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ON THE GROWTH OF HARDY AND BERGMAN NORMS
OF FUNCTIONS IN THE DIRICHLET SPACE

DRAGAN VUKOTIC

ABSTRACT. We review the Chang-Marshall inequality of Moser-Trudinger
type for the Dirichlet space. We then use a weaker version of this result
to derive a sharp asymptotic estimate for Hardy and Bergman norms of
a Dirichlet function for large exponents.

INTRODUCTION

Denote by HP and AP respectively the standard Hardy and Bergman spaces
of the unit disk D, 0 < p < co. The space A* = H* consists of all bounded an-
alytic functions in . Let D denote the Dirichlet space of all analytic functions
in D such that f’ € A2.

It is well known that D C H? C AP for all p € (0,00). However, D ¢ H®;
that is, there exist unbounded functions in D. For any such function f we
obviously have lim, . || f||ar = ||f||z~ = oo. The main result of this note
consists in quantifying this in asymptotic form as follows:

We have ||f|lge = o(p'/?) as p — oo (and likewise for the AP norm). The
exponent one-half cannot be improved.

The proof uses two main tools: an inequality of Chang-Marshall (Moser-
Trudinger) type and a theorem on the Taylor coefficients of certain logarithmic
functions in the Dirichlet space.
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1. BACKGROUND

We begin by reviewing the basic concepts and collecting the essential facts
that will be needed later.

1.1. Hardy spaces. As is customary, we denote by HP the standard Hardy
space of all functions analytic in the unit disk I for which

27 ae\ P
e = s ([ 1enr gl <
0 s

0<r<1

The functions in any of these spaces have radial limits f(e'?) almost everywhere
on the unit circle T.

The space H? admits the well known formula for norm computation: if
f € H?and f(z) =Y 07 anz" is its Taylor series in D, then

(1) 117 =D lanl?
n=0

1.2. Bergman spaces. Let dA denote the Lebesgue area measure, normalized
so that A(D) = 1. If 0 < p < oo, the Bergman space AP is the set of all analytic
functions f in the unit disk D with finite LP(D, dA) norm:

1 27
I £115e = /D |f(2)P dA(z) = %/0 /o |f(re?®) [P dfrdr < oo.

Note that || f]|a» is a true norm if and only if 1 < p < co and, in this case, AP
is a Banach space. When 0 < p < 1, AP is still complete with respect to the
metric defined by dy,(f,g) = || f — 9l/*4»-

It follows easily from the formula for AP norm above and from the fact that

) 1/p
the integral means (fo% |f(re’9)|p%) are increasing with = that || f|jar <
£l and, therefore, HP C AP for all p.

Formula (1) has its Bergman space analogue: if f € A? and (a,) is the
sequence of its Taylor coefficients, then

o0

o |an‘2
2 113 = Y0 1o

n=0

1.3. The Dirichlet space and Beurling’s estimate. The Dirichlet space
D is the set of all analytic functions f in D with finite Dirichlet integral. The
norm in D is usually given by

3) £ = 1£(0)* + /D ' (2)]PdA(z) = |aol* + ) nlan|* < oo.

n=1
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When f is a univalent (one-to-one) map, then the Jacobian of the change of
variable w = f(z) is precisely |f/(2)]?, so we get

1115 = /f(D) dA(w) = A[f(D)] < 0o.

In general, f € D means that the image Riemann surface f(D) has finite area.

It is immediate from (1) and (3) that D C H?. It is actually a well known
fact, although a bit more difficult to prove, that D C H? for all 0 < p < oo ([D],
Chapter 6, Exercise 7). In any event, such inclusions are an easy consequence
of the (not so easy) inequalities of Moser-Trudinger type that will be discussed
here.

Obviously, the space D is not contained in H* (for example, there are
unbounded conformal maps of D onto domains of finite area).

It is often convenient to consider the closed subspace

Do ={feD: f(0)=0}.
Since D C H?, each function f in D has radial limits f(e’) almost every-
where. Let E\ = {0 € [0,27] : [f(e?)| > A} and let |E)| be the normalized arc
measure of this set on the unit circle T, i.e., the boundary distribution function

of f. In his famous doctoral thesis in 1933, Beurling [Be] obtained the following
estimate on this distribution function for the functions in the unit ball of Dy.

