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Abstract. A subspace X of the Hardy space H1 is said to have the
K-property if for any ψ ∈ H∞, the Toeplitz operator Tψ maps X into

itself. This in turn implies that X also has the f -property. This means
that h/I ∈ X whenever h ∈ X and I is an inner function with h/I ∈ H1.

In this survey paper we present a list of subspaces of H1 that have or
have not the f - or K-property, showing some of the different techniques
and methods used in the subject.

1. Introduction

Denote by D the unit disk {z ∈ C : |z| < 1}, and its boundary by ∂D or
T, indistinctly. Denote also by Hp (0 < p ≤ ∞) the classical Hardy spaces
consisting of those analytic functions f defined on D such that

‖f‖Hp := sup
0<r<1

Mp(r, f) < ∞,

where Mp(r, f), 0 < r < 1, are defined as,

Mp(r, f) =
(

1
2π

∫ 2π

0

|f(reiθ)|pdθ

)1/p

, (0 < p < ∞),

and M∞(r, f) = max
θ
|f(reiθ)|.
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A thorough study of these spaces is done in Duren’s book [10], from where we
review some well known properties in order to motivate the definitions that
follow. When 1 ≤ p ≤ ∞, Hp is a Banach space with norm given by ‖ · ‖Hp ,
and for 0 < p < 1 it is an F -space (complete metrizable topological vector
space) with distance function given by d(f, g) = ‖f − g‖p

Hp .
Every function f ∈ Hp has radial limits almost everywhere on the boundary,

and the boundary function of f , defined as,

f(eiθ) = lim
r→1−

f(reiθ), θ ∈ R,

is in Lp(∂D) and also log |f(eiθ)| ∈ L1(∂D). (From now on, the three symbols
Lp, Lp(∂D), and Lp(T), will denote the same space). Besides, the “Hp-norm”
(it is only a true norm when p ≥ 1) of f coincides with the Lp-norm of its
boundary function:

‖f‖Hp =
(

1
2π

∫ 2π

0

|f(eiθ)|pdθ

)1/p

.

If f ∈ Hp, f 6≡ 0, then the sequence of its zeros {an}, repeated according to
multiplicities, satisfies the so called Blaschke Condition:∑

n

(1− |an|) < ∞.

This condition for a sequence {an} ⊂ D turns out to be also sufficient in order
to construct an Hp function whose sequence of zeros (repeated according to
multiplicities) is exactly {an}. For that, we just need to consider, for each n,
the self-mappings of the unit disk,

bn(z) = z, if an = 0,

bn(z) =
an

|an|
an − z

1− anz
, if an 6= 0,

and realize that the infinite product
∏

n bn(z) converges absolutely and uni-
formly on each compact subset of D, defining a function B ∈ H∞, called the
Blaschke product associated with {an}, whose sequence of zeros is exactly {an},
and with the further properties that |B(z)| < 1 in D, and |B(eiθ)| = 1 a.e..

All this gives rise to a result of F. Riesz that states that any function f ∈ Hp

with f 6≡ 0, can be factored in the form f(z) = B(z)g(z), where B(z) is the
Blaschke product associated with the sequence of zeros of f , and g is a zero-free
function in Hp with ‖g‖Hp = ‖f‖Hp .

Actually, the previous can be carried further bringing us to a canonical
factorization due to Smirnov. Quoting from Duren’s book, observe that the
function

F (z) = exp
(

1
2π

∫ 2π

0

eit + z

eit − z
log |f(eit)|dt

)

is analytic in D and satisfies |F (eiθ)| = |f(eiθ)| a.e. because log |f(eiθ)| ∈ L1.
Also, since |f(eiθ)| ∈ Lp, an application of the arithmetic-geometric mean
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inequality shows that F ∈ Hp. Moreover, |f(eiθ)| = |g(eiθ)| a.e. and |g(z)| ≤
|F (z)| in D, where g is the zero-free factor associated with f in the Riesz
factorization. Hence, the function S0(z) = g(z)/F (z) is analytic in D and has
the properties

0 < |S0(z)| ≤ 1, and |S0(eiθ)| = 1 a.e.,

This shows that − log |S0(z)| is a positive harmonic function in D which van-
ishes almost everywhere on the boundary. Thus by the Herglotz representa-
tion theorem and Fatou’s theorem, it can be represented as the Poisson in-
tegral of a positive singular measure µ which, by analytic completion, gives
S0(z) = eiγS(z), where γ is a real constant. The function S(z) is called the
singular inner function associated to µ,

S(z) = exp
(
−

∫ 2π

0

eit + z

eit − z
dµ(t)

)
.

