> 1 (with gcd(r, s) = 1), then the constraints

of the form ‖X − Y ‖q ≤ Z as those of (U1) can be rewritten as the following set of
inequalities:

Qk +Xk − Yk ≥ 0, k = 1, . . . , d,
Qk −Xk + Yk ≥ 0, k = 1, . . . , d,
(Qk)

r ≤ (Rk)
sZr−s, k = 1, . . . , d,

d∑

k=1

Rk ≤ Z,

Rk ≥ 0, k = 1, . . . , d,





where for k = 1, . . . , d, Qk = |Xk − Yk| and
Rk = |Xk − Yk|qZ−1/ρ, with ρ = r

r−s .

(3.1)

The above gives a representation of (U1) with a number of SOC inequalities that
is polynomial in the dimension d and q.

Remark 3.2 (Polyhedral norm representation). When the norm ‖ ·‖ is a polyhedral
(or block) norm, a (linear) representation, much simpler than the one given in
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Remark 3.1 is possible. Let B∗ be the unit ball of its dual norm and Ext(B∗) the
set of extreme points of B∗. The constraint Z ≥ ‖X − Y ‖ is then equivalent to

Z ≥ et(X − Y ), ∀e ∈ Ext(B∗),

where et denotes the transpose of e.

3.3. Computational comparison of the two formulations. We have per-
formed a series of computational experiments in order to compare the performance
of the two formulations SEC−MSTN and MTZ−MSTN, as well as to explore
the limitations of each of them. For this we have generated several batteries of
instances with different settings. We consider complete graphs with a number of
vertices ranging in [5, 20], and randomly generated coordinates in R2 and R3 rang-
ing in [0, 100]. Distances are measured using the Euclidean norm and Euclidean
balls are used as neighborhoods of the vertices. In addition, we consider four dif-
ferent scenarios for generating the radii to define the neighborhoods of each vertex
in a given instance:

Small size Neighborhoods (r = 1):: Radii randomly generated in [0, 5].
Small-Medium size Neighborhoods (r = 2):: Radii randomly generated

in [5, 10].
Medium-Large size Neighborhoods (r = 3):: Radii randomly generated

in [10, 15].
Large size Neighborhoods (r = 4):: Radii randomly generated in [15, 20].

The above four cases allow us to observe the performance of the formulations for
neighborhoods of varying sizes and to analyze how these sizes affect the computation
the MSTN in each case. Finally, five different instances were generated for each
combination of number of vertices and radii, both in the plane and in the 3D-space.
The generated data are available at bit.ly/mstneigh.

All the formulations were coded in C, and solved using Gurobi 6.5 [23] in a Mac
OSX El Capitan with an Intel Core i7 processor at 3.3 GHz and 16GB of RAM. A
time limit of 2 hours was set in all the experiments.

Tables 1-2 summarize the results of these experiments. In these tables the column
CPU, under the heading of each formulation, reports the average computing time
(in seconds) to attain optimality. Whenever the time limit of 2 hours is reached
without certifying optimality, columns under GAP report the average percentage
deviation of the best solution found during the exploration with respect to the lower
bound at termination. Columns under #Nodes report the average number of nodes
explored in the branch-and-bound search, whereas column SEC gives the average
number of constraints (ST2) incorporated to formulation SEC-MSTN throughout
the solution process. Finally, the last column in each block reports the percentage
of instances optimally solved with each formulation.

Observe that the computing times required by SEC-MSTN are in most cases
smaller than those required by MTZ-MSTN. Furthermore, some instances that
could not be solved with MTZ-MSTN, were optimally solved with SEC-MSTN.
In most of the cases where SEC-MSTN did not succeed, MTZ-MSTN was also
not able to solve the corresponding instance. Note that, for the instances with
n = 20, we only report the results for the first scenario (r = 1), since neither
SEC-MSTN nor MTZ-MSTN were able to solve any of such instances for r ≥
2. We would like to highlight that, even if the 3-dimensional instances have a
higher number of variables than the planar ones, the results, in terms of computing

bit.ly/mstneigh


MINIMUM SPANNING TREES WITH NEIGHBORHOODS 11

times, percentage deviations, and number of optimally solved instances are better
for these instances than for the 2-dimensional ones. Observe that the difficulty
of an instance is highly related to whether or not the neighborhoods have non-
empty intersections; in such cases, the continuous relaxation tends to collapse the
vertices of intersecting neighborhoods into a single one, which is not necessarily an
optimal strategy. This justifies the higher difficulty of planar instances since, with
uniform randomly generated points and given radii, the probability of intersection
of neighborhoods is higher in case of the plane than in the space [12].

Table 1. Results of MTZ−MSTN and SEC−MSTN for R2 instances.

MTZ −MSTN SEC−MSTN
r n CPU #Nodes GAP %Solved CPU #SECs #Nodes GAP %Solved

1

5 0.0652 5.40 100% 0.0250 3.40 9.00 100%
6 0.0965 7.60 100% 0.0334 6.40 21.20 100%
7 0.1403 84.60 100% 0.0456 9.60 54.00 100%
8 0.1917 201.60 100% 0.0677 9.20 41.40 100%
9 0.2592 37.60 100% 0.0826 29.60 76.00 100%

10 0.4843 434.80 100% 0.1318 64.60 241.40 100%
11 0.6472 568.20 100% 0.3922 123.80 552.60 100%
12 0.9159 712.00 100% 0.3083 156.40 547.80 100%
13 10.9525 3145.80 100% 1.1175 419.00 1314.80 100%
14 4.7581 4014.80 100% 1.1627 300.40 1043.60 100%
15 657.1666 41153.60 100% 444.5906 1474.20 17828.00 100%
20 2915.1011 110070.80 100% 840.0096 2431.20 32173.80 100%

2

5 0.0820 47.00 100% 0.0263 7.40 54.60 100%
6 0.1226 44.10 100% 0.0451 11.90 84.80 100%
7 0.1571 123.20 100% 0.0582 18.60 95.60 100%
8 0.4895 480.80 100% 0.2000 98.40 457.40 100%
9 0.5531 415.80 100% 0.3984 128.40 666.20 100%

