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COMPOSITION OPERATORS ON THE WEIGHTED
BERGMAN-NEVANLINNA CLASSES

SOMDATT D. SHARMA AND AJAY K. SHARMA

Abstract. In this paper we use an α-Carleson measure and a vanish-
ing Carleson measure to characterize bounded and compact composition
operators on weighted Bergman-Nevanlinna spaces.

1. Introduction

Let D be the open unit disk in the complex plane C. For each analytic self-
map φ of D, the composition operator is defined by Cφf = f◦φ for all f analytic
on D. It is well known that Cφ is a bounded linear operator on the Hardy spaces
Hp of the unit disk, 0 < p < ∞, as well as on the weighted Bergman spaces
Ap

α of the unit disk, 0 < p < ∞. Compact composition operators are among
the most studied composition operators on these spaces. The study of compact
composition operators on H2 of D was initiated by H. J. Schwartz [S] in his
unpublished thesis in the late sixties. He proved that if Cφ is compact, then
|φ∗| < 1 a.e. on the unit circle. In other words, Cφ is not compact whenever the
set {|φ∗| = 1} has positive measure. Schwartz also proved that this condition is
not sufficient by showing that the composition operator induced by φ(z) = 1+z

2
is not compact, even though the range of φ touches the unit disk just at one
point. The complete characterization of φ for which Cφ is compact on H2 have
been given by Shapiro [Sh1-2] and McCluer [Mac].

As operators on the Nevanlinna class composition operators were first stud-
ied by Masri in his thesis [Mas], where he obtained several necessary conditions
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and sufficient conditions on φ for the operator Cφ to be compact. The com-
pactness of Cφ as an operator on the Nevanlinna classes N and Np has been
studied by Choa and Kim, see [ChK1] and [ChK2]. Our goal in the present
work is to characterize those holomorphic self-maps φ of D that induce compact
composition operators on the weighted Bergman-Nevanlinna class A0

α. Our cri-
terion provides a complete characterization of those φ for which Cφ is compact
on weighted Bergman-Nevanlinna classes. We will show that, like in the case
of Hardy spaces and weighted Bergman spaces, every analytic self-map φ of D
induces a bounded composition operator on the weighted Bergman-Nevanlinna
class A0

α and that Cφ is compact on the Bergman-Nevanlinna class A0
α if and

only if it is compact on any of the weighted Bergman space Ap
α, 0 < p < ∞.

It is known that Cφ is compact on the Nevanlinna class N if and only if it is
compact on H2 [ChK1] and that for an arbitrary φ the compactness problem
for Cφ on Hp spaces is quite different from the one on weighted Bergman spaces
[MaS]. MacCluer and Shapiro [MaS] gave a nice example of analytic self-map
of D, which induces a compact composition operator on weighted Bergman
space, but does not induce a compact composition operator on the Hardy
spaces. As a matter of fact, they established the existence of an inner function
φ (holomorphic on D with modulus ≤ 1 everywhere on D and radial limits of
modulus 1 almost everywhere on ∂D) such that Cφ is compact on Ap

α for all
0 < p < ∞ and α > −1. However, it is well known that no inner function can
induce a compact composition operator on any of the Hp spaces [MaS] and,
therefore, the space N . In fact, they cited the following example.

Example 1.1. Let

φ(z) = exp
∫

∂D

z + ζ

z − ζ
dµ(ζ),

where µ is a Borel measure on ∂D that is singular with respect to linear
Lebesgue measure and ∫

∂D

dµ(ζ)
|ζ − ω|2 = ∞

at every ω ∈ ∂D. Then φ is a singular inner function which induces compact
composition operator on Ap

α but not on the Hardy spaces Hp.