Everything together yields the canonical factorization

f(z) = eiγ B(z)S(z) F (z).

The function F above is an outer function for the class Hp, i.e., it is a
function of the form

F (z) = exp
(

1
2π

∫ 2π

0

eit + z

eit − z
log ψ(t)dt

)
,

where ψ(t) ≥ 0, log ψ(t) ∈ L1, and ψ(t) ∈ Lp.
On the other hand, an inner function is a function I(z) analytic in D with

|I(z)| ≤ 1 and |I(eiθ)| = 1 a.e.. The above tells us that any inner function I is
uniquely factored in the form I(z) = eiγ B(z)S(z), where γ is a real number,
B is a Blaschke product and S is a singular inner function.

The canonical factorization brings us to the following important observation.

Theorem 1. If f ∈ Hp, 1 ≤ p ≤ ∞, and I is an inner function such that
f/I ∈ H1, then f/I ∈ Hp and ‖f/I‖Hp = ‖f‖Hp .

The analysis of this property in different subspaces of H1 is the central topic
of this survey.

Definition 1. A subspace X of H1 is said to have the f-property (also called
the property of division by inner functions) if h/I ∈ X whenever h ∈ X and I
is an inner function with h/I ∈ H1.

Rephrasing it, X ⊆ H1 has the f -property if, whenever F ∈ H1, I is inner
and FI ∈ X, one also has that F ∈ X.

This notion, of studying whether the outer part of functions in a given
subspace of H1 remains in the same space, seems to have appeared in the
early seventies. We mention especially the works of Havin [27], Korenblum
and Korolevič [36] and Korenblum [33, 34] on the subject where a number of
subspaces of H1 were shown to enjoy the f -property.
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Let us say here that Havin proved in [27] that the following spaces do satisfy
the f -property:

• Λα,n (n = 0, 1, . . . , 0 < α < 1), the space of functions f ∈ H1 such
that f (n) ∈ Lipα(D).

• Λ0,n (n = 0, 1 . . . ), the space of functions f ∈ H1 such that f (n) is
continuous in D and f (n)(eiθ) is smooth in the sense of Zygmund.

• Ap,1 = {f ∈ H1 : f ′ ∈ Lp(D)}, 1 < p < ∞.
• Hp,1 = {f ∈ H1 : f ′ ∈ Hp}, 1 < p < ∞.

In view of this, one is driven to think that spaces not having the f -property
must be rare. However, the first such example appeared published in 1972, and
was given by Gurarii [25] who proved that the space W+ of analytic functions
in D with absolutely convergent power series does not possess the f -property.

Before getting deeper into the study of our next question, let us introduce
the other type of property we are interested in, and that implies the f -property.
That will be called “the K-property”.

Notice that any function f ∈ H1 can be recovered from its boundary function
by the Cauchy integral formula,

f(z) =
1

2πi

∫

∂D

f(ζ)
ζ − z

dζ =
1
2π

∫ 2π

0

f(eit)
1− e−itz

dt, z ∈ D.

This is nothing else but the Szegö projection of the boundary function f(eit).
In general, the Analytic Szegö Projection of an L1(∂D) function ψ(eit) ∼∑∞
−∞ ψ̂(n)eint is defined as,

Pψ(z) =
1
2π

∫ 2π

0

ψ(eit)
1− e−itz

dt

=
1
2π

∫ 2π

0

∞∑
n=0

ψ(eit)e−int zn dt

=
∞∑

n=0

ψ̂(n)zn,

which, in fact, is analytic in D. Notice that, according to the M. Riesz theorem
on conjugate functions, the analytic Szegö projection operator maps Lp(∂D)
boundedly onto Hp, if 1 < p < ∞. However, this is not true either for p = 1
or for p = ∞.