10 1.3820 915.40 100% 0.7600 174.40 1125.00 100%
11 1.6639 835.60 100% 1.2961 235.80 1050.20 100%
12 32.8139 12301.20 100% 8.2899 832.80 9301.60 100%
13 143.7873 16259.40 100% 9.7330 4685.40 68409.20 100%
14 1467.5540 44337.00 7.64% 80% 661.3465 3252.60 36310.60 100%
15 3428.0761 423135.80 4.97% 80% 3424.9741 15712.80 179939.00 6.29% 60%

3

5 0.0958 44.20 100% 0.0354 9.40 79.80 100%
7 0.2645 414.60 100% 0.2772 189.70 1133.40 100%
8 1.6716 2097.80 100% 1.1393 338.60 1894.20 100%
9 3.7345 3827.40 100% 3.8655 407.60 3515.40 100%

10 5.9807 3465.20 100% 3.8294 333.80 2426.20 100%
11 713.2283 172376.20 100% 976.5382 61128.20 363205.60 100%
12 1054.4171 479364.20 100% 2828.2251 97800.80 576762.00 100%
13 3323.6210 279362.20 13.45% 60% 4626.0085 116751.40 953914.60 20.98% 80%
14 >7200 1385623.40 30.04% 0% >7200 27120.40 162667.60 38.07% 0%
15 >7200 1473884.40 19.43% 0% >7200 87730.20 392951.00 23.65% 0%

4

5 0.0886 33.20 100% 0.0288 4.80 47.40 100%
6 0.1688 307.20 100% 0.1797 95.80 709.20 100%
8 2.0333 1976.60 100% 1.1078 289.80 1562.40 100%
9 4.4483 4936.00 100% 9.3935 444.60 6657.20 100%

10 67.5709 33224.80 100% 194.9068 1224.20 28680.60 100%
11 469.3033 198141.80 100% 315.9130 6463.80 70995.60 100%
12 2471.0749 403914.60 6.45% 80% 822.4408 105361.40 906147.00 100%
13 4609.7707 874785.60 16.88% 40% 5134.5084 8477.00 163847.00 19.64% 40%
14 >7200 807955.40 44.52% 0% >7200 37016.40 192311.20 51.26% 0%
15 >7200 948641.60 34.07% 0% >7200 29946.80 168779.80 43.33% 0%

4. Branch-and-Cut solution algorithm

In this section we describe the branch-and-cut solution algorithm that we propose
for solving MSTN. The special structure of MSTN, with disjoint domains for each
set of variables - x and u- and a bilinear objective function makes it possible to
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Table 2. Results of MTZ−MSTN and SEC−MSTN for R3 instances.

MTZ−MSTN SEC−MSTN
r n CPU #Nodes GAP %Solved CPU #SECs #Nodes GAP %Solved

1

5 0.0677 3.60 100% 0.0282 2.40 17.20 100%
6 0.1049 11.80 100% 0.0429 3.00 14.00 100%
7 0.2137 24.40 100% 0.0694 5.60 24.80 100%
8 0.2439 52.40 100% 0.0813 6.20 38.40 100%
9 0.3733 166.80 100% 0.1298 13.40 127.40 100%

10 0.3803 56.20 100% 0.1442 34.00 127.40 100%
11 1.0249 281.40 100% 0.3568 27.60 336.20 100%
12 0.6932 235.20 100% 0.2772 62.00 225.00 100%
13 1.3241 763.40 100% 0.9351 113.60 819.60 100%
14 4.1596 1112.00 100% 2.6353 200.80 1164.60 100%
15 4.2952 1286.20 100% 2.5708 197.00 812.40 100%
20 67.5323 6555.20 100% 8.9617 372.20 1441.00 100%

2

5 0.0983 12.40 100% 0.0431 6.80 37.40 100%
6 0.1479 27.40 100% 0.0497 4.70 35.30 100%
7 0.2058 51.80 100% 0.0770 9.20 55.80 100%
8 0.3084 211.40 100% 0.1645 49.80 263.00 100%
9 0.8943 382.00 100% 0.4596 86.20 593.80 100%

10 0.5047 170.60 100% 0.2185 50.60 267.80 100%
11 1.4917 653.40 100% 0.5416 134.00 679.60 100%
12 3.2860 1814.40 100% 5.4726 462.80 2440.20 100%
13 5.3095 1956.40 100% 5.6612 437.20 2344.40 100%
14 16.8888 4485.20 100% 13.0737 1108.60 9084.40 100%
15 100.5050 14664.20 100% 54.8965 1524.20 12674.20 100%

3

5 0.1034 12.00 100% 0.0450 3.00 39.60 100%
7 0.2737 199.30 100% 0.1663 79.70 428.00 100%
8 1.0901 972.40 100% 1.6812 230.40 1323.80 100%
9 15.9457 3589.40 100% 2.0036 295.00 3520.80 100%

10 2.0609 1124.00 100% 2.2637 259.80 1459.20 100%
11 29.7077 5477.80 100% 34.5579 549.20 7713.00 100%
12 330.0074 19946.80 100% 531.3279 1580.20 20383.00 100%
13 1069.2640 37625.20 100% 668.1420 2349.60 30331.40 100%
14 3875.3014 152561.80 15.19% 60% 2519.3367 11488.00 112377.40 6.87% 80%
15 1001.7704 47758.80 100% 160.5466 4114.40 37114.80 100%

4

5 0.0875 21.60 100% 0.0469 6.80 42.60 100%
6 0.2094 134.20 100% 0.1156 28.00 255.40 100%
8 0.8188 832.20 100% 1.1261 204.00 1188.60 100%
9 2.8822 2408.60 100% 1.7530 329.40 4937.60 100%

10 6.4525 3461.40 100% 7.0799 525.80 3539.00 100%
11 32.0012 9411.20 100% 37.8657 1084.40 9208.20 100%
12 70.9765 12658.60 100% 37.6467 1104.00 11910.80 100%
13 710.0275 100078.40 100% 1679.7648 52401.40 287336.00 100%
14 4635.9384 287990.20 27.48% 60% 6433.5763 39467.20 192079.80 25.48% 40%
15 5741.0396 115401.20 7.12% 20% 3609.2785 11392.80 75087.00 10.55% 60%

apply well-known Benders-like decomposition methods [2, 21]. This type of well-
known solution schemes have been widely applied to problems with two sets of
structural decision variables, in which the subproblem that results when fixing one
of the sets of variables can be efficiently solved. Note that, as mentioned before,
this requisite is satisfied in the case of MSTN.