THEOREM A. If f €D, f(0) =0, and || fllp <1 then |Ex| < e +1.

He also showed that this deep result is sharp by using a family of logarith-
mic functions. It seems that it was observed only much later that Beurling’s
estimate implies another important inequality of Moser-Trudinger type.

1.4. The Chang-Marshall inequality. The integrability of exponential ex-
pressions of the functions whose derivative has certain integrability properties
(in relation to the critical Sobolev index) has been a subject of study for several
decades.

Take as an example the following variant of the Sobolev imbedding theorem,
due to Hardy and Littlewood in the case of analytic functions: whenever 0 <
p < 2 and f' € AP, we have f € A7% . But what can we say about the
integrability of f in the critical case f € D? The answer clearly cannot be
that f € H*, as we observed in Subsection 1.3, so it should ideally again be
expressed by some integrability condition on f. It turns out that if f € D, then
it has the following property:

/elf(z)|2dA(z) < 00.
D

We can actually get a little more, but not much more!

Important results in this respect (in the more general context of real vari-
ables) are due to N. Trudinger in the late 1960’s and J. Moser in the early
1970’s, which is why results with this flavor are usually referred to as the
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Moser-Trudinger inequalities. For a detailed bibliography, see Lecture 3 of
[Ch], for example.
By integrating in polar coordinates, keeping in mind that the integral means

- . 1/p
( 02 |f(7“e’9)|p%) are increasing with r, it is easy to see that

/ TR gA(2) <
D

It may come as a surprise that even these larger integrals over the unit circle
will still be finite when f € D. One way of proving this is, as indicated in [CM],
by using Beurling’s Theorem A and a nice trick due to Garnett. An alternative
and simpler proof via Green’s formula is given in the forthcoming paper [PV].

1 2 62
—/ e EIag (o> 0).
™ Jo

THEOREM B. For every fized f in D and for all a > 0 we still have

27 .
/ P dp < oo
0

Proof. We first prove the statement in the easier case a < 1. Applying Fubini’s
theorem to a function g, increasing on [0, co) and absolutely continuous function
on every closed interval of this semi-axis (as in [R], Theorem 8.16), we get

on , 2m [ PIE)
/0 g (If(€?)]) db — 27g(0) = / (/ g'(A)dA)da

- 271'/ Bal g (\)dA.
0

«

By choosing g(\) = e 2 and taking into account Beurling’s Theorem A, we

get

2 e’}
(4) / eo‘lf(ele)IZd—e =1+ 2a/ )\60‘/\2|E>\\ d\ < 00
0 2 0
for any o < 1.

To prove the statement for arbitrary 0 < a < oo, we follow the observation
due to Garnett from p. 1016 of [CM]. If f(z) = > 2 a,z", there is obviously
a polynomial P and g € D such that f = P + g, g(0) =0, and ||v/3ag|p < 1,
whence by (4) we have

2m i0y2 df 2o A0 bz [T aale(ei®?

/ ol 49 g/ 2allPP+g?) @0 2a ||oo/ (219 g < o
0 2 0 2 0

which proves the statement. O

Even though the integrals considered above are finite for all positive «, they
need not be uniformly bounded for all «; in fact, whenever a > 1 they are
not (even if we assume that f € Dp)! This is shown by the same extremal
logarithmic functions used by Beurling (see [CM]). In their celebrated paper
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[CM], Chang and Marshall proved the following impressive result, now usually
referred to as the Chang-Marshall inequality:

27 or o
Sup{/ el FEN12 g Ifllp <1, f(0)= 0} < 00,
0

thus answering the important open question at that time about the uniform
estimate when oo = 1. Later on, Marshall [M] simplified the initial (very diffi-
cult) proof of this statement. Mathematicians such as Essén and Carleson (and
many others) have also been working on related problems.

We mention the uniform Chang-Marshall inequality with a = 1 primarily as
an important historical development but we will not need the full strength of
the result. For our purpose, Theorem B (also from [CM]) will suffice. It should
also be pointed out that Beurling’s Theorem A alone will not be enough to
deduce our main result.

2. ASYMPTOTIC FORMULAS FOR HARDY AND BERGMAN SPACE NORMS OF
FUNCTIONS IN THE DIRICHLET SPACE

The notation a, < b, for two positive sequences will mean that the finite
(nonzero) limit lim, oo Gy /by, exists, while a,, < b, will mean that a,, < Cb,
for some fixed positive constant C' and all n large enough. Similar notation will
be used below for positive functions u(p) of a positive real variable p instead

of sequences.