Returning to our main stream, observe that if h is analytic in D, I is inner,
and h/I ∈ H1, then, using that |I(eiθ)| = 1 a.e.,

(1) h
I (z) =

1
2π

∫ 2π

0

h
I (eit)

1− e−itz
dt =

1
2π

∫ 2π

0

h(eit) I(eit)
1− e−itz

dt = P (hI)(z).
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Definition 2. Given v ∈ L∞(∂D), the Toeplitz operator Tv associated with the
symbol v is defined as

Tvf (z) = P (vf)(z) =
1

2πi

∫

∂D

v(ζ)f(ζ)
ζ − z

dζ, f ∈ H1, z ∈ D.

Many basic facts about Toeplitz operators can be found in Chapter 7 of [9]
and in Appendix 4 of [38], for example.

Notice that (1), can be written as h
I = TĪ(h) . Here, of course, the symbol

I is understood as the boundary function associated with I.

Definition 3. A subspace X of H1 is said to have the K-property if Tψ(X) ⊆
X for any ψ ∈ H∞.

From the above discussion we obtain that the K-property implies the f -
property. Also, the fact that the Szegö projection maps Lp(∂D) boundedly
onto Hp whenever 1 < p < ∞ implies easily the following.

Theorem 2. If 1 < p < ∞, then Hp has the K-property. ¤

As we mentioned above, the purpose of this survey is to build a (non-
exhaustive) list of subspaces of H1 that have or have not the f - or K-property.
Actually, we are mainly interested in showing some of the different techniques
and methods used in the subject.

2. Representation formulae

The Dirichlet space D consists of those functions f(z) =
∑∞

0 anzn analytic
in D with Dirichlet integral D(f) finite, i.e.,

D(f) :=
( 1

π

∫∫

D
|f ′(z)|2dA(z)

)1/2

≡
( ∞∑

n=1

n|an|2
)1/2

< ∞.

Theorem 3. The Dirichlet space has the f -property.

Proof. Carleson [8] obtained a simple explicit formula for the Dirichlet integral
of a given function f involving the zeros of f and its boundary values. Namely,
he proved that if F ∈ H2 and I = BS, where B is the Blaschke product with
sequence of zeros {an} and S is the singular inner function generated by the
measure µ then

D(FI)2 =D(F )2

+
1
2π

∫ 2π

0

|F (eit)|2
(∑

n

1− |an|2
|eit − an|2 + 2

∫ 2π

0

dµ(ξ)
|eit − ξ|2

)
dt.

By means of this representation formula, one obtains easily that, whenever
F ∈ H2 and I is inner,

D(F ) ≤ D(FI),
from where we deduce that if FI ∈ D, then so is F , concluding the result. ¤
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Given a nondecreasing weight sequence w = {wn}∞n=1, wn ≥ 0, we define the
Dirichlet-type space Dw as the set of functions f(z) =

∑∞
n=1 anzn for which

D2
w(f) :=

∞∑
n=1

wn|an|2 < ∞.

Dyakonov [11] proved an analogue of Carleson formula for these spaces which
gave rise to “orthogonality relations” of the form

D2
w(FI) = D2

w(F ) + Rw(F, I), F ∈ H2, I inner,

with Rw(F, I) > 0. This immediately yields that the spaces Dw have the
f -property.

Let us remark here that Rabindranathan [40] and Korenblum and
Făıvyševskĭı[35] independently had proved that these spaces in fact have the
stronger K-property.

Another instance in which a representation formula plays an important role
in deciding whether the given subspace of H1 satisfies the f -property is in the
case of BMOA, the space of H1 functions whose boundary values have bounded
mean oscillation; and in the case of V MOA, consisting of those BMOA func-
tions with vanishing mean oscillation, also characterized as the closure of the
polynomials in BMOA. A good account on BMOA may be found in the survey
paper [20].

Theorem 4. BMOA and V MOA have the f -property.