In order to warrant the convergence properties of the approach, we also apply
reformulation techniques to the bilinear objective function. For a given spanning
tree x̄ ∈ ST G, the “optimal” vertices and distances of its associated MSTN, can
be computed by solving the following convex subproblem:

u(x̄) = min
∑

e∈E

uex̄e(PUx̄)

s.t. u ∈ U
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As already mentioned, (PUx̄) is a continuous SOC problem, which can be effi-
ciently solved with on-the-shelf solvers. Note also that the number of u variables
in (PUx̄) reduces to n− 1, because only distances associated with the edges e ∈ E

with x̄e = 1 need to be computed. Hence, (generalized) Benders decomposition is
a suitable methodology for solving the MSTN problem. The following result states
explicitly the form of the Benders cuts that allow to use particular solutions of
(PUx̄) to solve MSTN.

Theorem 4.1. Let x̄ ∈ ST G and u(x̄) its associated (PUx̄) solution. Then,

Θ ≥ u(x̄) +
∑

e:x̄e=1

Ûe(xe − 1) +
∑

e:x̄e=0

ûexe,

is a valid cut for MSTN, where, as before, Θ =
∑

e∈E

θe with θe ≥ 0, e ∈ E; and Ûe

and ûe are upper bounds on the maximum and minimum values of the distance of
edge e, respectively (for instance, the ones introduced after Example 2.1).

Proof. Let us consider the following equivalent reformulation of (PUx̄) based on
the Mckormick linearization of the bilinear terms of the objective function in the
original MSTN formulation:

u(x̄) = min
∑

e∈E

θe

s.t. θe ≥ ue + Ûe(x̄e − 1), e ∈ E(RPUx̄)

θe ≥ ûex̄e, e ∈ E

u ∈ U .

Note that the reformulation (RPUx̄) is a convex optimization problem, and Slater
condition holds [33]. Hence, (necessary and sufficient) optimality conditions can be
derived from the following Lagrangean function associated with (PUx̄):

L(x̄, θ, u;λ, µ, ν) =
∑

e∈E

θe−
∑

e∈E

λe(θe−ue+Ûe(1−x̄e))−
∑

e∈E

µe(θe−ûex̄e)+νtG(u),

where G(u) ≤ 0 are the constraints (only involving u-variables) defining U .
Let θ∗e , u

∗
e, e ∈ E, be an optimal solution to (RPUx̄) and λ∗, µ∗ and ν∗ the

associated optimal multipliers. Then, λ∗ and µ∗ must satisfy:

(4.1) 1− λ∗e − µ∗e = 0, ∀e ∈ E,

together with the complementary slackness constraints:

λ∗e(θ
∗
e − u∗e + Ûe(1 − x̄e)) = 0, ∀e ∈ E,

µ∗e(θ
∗
e − ûex̄e) = 0, ∀e ∈ E.

If x̄e = 1, then µ∗e = 0, since u∗ ≥ û and θ∗e ≥ u∗e; and by (4.1), λ∗e = 1. Besides, if

x̄e = 0, since u∗e < Ûe, then θ∗e = 0 and λ∗e = 0. Thus, we conclude that:

(4.2) λ∗ = x̄e and µ∗e = 1− x̄e, ∀e ∈ E.

On the other hand, since u(x) = Θ =
∑

e∈E

θe = max
λ≥0,µ≥0

min
θ,u

L(x, θ, u;λ, µ, ν) also

holds for any x ∈ ST G, we have that



14 VÍCTOR BLANCO, ELENA FERNÁNDEZ, AND US

Θ ≥ min
θ,u

L(x̄, θ, u;λ∗, µ∗, ν∗)

=
∑

e∈E

θ∗e −
∑

e∈E

λ∗e(θ
∗
e − u∗e + Ûe(1 − x̄e))−

∑

e∈E

µ∗e(θ
∗
e − ûex̄e) + ν∗

t
G(u∗)

=
∑

e∈E

θ∗e −
∑

e∈E

λ∗e(θ
∗
e − u∗e + Ûe(1 − xe))−

∑

e∈E

µ∗e(θ
∗
e − ûexe) + ν∗

t
G(u∗)

−
∑

e∈E

λ∗e(Ûe(1− x̄e)) +
∑

e∈E

λ∗e(Ûe(1 − xe))−
∑

e∈E

µ∗e(ûexe) +
∑

e∈E

µ∗e(ûex̄e)

= u(x̄) +
∑

e∈E

λ∗eÛe(xe − x̄e) +
∑

e∈E

µ∗eûe(xe − x̄e)

= u(x̄) +
∑

e∈E:x̄e=1

Ûe(xe − 1) +
∑

e∈E:x̄e=0

ûexe.

This concludes the proof. �

Note that, by construction, the above generalized Benders cuts imply that, we
can compare the value of the subproblem (PUx̄) associated with a given spanning
tree x̄ ∈ ST G, u(x̄), with the value of the subproblem (RPUx) associated with
a different spanning tree x ∈ ST G, u(x). In particular, if there exist e1, e2 ∈ E

with x̄e1 = 1 and xe1 = 0, and x̄e2 = 0 and xe2 = 1, then the value of u(x) is

at least u(x̄) − Ûe1 + ûe2 . In other words, the difference between the values of
the two subproblems is bounded by the maximum amount that can be saved (in
the cost function) by removing e1, plus the minimum gain that can be attained
by adding e2. Therefore, the relaxed master problem at the K-th iteration of the
row-generation solution algorithm can be stated as:

Θ∗ = min Θ

Θ ≥ u(x̄k) +
∑

e:x̄k
e=1

Ûe(xe − 1) +
∑

e:x̄k
e=0

ûexe, k = 1, . . . ,K,(4.3)

x ∈ ST G.