It is a standard exercise to check that HP norms increase as p increases and
that lim, . || fl|gr = || f]|ge=. In particular, if f is an unbounded function in
D, we have lim,_, o || f||z» = co. This can be quantified as a precise asymptotic
relation for the Hardy norms as p — oo.

Observe that, if || f||p < 1 and f(0) = 0, then the formula for the distribution
function used earlier, Beurling’s Theorem A, the change of variable t = A2, and
Stirling’s formula imply

27 o0
) do
/ Ife)P— = p/ AP By |dA
0 0

27
< pe/ AP~Le=3 )
0

- ()
2 2
p+1
()
2e ’
hence || f||zr S /P as p — oo (and, in particular, f € HP for all p). However,

this can be improved to a “little-oh” estimate, as will be shown below. The
following auxiliary result will be useful.
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THEOREM C. For every real B, the Taylor coefficients a,, of the function

6 P = (1os 1 2)

have the property that a,, < n~'(logn)?~1 as n — oo.

Theorem C is stated as Theorem 2.31 and proved on p. 192 of the classical
monograph [Z], hence we omit its proof. We are now ready to prove our main
result.

THEOREM 1. (a) If f € D, then its HP norm enjoys the following asymptotic
estimate:

(6) £l = 0(p'/?) as p— oo.
The exponent 1/2 is best possible; that is, for everye > 0, there exists a function
F. € D such that p~(/?=9)||F.||g» — 00 as p — ooc.
(b) If f € D, then its AP norm also enjoys the estimate:
(7) I fllar = o(p'/?) as p— oo,

and the exponent 1/2 is best possible in the same sense as in (a).

Proof. (a) Let f € D. It suffices to prove (6) for p = 2n: the norms || f||g»
increase with p, so the general statement will follow from the inequality

TP Vi P i e
(2n+2)1/2 = pl/2 = (2p)1/2

where 2n < p < 2n + 2. Now by part (b) of Theorem B, for arbitrary positive
o we have

o [P ion dO 27 w02 dO)
® SO [ e = [T et <o
n=0
The general term of the series above must eventually be smaller than one, hence
n 1
m<— foralln > N, .

(/e = o’

It follows from here by Stirling’s formula that
[l _ ©

lim su .
mew TR S Ua

Since this is true for all positive a, we conclude that

fo Il

n— o0 n1/2

:O7

so (6) follows.
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To see that the exponent one-half is best possible, let € > 0 be arbitrary and
choose 8 = (1 —¢€)/2. Consider the function F' = F; given by (5) with ¢ and
as above. Since § < 1/2, by (3) and Theorem C it follows that

1D =D nlanf® = Zn (logn)*~% < o0,
n=1

and so Fr € D. Again by Theorem C, the Taylor coefficients a,, , of the function

2
F.(2)2 = (log — "
1—=2

behave asymptotically like n~!(log n)(pﬁ)/ 2=1. We are allowed to choose 3 so
that pg > 2. By (1) we have

9) Nl = 1F2 (% = S an |
n=1

Zn (logn)PP=2.

The latter series is equiconvergent with the 1ntegra1

o0 1 o0
(10) / L (log 2o ~2dz = / P52t = T(pf — 1),
1 T 0
which, by Stirling’s formula and for large p, is asymptotically equivalent to

—3/2 pB
(6 — ;)pf 2 (5) pPB=3/2 _ gpp(o-pe=3)/2
erP— e

When divided by pP/27P¢ this behaves like a?p®=3)/2 and hence tends to
infinity as p — oc.

(b) We only have to worry about proving the sharpness, but this is quite
similar for the AP spaces too: instead of (9), using (2) one obtains

|Fo b =< Zn (logn)PP=2,
and instead of (10):

/ e 24PB=2qr = 2=V (p3 — 1)
0

The rest is completely analogous to the end. O

The exponent obtained from the apparently crude estimate (on the n-th term
of a convergent series) turned out to be the best one. The heuristics behind
this is that the remainder of a series of exponential type behaves asymptotically
like its general term (and HP, AP norms increase with p).
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