Proof. Among the many characterizations of BMOA and V MOA we rest upon
the one using the Garsia norm:

f ∈ BMOA ⇐⇒ sup
a∈D

(
1
2π

∫ 2π

0

|f(eiθ)|2 1− |a|2
|1− aeiθ|2 dθ − |f(a)|2

)
< ∞,

f ∈ V MOA ⇐⇒ lim
|a|→1

(
1
2π

∫ 2π

0

|f(eiθ)|2 1− |a|2
|1− aeiθ|2 dθ − |f(a)|2

)
= 0.

Thus, if FI ∈ BMOA (V MOA) with F ∈ H1 and I inner, then

1
2π

∫ 2π

0

|FI(eiθ)|2 1− |a|2
|1− aeiθ|2 dθ − |FI(a)|2

=
1
2π

∫ 2π

0

|F (eiθ)|2 1− |a|2
|1− aeiθ|2 dθ − |F (a)|2 +

≥0︷ ︸︸ ︷
|F (a)|2(1− |I(a)|2)

≥ 1
2π

∫ 2π

0

|F (eiθ)|2 1− |a|2
|1− aeiθ|2 dθ − |F (a)|2.

From here it is obvious that F itself is in BMOA (V MOA). ¤
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Dyakonov [13] has introduced recently the notion of a Garsia-type norm
(GTN) on a Banach space of analytic functions in D: Let X be such an space
and assume that X ⊂ Hp for some p ∈ (0,∞). Write |Hp| for the set of
nonnegative functions g ∈ Lp(∂D) satisfying either log g ∈ L1(∂D) or g = 0
a.e.; these are precisely the boundary values of the moduli of Hp-functions.
Suppose that there exists a mapping Ψ : |Hp| × D → [0,∞] and a function
k : D→ (0,∞) with the following properties:

(a) Ψ(cg, z) = cpΨ(g, z), whenever g ∈ |Hp| and z ∈ D.
(b) Ψ(|f |, z) ≥ |f(z)|p, for all f ∈ Hp and z ∈ D.
(c) The quantity

(2) Np,Ψ,k(f) := sup
z∈D

{Ψ(|f |, z)− |f(z)|p}1/p

k(z)
, f ∈ Hp,

is comparable to ‖f‖X with constants not dependidng on f (it is understood
that ‖f‖X = ∞ if f ∈ Hp \X).

Then we say that N(·) is a GTN on X.
Of course, the first example of a Garsia-type norm is the classical Garsia

norm in BMOA and, just as it happens in this space, if X has a Garsia-type
norm then it satisfies the f -property.

Dyakonov proved in [12] that, for 0 < α < 1, the Lipschitz spaces Λα = Λα,0

have a GTN and, hence, the f -property. As mentioned above this was first
proved by Havin [27].

Dealing with the perhaps more natural Lipschitz space Λ1 = Λ1,0 is harder.
N. A. Širokov [48] proved that Λ1 has in fact the f -property. His proof was
very involved. Dyakonov [13] has proved that Λ1 has a GTN obtaining in this
way an alternative proof of Širokov’s result simpler than the original one.

3. Duality

The idea of Hedenmalm of using a duality argument to study the K-property
in different subspaces of H1 has been very fruitful. Most of the results in this
section are from his paper [28].

Recall that BMOA is the dual space of H1 under the pairing

〈f, g〉 = lim
r→1−

1
2π

∫ 2π

0

f(reiθ) g(eiθ) dθ, f ∈ H1, g ∈ BMOA.

Theorem 5 (Hedenmalm [28]). BMOA has the K-property.

Proof. For a given ψ ∈ H∞, we claim that the Toeplitz operator Tψ defined in
BMOA is in fact the adjoint operator of the operator Mψ, multiplication by ψ,
which of course, is continuous from H1 to H1. Under the validity of this claim,
Tψ is also continuous from (H1)∗ = BMOA to (H1)∗ = BMOA, concluding
the result.