The reader may note that the cuts (4.3) can be interpreted as some form of
lifting of the surrogated McCorminck inequalities (LIN−Mc), after projecting out
the u variables in formulation (RL−MSTN).

Using the above cuts algorithmically, gives rise to the solution scheme described
in Algorithm 1:
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Algorithm 1: Decomposition Algorithm for solving MSTN.

Initialization: Let x0 ∈ ST G be an initial solution and ε a given threshold
value.
Set LB = 0, UB = +∞, x̄ = x0.

while |UB − LB| > ε do
(1) Solve (PUx̄) for x to get u(x̄).

(2) Add the cut Θ ≥ u(x̄) +
∑

e:x̄e=1

Ûe(xe − 1) +
∑

e:x̄e=0

ûexe to the current

master problem.
(3) Obtain the optimal value Θ̄ to the current master problem, and its

associated solution x̄.
(4) Update LB = max{LB, Θ̄} and UB = min{UB,

∑
e∈E u(x̄)ex̄e}

end

The stopping criterion is that the gap between the upper and lower bound does
not exceed the fixed threshold value ε.

Theorem 4.2. The decomposition-based solution scheme of Algorithm 1 terminates
in a finite number of steps (for any given ε ≥ 0). Furthermore, if ε ≤ min{Ũe1 −
ũe2 ≥ 0 : e1 6= e2 ∈ E}, it outputs an optimal MSTN.

Proof. The the finiteness of the number of underlying spanning trees of ST G, the
convexity of (PUx̄) for any x ∈ ST G, and the linear separability of the problem
assure the result by applying Theorem 2.4 in [21]. �

To avoid the enumeration of all spanning trees of G, and to reduce the number of
iterations, several recipes can be applied. One of them is to start with a non-empty
set of cuts which give a suitable initial representation of the lower envelope of Θ.
Hence, if ST G denotes the set of trees associated with the current set of constraints
(4.3), the representation we use for the master problem is:

min
∑

e∈E

θe(4.4)

s.t.
∑

e∈E

θe ≥ u(x̄) +
∑

e:x̄e=1

Ûe(xe − 1) +
∑

e:x̄e=0

ûexe, ∀x̄ ∈ ST G,(4.5)

θe ≥ ũexe, e ∈ E,

x ∈ ST G.

Given that the master problem exhibits a combinatorial nature, the performance
of a Benders-like algorithm can be improved by embedding the cut generation
mechanism within a branch-and-cut scheme. This is the current trend nowadays
[16, 17]. This requires to separate the optimality cuts in addition to any other
generated cuts, at the nodes of the enumeration tree. Note that this approach is
also valid in our case, as the cuts (4.5) are also valid if x̄ is the solution to a linear
programming relaxation of a valid MST formulation.

4.1. Computational Experiments . The proposed decomposition approach has
been tested over the same set of benchmark instances used to compared the com-
pact formulations. Based on the results obtained in such a comparison, and also
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to take advantage of the possibility of adding dynamically violated SECs within
the branch-&-cut, we combine the decomposition approach with the classical SEC
representation SEC−MSTN. In addition to the average statistics reported in the
previous tables (CPU, #SECs, #Nodes, GAPs, and %Solved), we also report now
the average number of Benders’ type cuts, #BendersCuts, and the gap after the
exploration of the root node of the branch-&-cut tree, %GAP0. Average results for
the 4 scenarios are reported in Tables 3 and 4.

As can be seen, the computing times required by the decomposition approach
are smaller than those obtained with the MINLP formulations for the small size
radii scenario and also in the small-medium size radii scenario for the 3D case.
However, the results obtained for the medium-large and large size scenarios reveal
that the MINLP formulations have a better performance than the decomposition
scheme. Note that the cuts induced by our approach depends of the available upper
and lower bounds on the lengths of the edges in the graph. These bounds are tight
for the small size radii scenarios, but far from being a representative value of the
actual length of the edge in the remaining scenarios. Hence, a large number of cuts
are needed to certify optimality of the solution in these cases.

5. A MathHeuristic for MSTN

The results of the computational experiments section indicate that MSTN in-
stances with up to less than 15 vertices can be optimally solved within the allowed
time limit, but as the sizes of the instances increase the computing times become
prohibitive. Below we present a mathheuristic alternative to obtain near-optimal
solutions to larger MSTN instances. The main idea under the proposed algorithm
is based on the observation that the problem is a biconvex problem, since fixing
any of the set of variables the problem becomes an efficiently solvable optimization
problem (in case x is fixed, the problem is a continuous SOCP, while if u is fixed,
the problem is a standard MST problem).

The mathheuristic consists of two embedded loops.The outer loop is a multistart
procedure. The input of each iteration in this loop is a spanning tree, which will
be used in the initial iteration of the inner loop. The number of iterations of the
outer loop is a parameter related to the initial spanning tree generation mechanism
that we use, which will be explained later on.

The rationale of the inner loop is to alternate in solving subproblems in the
solution spaces of the two main sets of variables (x and u). We proceed iteratively,
and each iteration consists of solving a pair of subproblems, one in each space of
variables. When solving the subproblem in one solution space we fix the values of
the variables of the other space.

Formally, let (Px̄u) and (Pxū) respectively denote the subproblems of the generic
MSTN formulation Pxu of Section 3, when x̄ and ū are fixed. That is,

min
∑

e∈E

uex̄e(PUx̄)

s.t. u ∈ U

and min
∑

e∈E

ūexe(PXū)

s.t. x ∈ ST G.