2. Preliminaries

Let H(D) denote the space of all holomorphic functions on the unit disk D of
the complex plane C. Let dA(z) be the area measure on D normalized so that
the area of D is 1. For each α ∈ (−1,∞), we set dνα(z) = (α+1)(1−|z|2)αdA(z),
z ∈ D. Then dνα is a probability measure on D. For 0 < p < ∞ the weighted
Bergman space Ap

α is defined as

Ap
α = {f ∈ H(D) : ||f ||p,α =

(∫

D
|f(z)|pdvα(z)

)1/p

< ∞}.
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Note that ||f ||p,α is a true norm only if 1 ≤ p < ∞. When 0 < p < 1,
Ap

α is an F -space with respect to the translation invariant metric defined by
dp(f, g) = ||f − g||pp,α. The growth restrictions of functions in the Bergman
space is essential in our study. To this end, the following sharp estimate will
be useful.

Lemma 2.1 [HKZ] Let f ∈ Ap
α. Then for every z in D, we have

|f(z)| ≤ ||f ||p,α

(1− |z|2)(2+α)/2

with equality if and only if f is a constant multiple of the function

ka(z) =
(

1− |z|2
(1− az)2

) 2+α
p

.

It can be easily shown that

||ka||pp,α ≈ 1

with constant depending only on α and p [Sh1, p. 400]. The weighted Bergman-
Nevanlinna class A0

α is defined by

A0
α = {f ∈ H(D) : ||f ||0,α =

∫

D
log+ |f(z)|dνα(z) < ∞},

where log+ x = max(log x, 0). The space A0
α appears in the limit as p → 0 of

the weighted Bergman space Ap
α, in the sense of

lim
p→0

tp − 1
p

= log+ t, 0 < t < ∞.

Of course, we are abusing of the term norm since it fails to satisfy the properties
of a norm, but in this case (f, g) → ||f − g||0,α defines a translation invariant
metric on A0

α and this turns A0
α into a complete metric space. Obviously, the

inequality
log+ x ≤ log(1 + x) ≤ 1 + log+ x, x ≥ 0

implies that f ∈ A0
α if and only if

∫

D
log(1 + |f(z)|)dνα(z) < ∞

for f holomorphic on D.

α-Carleson measures. For ζ ∈ ∂D and 0 < δ < 2, let S(δ, ζ) = {z ∈ D :
|z − ζ| < δ}. A positive Borel measure µ on D is called α-Carleson measure if

sup
δ>0

sup
ζ∈∂D

µ(S(δ, ζ))
δα+2

< ∞,

and a vanishing Carleson measure if

lim
δ→0

sup
ζ∈∂D

µ(S(δ, ζ))
δα+2

= 0.
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We use the sets S(δ, ζ) as the Carleson sets along with a more convenient choice
of pseudo-hyperbolic disks. We now incorporate a few lines from Axler’s paper
[Ax] for the sake of a more self-contained exposition.

For w ∈ D, let τw be the function defined by

τw(z) =
w − z

1− wz

for z ∈ D. The function τw is an automorphism of D. For w and z in D, the
pseudo-hyperbolic distance d between w and z is defined by

d(w, z) = |τw(z)|.
For 0 < r < 1 and w ∈ D, denote by D(w, r) the disk whose pseudo-hyperbolic
center is w and whose pseudo-hyperbolic radius is r, that is,

D(w, r) =
{

z ∈ D :
∣∣∣∣

w − z

1− wz

∣∣∣∣ < r

}
.

Since τw is a linear fractional transformation, the pseudo-hyperbolic disk D(w, r)
is also a Euclidean disk. Except for the special case D(0, r) = rD, the Eu-
clidean center and Euclidean radius of D(w, r) do not coincide with its pseudo-
hyperbolic center and pseudo-hyperbolic radius. The Euclidean centre and
Euclidean radius of D(w, r) are

1− r2

1− r2|w|2 w and
1− |w|2

1− r2|w|2 r,

respectively. For w ∈ D, it is easy to verify that τw is its own inverse under
composition (τw ◦ τw)(z) = z for all z ∈ D. Another simple calculation shows
that τw preserves pseudo-hyperbolic distances, that is,

d(λ, z) = d(τw(λ), τw(z))

for all λ, z ∈ D. Thus τw maps a pseudo-hyperbolic disk centered at the point
λ to the pseudo-hyperbolic disk centered at τw(λ):

τw(D(λ, r)) = D(τw(λ), r)

for all λ ∈ D and r ∈ (0, 1).
By |D(w, r)|A we denote the area of D(w, r).