To prove the claim, take f ∈ H2, which is dense in H1, and g ∈ BMOA
(ψg ∈ H2). Then, recalling that P denotes the analytic Szegö projection, we
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have

〈f, (Mψ)∗(g)〉 = 〈Mψ(f), g〉

= lim
r→1−

1
2π

∫ 2π

0

(ψf)(reiθ)g(eiθ)dθ

=
1
2π

∫ 2π

0

(ψf)(eiθ)g(eiθ)dθ [(ψf), g ∈ H2]

=
1
2π

∫ 2π

0

f(eiθ)(ψg)(eiθ)dθ

=
1
2π

∫ 2π

0

f(eiθ)P (ψg)(eiθ)dθ




the non-analytic
part of ψg is
annihilated by
f ∈ H2


 ,

from where we deduce that (Mψ)∗ = Tψ, and the claim is proved. ¤

A similar argument can be applied to H1 obtaining the following result.

Theorem 6. H1 does not have the K-property.

Proof. Assume by contradiction that Tψ(H1) ⊆ H1 for all ψ ∈ H∞. Then by
the Closed Graph Theorem all these Tψ are continuous from H1 to H1. So
their adjoints (Tψ)∗ are continuous from BMOA to BMOA.

Let us see the aspect of these adjoint operators. For ψ ∈ H∞, f ∈ H2 (dense
in H1), and g ∈ BMOA ⊂ H2,

〈f, (Tψ)∗g〉 = 〈Tψf, g〉

= lim
r→1−

1
2π

∫ 2π

0

P (ψf)(reit)g(eit)dt

=
1
2π

∫ 2π

0

P (ψf)(eit)g(eit)dt [P (ψf), g ∈ H2]

=
1
2π

∫ 2π

0

f(eit)(ψg)(eit)dt




the non-analytic
part of ψf is
annihilated by
g ∈ H2


 ,

so (Tψ)∗ is the operator Mψ, multiplication by ψ. The continuity of such
operator from BMOA to BMOA implies that H∞ is a subspace of the space
of multipliers of BMOA, but we know that this is false: there exist Blaschke
products that are not multipliers of BMOA, not even of the Bloch space (to
be defined later). See for instance [37, 19]. ¤

Denote by A the disk algebra. This is the space of analytic functions in D
that admit a continuous extension to D. We can see that A has the f -property
arguing as in the proof of Theorem 6.3 in p. 78 of [18]:
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Suppose f 6≡ 0, f = FI ∈ A with I inner and F ∈ H1 (hence, F ∈ H∞). Let
K = {ξ ∈ T : f(ξ) = 0}. Then K is a closed set of (one-dimensional) measure
zero. Now, if ξ ∈ T \K then |f(ξ)| > 0 and, hence, I(zn) cannot tend to zero
for any sequence of point {zn} ⊂ D tending to ξ. Then, using Theorem 6.1 and
Theorem 6.2 in Chapter II of [18], we deduce that I is analytic across T \K
and then it follows that F is continuous at each point of T \ K. Notice that
we certainly have |F | = |f | on T \K. Set now F (ξ) = 0 for all ξ ∈ K (since K
has measure zero, defining F in this way at the points of K causes no problem
at all). Then |F | = |f | on T and |F | = 0 on K. Since f is continuous on T,
it follows that F is continuous at each point of K. Thus we have that F is
continuous on T. The Poisson representation now implies that F ∈ A.

On the other hand, using duality arguments, we can prove that A does not
possess the K-property. Hruscev and Vinogradov [29] proved that the dual
space of A is identified with K, the space of Cauchy integrals of complex Borel
measures on ∂D. In the same paper, they also characterized the inner functions
that are multipliers of K, which for our purposes it suffices to know that they
are not all of them.

Theorem 7 (Hedenmalm [28]). A does not have the K-property.

Proof. The same duality argument as before would show that if A has the K-
property, then H∞ would become subspace of the space of multipliers of K,
and, as we have just said, this is not true. ¤

4. Polynomial approximation

Our next aim is studying the K-property in V MOA. We recall that V MOA
is the closure of the polynomials in BMOA (see e.g. Theorem 5.5 of [20]). Thus,
it becomes interesting to see the behavior of Toeplitz operators on polynomials.

Lemma 8. If ψ ∈ H∞ and p is a polynomial, then Tψp is again a polynomial.