Figure 4 shows a flowchart of the inner loop of the mathheuristic. We start with
a given spanning tree T 0 associated with a solution x0. In the k-th iteration, we
compute the distances u(xk) in the current tree T k and update the vector ūk+1
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Table 3. Average results for the decomposition approach for R2

instances.

r n CPU #SEC #BendersCuts #NodesB%B %GAP0 %GAP %Solved

1

5 0.0065 1.20 0.20 0.00 5.45% 100%
6 0.0196 3.60 2.40 10.40 18.99% 100%
7 0.0328 5.60 4.00 22.80 12.07% 100%
8 0.0347 3.60 3.80 23.40 15.41% 100%
9 0.0646 12.80 7.60 64.60 18.79% 100%

10 0.1796 26.60 23.40 180.00 20.06% 100%
11 0.5341 116.60 68.40 950.60 28.48% 100%
12 0.6484 213.20 71.80 1129.00 32.67% 100%
13 1.5531 246.20 167.60 2573.80 37.76% 100%
14 1.6703 300.60 177.00 2204.20 32.39% 100%
15 45.3193 1016.40 1637.40 23077.60 47.74% 100%
20 333.5085 1628.60 3721.80 59876.80 39.75% 100%

2

5 0.0464 4.20 6.40 25.60 29.32% 100%
6 0.0730 6.70 11.40 50.90 24.67% 100%
7 0.0678 12.20 10.80 78.20 28.19% 100%
8 0.2743 21.60 43.60 311.60 41.06% 100%
9 0.3111 55.20 46.80 492.20 30.63% 100%

10 0.4646 78.00 66.60 721.40 33.22% 100%
11 1.3472 245.40 167.80 2382.60 35.11% 100%
12 160.8519 864.80 3027.00 36569.60 61.72% 100%
13 326.1787 1598.20 2800.40 50047.80 50.47% 100%
14 226.5067 2024.20 6463.60 96243.00 43.07% 100%
15 5824.7652 8023.00 18775.80 284590.80 73.80% 3.76% 20%

3

5 0.1152 3.80 5.80 24.40 27.67% 100%
7 0.4851 58.10 93.50 712.60 50.67% 100%
8 3.2475 158.20 526.80 3963.60 59.22% 100%
9 17.3417 521.00 1492.40 14560.00 67.32% 100%

10 5.8312 226.20 595.00 5933.40 50.17% 100%
11 2603.6210 4308.40 12569.00 168712.00 75.77% 40.36% 80%
12 >7200 5223.40 23172.40 275986.80 81.98% 22.01% 0%
13 >7200 7191.60 20230.60 282031.60 85.37% 20.33% 0%
14 >7200 15425.00 14481.80 311567.60 90.64% 53.59% 0%
15 >7200 11379.40 13846.80 310549.80 83.69% 35.16% 0%

4

5 0.0476 3.80 5.80 24.20 33.07% 100%
6 0.3993 36.20 83.80 428.60 56.12% 100%
8 2.9985 187.20 424.40 3055.80 62.99% 100%
9 53.7040 418.00 2631.80 23586.40 67.46% 100%

10 1013.3837 1444.00 7611.00 72987.20 82.73% 100%
11 4256.8194 4636.60 16430.60 204272.20 84.16% 30.36% 60%
12 6232.3367 6569.80 20400.00 250014.00 77.37% 16.60% 20%
13 >7200 8218.80 19321.40 299586.40 85.78% 29.58% 0%
14 >7200 13880.00 13080.80 336546.40 93.16% 71.25% 0%
15 >7200 16128.60 12538.00 326406.20 94.80% 50.14% 0%

according to ūk and u(xk). In the first iteration we use the distance lower bounds
ū0 = ũ. At each iteration k > 0 we first solve problem (PXūk) and then compute the
vertices distances u(xk) in its optimal tree T k, by solving (PUxk). All components
ūk
e associated with edges e ∈ T k are updated to the corresponding component of

the distances vector u(xk). The remaining components remain unchanged. The
procedure terminates when two consecutive iterations produce the same tree or a
maximum number of iteration is attained.

For the sake of analyzing the quality of solutions obtained with the mathheuris-
tic we introduce the notion of partial optimal MSTN adapting the notation in
[35] for the general case of minimizing a non-separable function subject to disjoint
constraints.
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Table 4. Average results for decomposition approach for R3 instances.

r n CPU #SEC #BendersCuts #NodesB%B %GAP0 %GAP %Solved

1

5 0.0063 0.80 0.00 0.00 2.28% 100%
6 0.0125 1.60 0.60 0.00 4.53% 100%
7 0.0138 2.20 1.80 9.80 9.31% 100%
8 0.0445 3.60 3.40 18.80 12.49% 100%
9 0.0573 6.00 5.80 28.60 9.66% 100%

10 0.0883 9.60 9.20 72.60 8.28% 100%
11 0.2478 30.20 17.20 162.00 17.26% 100%
12 0.2455 59.00 25.00 314.20 16.00% 100%
13 0.8280 87.60 85.20 1035.40 17.73% 100%
14 1.1512 194.80 95.20 1535.20 11.92% 100%
15 1.7121 264.00 130.20 1761.60 18.39% 100%
20 8.2175 702.20 377.80 7398.60 16.68% 100%

2

5 0.0218 3.80 2.40 7.80 12.34% 100%
6 0.0292 2.40 3.30 12.50 8.57% 100%
7 0.0388 4.20 4.60 18.80 18.30% 100%
8 0.2397 24.00 33.40 247.00 23.13% 100%
9 0.2389 26.00 32.60 304.00 18.73% 100%

10 0.2859 50.80 33.00 398.00 12.74% 100%
11 0.5181 58.00 57.80 555.80 20.94% 100%
12 4.8255 263.20 369.80 5574.80 28.77% 100%
13 5.6111 498.60 635.80 9576.20 28.87% 100%
14 11.3739 1388.00 1459.40 32630.40 27.78% 100%
15 35.4121 1873.00 2982.00 67628.20 33.80% 100%

3

5 0.0281 2.80 2.60 10.00 16.98% 100%
6 0.2437 26.80 43.80 276.40 29.17% 100%
7 0.2725 39.60 42.60 348.20 38.34% 100%
8 1.5945 131.40 235.40 1915.20 49.20% 100%
9 3.9492 292.40 1025.80 9022.00 45.81% 100%