Lemma 2.2. [Ax] If w ∈ D and 0 < r < 1, then

(i) |D(w, r)|A = πr2(1− |w|2)2(1− r2|w|2)−2.

(ii) inf
{

(1− |w|2)2
|1− wz|4 : z ∈ D(w, r)

}
=

(1− r|w|)4
(1− |w|2)2 .

(iii) sup
{

(1− |w|2)2
|1− wz|4 : z ∈ D(w, r)

}
=

(1 + r|w|)4
(1− |w|2)2 .

We also have

|D(w, r)|A ≈ (1− |w|2)2 ≈ (1− |z|2)2 ≈ |D(z, r)|A,
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for z ∈ D(w, r), where ≈ means that the two quantities are bounded above and
below by constants independent of w. Also for each D(w, r), there is a ζ ∈ ∂D
so that D(w, r) ⊂ S(δ, ζ) for δ ≈ 1− |w| and for fixed r, 0 < r < 1,

(α + 1)
∫

D(w,r)

(1− |z|2)αdA(z) ≈ (1− |w|2)α+2.

Lemma 2.3. [Ax] For a fixed r, 0 < r < 1, there exists a positive constant C
depending upon r such that

|f(w)|p ≤ C

|D(w, r)|A

∫

D(w,r)

|f(z)|pdA(z)

for f analytic in D and w ∈ D.

Lemma 2.4. [Ax] Let 0 < r < 1. Then there is a sequence {an} in D and a
positive integer M such that ∪∞n=1D(an, r) = D and each z ∈ D is in, at most,
M of the pseudo-hyperbolic disks

D

(
a1,

1 + r

2

)
, D

(
a2,

1 + r

2

)
, D

(
a3,

1 + r

2

)
, . . . .

3. Boundedness of composition operators on A0
α

In this section we provide a necessary and sufficient condition for bounded-
ness of Cφ : A0

α → A0
α in terms of a Carleson measure condition satisfied by

the pull back measure να ◦ φ−1 on D. We need the following lemma.

Lemma 3.1. If µ is an α-Carleson measure on D, then there is a constant C
such that

∫

D
log(1 + |f(w)|)dµ(w) ≤ C

∫

D
log(1 + |f(w)|)dνα(w)

for any f ∈ A0
α.

Proof. Fix 0 < r < 1. Pick a sequence {an} in D satisfying the conditions of
Lemma 2.4. There are constants C ′, C ′′ and C ′′′, such that for any f ∈ A0

α,
we have∫

D
log(1+|f(w)|)dµ(w) ≤
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≤
∞∑

n=1

∫

D(an,r)

log(1 + |f(w)|)dµ(w)

≤
∞∑

n=1

µ(D(an, r)) sup{log(1 + |f(w)|) : w ∈ D(an, r)}

≤ C ′
∞∑

n=1

µ(D(an, r))
|D(an, r)|A

∫

D(an, 1+r
2 )

log(1 + |f(w)|)dν(w)

≤ C ′C ′′
∞∑

n=1

µ(S(1− |an|, ζ))
(1− |an|2)2(1− |an|2)α

∫

D(an, 1+r
2 )

log(1 + |f(w)|)dνα(w)

= C ′C ′′
∞∑

n=1

µ(S(1− |an|, ζ))
(1− |an|2)α+2

∫

D(an, 1+r
2 )

log(1 + |f(w)|)dνα(w)

≤ C ′C ′′C ′′′
∞∑

n=1

∫

D(an, 1+r
2 )

log(1 + |f(w)|)dνα(w)

≤ CM

∫

D
log(1 + |f(w)|)dνα(w), where C = C ′C ′′C ′′′.

¤

Theorem 3.2. Let φ be a holomorphic self-map of D. Then Cφ : A0
α → A0

α is
bounded if and only if the pull back measure να ◦φ−1 is an α-Carleson measure
on D.