Proof. Write ψ(z) =
∑∞

n=0 anzn and p(z) =
∑N

n=0 bnzn, then, for almost ev-
ery θ,

ψ(eiθ) p(eiθ) =
( ∞∑

n=0

ane−inθ
)( N∑

n=0

bneinθ
)

=
N∑

n=−∞

( N∑

k=max{n,0}
a|n−k|bk

)

︸ ︷︷ ︸
=cn

einθ,

so that Tψp (z) = P (ψp)(z) =
∑N

n=0 cnzn is indeed a polynomial. ¤

With this, we are able to prove the following.

Theorem 9 (Hedenmalm [28]). V MOA has the K-property.
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Proof. Take ψ ∈ H∞. Since BMOA has the K-property Tψ(BMOA) ⊆
BMOA, so by the Closed Graph Theorem Tψ is continuous from BMOA to
BMOA. Now, if g ∈ V MOA, then it can be approximated in BMOA by a
sequence of polynomials {qn}. Hence, by the continuity of Tψ and Lemma 8,
Tψ(qn) are polynomials that approach Tψ(g) in the BMOA norm, so Tψ(g) ∈
V MOA. ¤

Now, using that disk algebra A is the closure of the polynomials in H∞ and
that it does not have the K-property, Hedenmalm [28] obtained the following
result.

Theorem 10 (Hedenmalm [28]). If X is a subspace of H∞ containing A, then
it fails to have the K-property.

Proof. Assume by contradiction that X has the K-property. Then for any
ψ ∈ H∞,

(3) Tψ(A) ⊆ Tψ(X) ⊆ X ⊆ H∞.

By the Closed Graph Theorem Tψ is then continuous from X to X, for any
ψ ∈ H∞.

Since A does not have the K-property, we take ϕ ∈ H∞ such that Tϕ(A) 6⊂
A, and however, by (3), Tϕ is still continuous in A.

Now, if g ∈ A, then it can be approximated in H∞ by a sequence of polyno-
mials {qn}. Hence, by the continuity of Tϕ and Lemma 8, Tϕ(qn) are polyno-
mials that approach Tϕ(g) in the H∞ norm. So Tϕ(g) belongs to A, and this
would prove that Tϕ(A) ⊆ A, which is a contradiction. ¤

As immediate consequences of the previous result we have the following.

Corollary 11. H∞ and V MOA∩H∞ lack the K-property, although they have
the f -property. ¤

5. Pseudoanalytic extension

Taking as a general basis the works of Dynkin [15, 16, 17], given a function
f ∈ H1, a pseudoanalytic extension of f to C is a function F defined in C\∂D
which is an extension of f (meaning F|D = f) such that F is of class C1 in

D−
def= {z ∈ C : |z| > 1} and, F (Reit) → f(eit), as R → 1+, both a.e.

and in L1(∂D). Observe that one such extension is given by just reflecting
with respect to ∂D (F (z) = f(1/z), z ∈ D−), although there are some other
ways of constructing pseudoanalytic extensions, like for instance, by global
polynomial approximates [15, 16], or by local polynomial approximates [17].
Pseudoanalytic continuation is just one generalization of the classical Weier-
strassian notion of analytic continuation. A good number of authors (including
H. Poincaré, É. Borel, A. Beurling and H. S Shapiro) have obtained other gen-
eralizations by various methods and for a variety of reasons. We mention the
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recently published monograph [41] as an excelent book where distinct methods
of “generalized analytic continuation” are studied in a unifying context.

The relevance of the pseudoanalytic continuation in our work comes from
the fact that having a characterization of a given subspace X of H1 in terms
of pseudoanalytic extension, in many cases helps to determine whether X has
the f - property and/or the K-property. To illustrate this, let us work with the
Lipschitz spaces Λω.

We say that a continuous function ω : [0,∞) → R with ω(0) = 0 is a majorant
if ω(t) is increasing and ω(t)/t is non-increasing for t > 0. If, in addition, there
is a constant C = C(ω) > 0 such that

∫ δ

0

ω(t)
t

dt + δ

∫ ∞

δ

ω(t)
t2

dt ≤ C · ω(δ), 0 < δ < 1,

then we say that ω is a regular majorant. (See [12] for the terminology, these
functions are also called Dini weights satisfying the b1 condition, cf. [6].)