10 2.5790 313.00 272.40 3468.00 26.01% 100%
11 55.9248 689.40 1979.60 26140.60 42.86% 100%
12 1258.5048 2060.40 8294.40 130089.80 47.82% 100%
13 3005.2253 5083.40 10824.20 212760.60 44.99% 3.81% 60%
14 >7200 9029.40 15154.60 288000.20 53.37% 17.53% 0%
15 1751.1580 9504.80 10049.00 243900.00 40.75% 100%

4

5 0.0312 3.00 3.60 16.60 19.69% 100%
6 0.1750 13.80 29.60 122.20 27.05% 100%
7 0.6724 54.80 94.20 543.60 22.12% 100%
8 1.6626 162.80 218.80 1898.40 46.48% 100%
9 9.5678 326.60 916.20 8138.60 45.42% 100%

10 22.7335 576.60 1450.40 17267.40 47.61% 100%
11 107.0304 1037.60 3051.40 40153.60 50.56% 100%
12 1005.8061 1904.80 6533.00 99639.80 50.15% 100%
13 999.9207 5066.20 12905.60 211964.00 50.13% 100%
14 7200.3120 9951.60 14550.00 285772.40 70.62% 30.61% 0%
15 6123.5383 12659.40 12203.20 266014.20 55.75% 16.35% 20%

Definition 5.1 (Partial Optimum MSTN). Let x̄ ∈ ST G and ū ∈ U . (x̄, ū) is said
a partial optimum MSTN if:

∑

e∈E

x̄eūe ≤
∑

e∈E

xeūe and
∑

e∈E

x̄eūe ≤
∑

e∈E

x̄eue

for all x ∈ ST G and u ∈ U .

Observe that a partial optimum MSTN (x̄, ū) implies that x̄ is a MST for the
weights ū and that ū are the optimal distances with respect to x̄. The follow-
ing result states the partial optimality of the solutions generated by the proposed
mathheuristic.

Theorem 5.2. The sequence of objective values produced at the inner loop of the
mathheuristic, corresponding to a given initial solution, converges monotonically to
a partial optimum MSTN.
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Solve (PXūk)
↓

T
k associated with x

k

Solve (PUxk)
↓

obtain distances u(xk)

k ← 0

T
0, x0

Update ū
k:

ū
k+1
e =

{

ue(x
k) if e ∈ T

k,

ū
k
e otherwise

k← k+1

Figure 4. Flowchart of the inner loop of the mathheuristic

Proof. Let f(x, u) =
∑

e∈E

xeue denote the objective function value associated with

a given solution x ∈ ST G, u ∈ U . Let also x1, . . . , xk ∈ ST G and u1, . . . , uk ∈ U
be the solutions obtained in the first k steps of the alternate convex search for a
given initial solution.

Observe that in the mathheuristic, for uj given, xj+1 is obtained by solving
(PXū) with weights ū = uj . Hence,

∑

e∈E

xj+1
e uj

e ≤
∑

e∈E

xe ū
j
e, ∀x ∈ ST G.

Next, solving (PUx̄) with x̄ = xj+1, one obtains u(xj+1) and then uj+1 with:

∑

e∈E

xj+1
e u(xj+1)e =

∑

e∈E

xj+1
e uj+1

e ≤
∑

e∈E

xj+1
e ue, ∀u ∈ U .

Hence, f(xk, uk) ≥ f(xk, u(xk)) ≥ f(xk+1, uk+1), so the sequence {f(xj , uj)}j∈Z+

is monotonically non-increasing. Thus, since f(x, u) ≥ 0 for all x ∈ ST G and u ∈ U ,
the sequence of objective values converges.

Let Θ∗ = lim
j→∞

f(xj , uj) and x∗ ∈ ST G, u
∗ ∈ U such that f(x∗, u∗) = Θ∗. Since

ST G and U are closed sets and f is continuous, we have that taking limits:

Θ∗ =
∑

e∈E

x∗eu
∗
e ≤

∑

e∈E

xeu
∗
e and Θ∗ =

∑

e∈E

x∗eu
∗
e ≤

∑

e∈E

x∗eue.

Thus, (x∗, u∗) is a partial optimum MSTN. �

Since only partial optimality of the solutions is assured at the end of each inner
loop, it is possible that the mathheuristic gets trapped at a local optimum. Hence
we have incorporated a multistart outer loop to allow escaping from local opti-
mal. Note that the mathheuristic becomes an exact solution method if all possible
spanning trees are considered as initial solutions. However, complete enumeration
is prohibitive, even if the number of potential MSTs is finite (despite using vary-
ing weights). On the other hand, we have observed that (i) the mathheuristic is
sensitive to the provided initial feasible solution, and; (ii) in many cases, a few
changes over an initial standard MST with respect to the distances between the
centers of the neighborhoods are enough to find an optimal MSTN solution. Hence,
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we generate the set of initial spanning trees for the multistart procedure with an
adaptation of the method proposed in [34], which is described in Algorithm 2. In
principle, this method generates the whole set of spanning trees on a given graph
(by increasing order values relative to a given weight vector). In our adaptation, we
stop generating new spanning trees, when one of the following criteria is met: (1)
a given number of MSTs has already been generated; or, (2) no improvement has
been obtained, in the MSTNs obtained in the inner iterations, for a given number
of outer iterations.

Algorithm 2: Initial solutions for the multistart procedure.