Proof. Suppose Cφ is bounded. Assume 0 < δ < 1 and ζ ∈ ∂D. Take

fa(z) = exp
(

(1− |a|2)(α+2)

(1− az)2(α+2)

)
,

where a = (1− δ)ζ. Now

||fa||0,α =
∫

D
log+

∣∣∣∣exp
(

(1− |a|2)(α+2)

(1− az)2(α+2)

)∣∣∣∣ dνα(z)

≤
∫

D

(1− |a|2)(α+2)

|1− az|2(α+2)
dνα(z)

≤ ||ka||22,α

≈ 1.

Since Cφ is bounded, there is a constant K such that

||Cφfa||0,α ≤ K||fa||0,α ≤ C.
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That is,

C ≥
∫

D
log+ |fa ◦ φ(z)|dνα(z)

=
∫

D
<

(
(1− |a|2)(α+2)

(1− aφ(z))2(α+2)

)
dνα(z)

=
∫

D
<

(
(1− |a|2)(α+2)

(1− az)2(α+2)

)
dνα ◦ φ−1(z).

Now

<
(

(1− |a|2)(α+2)

(1− az)2(α+2)

)
=

(1− |a|2)(α+2)

(1− |a|)2(α+2)
<

(
1− |a|
1− az

)2(α+2)

=
(1− |a|2)(α+2)

(1− |a|)2(α+2)
<

(
1 +

|a|(1− zζ)
(1− |a|)

)−2(α+2)

,
(
ζ =

a

|a|
)

>
(1− |a|2)(α+2)

(1− |a|)2(α+2)

1
2α+2

≥ 1
(2δ)α+2

if |1−zζ|
1−|a| < γ0 for some fixed γ0 > 0, that is, if z ∈ S(γ0δ, ζ). Thus for ζ ∈ ∂D

and 0 < δ < 1, we have

C ≥ 1
2α+2

∫

S(γ0δ,ζ)

1
δα+2

dνα ◦ φ−1(z) =
1

2α+2

1
δα+2

να ◦ φ−1(S(γ0δ, ζ)),

that is, να ◦ φ−1(S(γ0δ, ζ)) ≤ Cδα+2 and so να ◦ φ−1 is an α-Carleson measure
on D.

Conversely, suppose να ◦ φ−1 is an α-Carleson measure. Then, by Lemma
3.1, we have, for each f ∈ A0

α,

||Cφf ||0,α =
∫

D
log(1 + |(f ◦ φ)(w)|)dνα(w)

=
∫

D
log(1 + |f(w)|)dνα ◦ φ−1(w)

≤ C

∫

D
log(1 + |f(w)|)dνα(w)

= C||f ||0,α.

This completes the proof. ¤
Remark. Theorem 3.2 above and Theorem 4.3 of MacCluer and Shapiro [MaS]
assert that Cφ is bounded on Ap

α as well as on A0
α if and only if να ◦ φ−1 is

an α-Carleson measure on D. But in view of Theorem 3.4 of MacCluer and
Shapiro [MaS], every analytic self-map φ of D induces a bounded composition



130 S. D. SHARMA AND A. K. SHARMA

operator on Ap
α for all 0 < p < ∞ and α > −1. Hence we conclude that every

analytic self-map φ of D induces a bounded composition operator on A0
α.

4. Compactness of composition operators on A0
α

Before proving the main result of this section, we recall that Cφ is compact
on A0

α if and only if for every sequence {fn} which is bounded in A0
α and

converges to 0 uniformly on compact subsets of D, we have ||Cφfn||0,α → 0.
We now characterize compact composition operators on A0

α.

Theorem 4.1. Let φ be a holomorphic self-map of D. Then Cφ : A0
α → A0

α is
compact if and only if the measure να ◦ φ−1 is a vanishing Carleson measure
on D.

Proof. Suppose Cφ is compact. Let ζ ∈ ∂D and 0 < δ < 1
2 . Consider the

family of functions

fa(z) = (1− |a|)α+2 exp
(

(1− |a|2)(α+2)

(1− az)2(α+2)

)
,

where a = (1 − δ)ζ for some ζ ∈ ∂D. Clearly fa → 0 uniformly on compact
subsets of D as |a| → 1. As in the proof of Theorem 3.2, there exists a positive
constant C such that

||fa||0,α ≤ C.