Initialization: u0
vw = ‖v − w‖, ∀v, w ∈ V and T 0 the MST with respect to

u0, T = {T 0}.
for T ∈ T do

Let e1, . . . , en−1 be the edges of T .
for i = 1, . . . , n− 1 do

Construct the MST with respect to u0, Ti, such that ei does not belong
to the tree but e1, . . . , ei−1 are part of it. Let ci be the weight of Ti.

end

Choose T ′ ∈ {T1, . . . , Tn−1} with c(T
′

) = min
i=1,...,n

ci and add it to T .

end

A series of computational experiments have been performed to analyze the com-
puting times and the quality of the solutions obtained with the overall heuristic.
We report results based on two batteries of benchmark instances. The first one is
the same that was used in our previous experiments. Here the goal is to compare
the quality of the solutions obtained by the exact and the heuristic methods. The
second one contains larger size instances and the goal is to explore the limit of
the mathheuristic. In the experiments we do not fix limits on the number of inner
iterations but we set up the maximum number of trees generated (outer iterations)
to 100 × |E|. Table 5 summarizes the obtained numerical results. We report av-
erage values of the computing times consumed the the mathheuristic (CPU) and
the percentage deviation (%Dev) with respect to the optimal (or best-known) solu-
tions obtained with the exact approaches. Observe that the quality of the solutions
is extremely good, as the maximum %Dev obtained in all the experiments was
1.3086%. Furthermore, in most of the cases where the exact approaches did not
prove the optimality of the best solution found, the heuristic produced a better
solution. Indeed, many of the proven optimal solutions obtained with the other
approaches, where also obtained with the mathheuristic. Moreover, in a few cases
the mathheuristic gives slightly better solutions than those obtained by the exact
methods which showed some precision difficulties caused by numerical instability.
Tables 6 and 7 show the results for the largest instances. We report, apart from the
average computing times, the percentage deviations with respect to available lower
(%Dev LB) and upper bounds (%Dev UB) for the optimal value of the MSTN.
Lower bounds were calculated by computing the MST with respect to the original
graph in which the edge lengths are given as the minimum distance between the
neighborhoods that contain the vertices of each edge, i.e.:

ūe = min{d(yv, yw) : yv ∈ Nv, yw ∈ Nw}, for e = {v, w} ∈ E.
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Upper bounds are computed as the optimal value of (PUx̄), when x̄ is the standard
MST. Finally, we also report the percentage of instances (out of 5) in which the
solution of the matheuristic coincides with the upper bound (i.e. the underlined
MSTN equals the MST). As expected, the deviations with respect to the lower and
upper bounds increases as the radii of the neighborhoods do. The same happens
with the number of instances in which the solutions of the MSTN coincide with
those of MST. In scenario 4, the instances with largest radii, the lower bounds are
close to zero in most of the cases since almost all pairs of neighborhoods intersect,
and several 100% deviations were obtained. The reader may observe that deviation
with respect to lower bounds are few significative since these bounds are always
rather far from the actual optimal solution. We would also like to emphasize that
computing times for the three-dimensional instances are slightly larger than those
obtained for the planar instances, due to the number of variables of the problems
(PUx̄), that must be iteratively solved in the inner loop of the algorithm. However,
the times do not seem to largely depend of the size of the neighborhoods.

6. Conclusions

We analyzed the problem of finding minimum spanning trees with neighbor-
hoods, where the neighborhoods are defined as SOC-representable objects and the
lengths of the arcs in the graph are induced by a ℓq norm. Two MINLP formula-
tions are provided whose differences come from the representation of the subtour
elimination constraints. We propose a decomposition-based methodology to solve
the problem based on the efficiency of solving SOCP problems. Furthermore, a
new mathheuristic procedure is applied to solve the problem exploiting not only
the SOC-representability of the neighborhoods but also that the MST problems are
easily solvable. The results of an extensive computational experience are reported
to compare all formulations and procedures provided throughout this paper.
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Table 5. Average Results for the mathheuristic.

2-dimensional instances 3-dimensional instances
r n CPU %Dev CPU %Dev

1

5 0.1004 0.0000% 0.1594 0.0000%
6 0.2068 0.0000% 0.2200 0.0000%
7 0.3368 0.0433% 0.3614 0.0001%
8 0.5220 0.0000% 0.7036 0.0000%
9 0.6982 0.0000% 0.6792 0.0195%

10 1.2014 0.1768% 1.2254 0.0000%
11 1.8868 0.2679% 2.1230 0.3749%
12 2.4382 0.0000% 2.3078 0.0000%
13 3.0136 0.1319% 4.1954 0.1223%
14 3.9986 0.1802% 4.0428 0.0527%
15 5.9238 0.3095% 5.4956 0.2659%
20 15.3978 0.2068% 15.4622 0.0565%

2

5 0.1788 0.0000% 0.2416 0.0001%
6 0.2603 0.0011% 0.3098 0.0000%
7 0.3972 0.1528% 0.5358 0.0000%
8 0.8566 0.0000% 1.3224 0.0000%
9 0.9240 0.6322% 0.9988 0.3318%

10 1.4706 0.1666% 1.6722 0.0296%
11 2.0872 0.8081% 2.5434 0.3964%
12 3.1428 0.0212% 4.2852 0.2285%
13 3.7266 0.5755% 6.3750 0.3975%
14 5.6144 0.5838% 6.5618 0.0270%
15 9.1994 -0.0408% 10.2092 0.3245%

3

5 0.1710 0.0000% 0.2370 0.0000%
6 0.2134 0.0000% 0.6210 0.0000%
7 0.5969 0.1360% 0.7737 0.0713%
8 0.9008 0.1571% 1.3504 0.0271%
9 1.3432 1.3086% 2.3226 0.7177%

10 1.8258 0.8340% 2.6464 0.4596%
11 3.0670 0.1899% 4.4142 1.1838%
12 4.3984 0.1122% 5.2298 0.0581%
13 4.9976 0.4673% 7.1142 1.2851%
14 6.7682 -0.1210% 10.2342 -0.1614%
15 8.2982 -0.0949% 11.2072 0.2390%

4

5 0.1664 0.0000% 0.2738 0.0000%
6 0.3942 0.1012% 0.4942 0.5379%
7 0.7893 0.0601% 0.9942 0.1123%
8 1.1640 0.0000% 1.6256 0.0353%
9 1.5462 0.7477% 1.8514 0.4004%

10 2.2468 1.1261% 2.6576 1.3283%
11 3.2060 0.7875% 3.6996 0.6159%
12 4.5152 0.2935% 4.8816 0.1611%
13 5.0992 0.7808% 7.2430 1.0225%
14 6.8126 -0.1978% 9.6768 0.6739%
15 8.1124 0.0105% 11.6100 -0.2135%
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Table 6. Average Results for the mathheuristic for large instances
in the planar case.

r |V | CPU %Dev LB % Dev UB % MST

1

20 14.5532 23.0877% 0.1201% 40.00%
25 27.1624 27.6163% 0.2969% 40.00%
30 54.5254 27.8230% 0.3004% 40.00%
35 82.7320 28.8806% 0.1985% 40.00%
40 122.8916 28.7590% 0.3342% 40.00%
45 182.2026 38.7607% 0.1451% 80.00%
50 255.4392 43.0832% 0.0912% 80.00%
60 472.9626 40.6246% 0.2814% 20.00%
70 724.8468 43.4054% 0.1118% 80.00%
80 751.3728 47.7128% 0.3567% 40.00%
90 1064.7958 49.2007% 0.0000% 100.00%

100 1480.0034 53.4484% 0.1639% 80.00%

2

20 16.4950 62.3051% 1.3996% 0.00%
25 31.6210 77.3769% 0.3444% 20.00%
30 59.5594 77.6920% 1.5311% 0.00%
35 87.8010 86.6972% 2.4308% 0.00%
40 145.0846 87.3522% 1.2426% 40.00%
45 192.4576 84.7788% 0.7022% 60.00%
50 283.2516 91.5316% 1.0501% 40.00%
60 525.9362 96.1926% 1.6971% 0.00%
70 835.0496 96.2605% 0.8858% 20.00%
80 779.3946 97.2727% 0.9087% 40.00%
90 1122.9898 98.3883% 0.5728% 60.00%

100 1548.9070 99.3069% 1.4232% 40.00%

3

20 16.0632 90.6985% 2.2212% 20.00%
25 32.1278 96.2322% 0.7643% 20.00%
30 65.7792 97.5944% 1.0350% 0.00%
35 90.1888 98.4009% 5.9840% 0.00%
40 137.5042 99.0318% 2.0271% 0.00%
45 198.4974 99.0682% 1.0427% 40.00%
50 268.2828 99.8648% 2.2477% 20.00%
60 502.3478 100.0000% 3.2364% 0.00%
70 816.0300 100.0000% 2.7085% 20.00%
80 756.5704 100.0000% 2.3165% 40.00%
90 1116.6500 100.0000% 1.8877% 40.00%

100 1530.6052 100.0000% 1.5370% 20.00%

4

20 16.4998 97.9307% 2.7959% 20.00%
25 33.8690 99.3203% 1.6366% 20.00%
30 61.1976 100.0000% 2.6932% 0.00%
35 89.4202 100.0000% 8.7080% 0.00%
40 146.1266 100.0000% 3.3380% 0.00%
45 213.8344 100.0000% 3.0796% 20.00%
50 282.9736 100.0000% 2.0663% 20.00%
60 486.8964 100.0000% 4.5859% 0.00%
70 763.0016 100.0000% 4.2135% 0.00%
80 748.1272 100.0000% 4.5767% 0.00%
90 1085.8690 100.0000% 3.2538% 20.00%

100 1668.2424 100.0000% 2.7675% 20.00%
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Table 7. Average Results for the mathheuristic for large instances
in the 3D case.

r |V | CPU %Dev LB % Dev UB % MST

1

20 14.6272 10.3986% 0.0467% 80.00%
25 40.6772 13.0944% 0.0378% 60.00%
30 69.8356 10.6289% 0.0006% 80.00%
35 106.5134 11.2375% 0.1286% 60.00%
40 175.6634 11.0897% 0.1831% 40.00%
45 262.2358 15.1212% 0.0322% 80.00%
50 370.5236 17.9594% 0.2323% 60.00%
60 631.6412 14.9262% 0.0000% 100.00%
70 1071.5590 18.0318% 0.1747% 60.00%
80 1071.1360 17.2028% 0.1713% 60.00%
90 1570.6312 17.1973% 0.0046% 80.00%

100 2256.3462 20.5805% 0.1206% 60.00%

2

20 24.0912 34.4738% 0.9106% 20.00%
25 49.7172 47.0066% 0.4466% 20.00%
30 81.0262 40.1495% 1.3887% 20.00%
35 123.2108 45.9130% 0.4637% 60.00%
40 211.2694 48.8337% 0.9941% 20.00%
45 295.5366 52.4260% 0.2171% 60.00%
50 401.4358 55.8653% 0.5822% 60.00%
60 743.1540 61.8838% 0.2815% 60.00%
70 1139.6448 68.2234% 0.7040% 40.00%
80 1145.8188 69.4113% 0.4693% 40.00%
90 1835.7320 71.7928% 0.5406% 40.00%

100 2456.1402 77.1601% 0.1699% 60.00%

3

20 24.9052 66.9737% 2.4841% 20.00%
25 51.9204 76.8203% 2.8566% 0.00%
30 83.2864 75.1517% 3.4033% 20.00%
35 136.2574 83.2923% 0.8824% 40.00%
40 207.1532 82.1425% 3.4419% 0.00%
45 293.3924 85.7698% 1.1218% 20.00%
50 431.9292 91.9528% 1.6269% 40.00%
60 741.9330 96.3082% 2.9933% 20.00%
70 1163.3446 97.8903% 2.2103% 0.00%
80 1231.5932 97.5674% 0.9325% 40.00%
90 1770.6206 98.3531% 1.5740% 20.00%

100 2357.2434 98.5889% 2.7997% 20.00%

4

20 24.4860 90.5059% 4.3812% 0.00%
25 50.6444 93.6932% 2.9003% 0.00%
30 84.3946 96.3750% 4.9004% 20.00%
35 134.4824 97.3869% 2.5519% 20.00%
40 213.2442 98.0207% 5.4728% 0.00%
45 304.6368 99.5034% 1.9230% 0.00%
50 415.3388 99.3344% 3.2609% 0.00%
60 721.3308 99.9964% 2.7762% 20.00%
70 1189.9664 100.0000% 3.0113% 0.00%
80 1233.2842 100.0000% 2.1201% 20.00%
90 1922.6220 100.0000% 2.3436% 0.00%

100 2412.5672 100.0000% 2.9934% 20.00%
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[33] Slater, M. (1950). Lagrange Multipliers Revisited, Cowles Commission Discussion Paper No.
403.
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