Again as in the proof of Theorem 3.2, there exist γ0 > 0 such that if z ∈
S(γ0δ, ζ), then

<
(

(1− |a|2)(α+2)

(1− az)2(α+2)

)
≥ 1

2α+2δα+2

and so

log+ |fa(z)| ≥ log+

(
(1− |a|)α+2 exp

(
< (1− |a|α+2)

(1− az)2(α+2)

))

≥ log+
(
δα+2 exp

1
2α+2δα+2

)
.

Therefore, we have for any ζ ∈ ∂D and 0 < δ < 1

log+
(
δα+2 exp

1
2α+2δα+2

)
να ◦ φ−1(S(γ0δ, ζ)) ≤

∫

S(γ0δ,ζ)

log+ |fa(z)| dνα ◦ φ−1(z)

≤
∫

D
log+ |fa ◦ φ(z)| dνα(z)

= ||Cφfa||0,α.

But compactness of Cφ forces ||Cφfa||0,α to tend to zero as δ → 0, which implies
that

lim
δ→0

(
log+

(
δα+2 exp

1
2α+2δα+2

)
να ◦ φ−1(S(γ0δ, ζ))

)
= 0
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uniformly on ζ ∈ ∂D. Now, since

lim
δ→0

δα+2
(

log+ δα+2 exp
1

2α+2δα+2

)
= lim

t→∞
1

tα+2

( tα+2

2α+2
− (α + 2) log t

)

=
1

2α+2
> 0,

it follows that

lim
δ→0

να ◦ φ−1(S(γ0δ, ζ))
δα+2

= 0 uniformly on ζ.

Thus να ◦ φ−1 is a vanishing Carleson measure on D.
Conversely, suppose that να ◦ φ−1 is a vanishing Carleson measure on D.

Then
να ◦ φ−1(S(γ0δ, ζ))

δα+2
→ 0 uniformly in ζ as δ → 0,

that is,
να ◦ φ−1(D(w, r))

(1− |w|)α+2
→ 0 uniformly as |w| → 1.

Thus, for every ε > 0, we can choose r0 > 0 such that

φ−1(D(w, r)) < ε(1− |w|)α+2 for all w ∈ D for |w| > r0.

Suppose {fm} converges to zero weakly in A0
α. Let {wn} be a sequence as in

Lemma 2.4 such that |w1| < |w2| < · · · . Then

φ−1(D(wn, r)) < ε(1− |wn|)α+2 for all wn ∈ D such that |wn| > r0.

Thus

||Cφfm||0,α =
∫

D
log(1 + |(fm ◦ φ)(z)|)dνα(z)

=
∫

D
log(1 + |fm(z)|)dνα ◦ φ−1(z)

=
∫

|z|≤r0

log(1 + |fm(z)|)dνα ◦ φ−1(z)

+
∫

|z|>r0

log(1 + |fm(z)|)dνα ◦ φ−1(z).

Since {fm} converges to zero on each compact subset of D,

lim
m→∞

∫

|z|≤r0

log(1 + |fm(z)|)dνα ◦ φ−1(z) = 0,

whereas the second term in the above expression is bounded by
∞∑

n=k+1

∫

D(wn,r)

log(1+|fm(z)|)dνα◦φ−1(z) ≤
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≤
∞∑

n=k+1

ναφ−1(D(wn, r)) sup{log(1 + |fm(z)|) : z ∈ D(wn, r)}

≤ C

∞∑

n=k+1

ναφ−1(D(wn, r))
(1− |w|)α+2

∫

D(wn, 1+r
2 )

log(1 + |fm(z)|)dνα(z)

≤ εCM

∫

D
log(1 + |(fm(z)|)dνα(z)

= εCM ||fm||0,α.

Since ε > 0 was arbitrary , we see that ||Cφfm||0,α → 0 strongly. Hence Cφ is
compact. ¤
Remark. It can be easily checked that the singular inner function mentioned
in Example 1.1 induces a compact composition operator on A0

α but not on the
Nevanlinna class N.
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