Let ω be a regular majorant. The weighted Lipschitz space Λω is defined as,

Λω = {f ∈ A : ‖f‖Λω

def= sup
z1,z2∈D
z1 6=z2

|f(z1)− f(z2)|
ω(|z1 − z2|) < ∞}.

Two main reasons explain why the weight is restricted to be a regular majorant.
In the first place, Λω admits this other equivalent definition, as proved in [12],

Λω = {f ∈ A : sup
ζ1,ζ2∈∂D

ζ1 6=ζ2

|f(ζ1)− f(ζ2)|
ω(|ζ1 − ζ2|) < ∞},

and, in the second place, the following characterizations hold.

Theorem 12. Let ω be a regular majorant and f ∈ H1. The following condi-
tions are equivalent.

(a) f ∈ Λω,

(b) M∞(r, f ′) = O
(ω(1− r)

1− r

)
, as r → 1−,

(c) f has a pseudoanalytic extension to C, F , with F (z) = O(1), as
|z| → ∞, such that

(4) |∂F (z)| ≤ C
ω(|z| − 1)
|z| − 1

, z ∈ D−.

Recall that the Cauchy-Riemann operator ∂ is defined as

∂ =
∂

∂z
=

1
2

(∂

x
+ i

∂

y

)
, z = x + iy.

Some remarks are in order here. When ω(t) = tα, 0 < α < 1, then (a) ⇐⇒ (b)
is a classical result of Hardy and Littlewood [26], while for an arbitrary regular
majorant, (a) ⇐⇒ (b) appears in [6]. Also, (a) ⇐⇒ (c) is a refined version of
Lemma 7 in [12]. This lemma is the key ingredient used by Dyakonov to obtain
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some characterizations of the functions in Λω in terms of their modulii. We
remark that M. Pavlović has obtained in [39] simpler proofs of these results.
The proof of (a) ⇐⇒ (c) in our theorem simply needs a little adaptation of
what is done by Dyakonov in the proof of his lemma.

Proof of (a) ⇐⇒ (c). Assume that f ∈ Λω. Consider the pseudoanalytic exten-
sion of f given by reflection with respect to ∂D, i.e., F (z) = f(1/z), z ∈ D−.
Clearly, F is bounded. It only remains to prove (4). Since (a) and (b) are
equivalent, and ω is increasing, one gets, for z ∈ D−,

|∂F (z)| =
∣∣∣f ′

(1
z

)∣∣∣
∣∣∣1
z

∣∣∣
2

≤ C
ω
(
1− 1

|z|
)

1− 1
|z|

1
|z|2 ≤ C

ω(|z| − 1)
|z| − 1

.

Conversely, assume that f ∈ H1 and F is a pseudoanalytic extension of f
with F (z) = O(1), as |z| → ∞, satisfying (4). Then for z ∈ D and ρ > 1, the
Cauchy-Green integral formula applies and gives

f(z) =
1

2πi

∫

|ζ|=ρ

F (ζ)
ζ − z

dζ − 1
π

∫∫

{1<|ζ|<ρ}

∂F (ζ)
ζ − z

dA(ζ).

Differentiate with respect to z ∈ D, and obtain

f ′(z) =
1

2πi

∫

|ζ|=ρ

F (ζ)
(ζ − z)2

dζ − 1
π

∫∫

{1<|ζ|<ρ}

∂F (ζ)
(ζ − z)2

dA(ζ), ρ > 1.

Observe that, since F (z) = O(1), as |z| → ∞, the contour integral is O(1/ρ),
as ρ →∞. Hence, letting ρ →∞, using (4), and the properties of ω as regular
majorant, we obtain,

|f ′(z)| =
∣∣∣∣
1
π

∫∫

{1<|ζ|}

∂F (ζ)
(ζ − z)2

dA(ζ)
∣∣∣∣

=
∣∣∣∣
1
π

∫ ∞

1

∫ 2π

0

∂F (Reiθ)
(Reiθ − z)2

R dR dθ

∣∣∣∣

≤ C

∫ ∞

1

ω(R− 1)
R− 1

R
1
π

∫ 2π

0

dθ

|Reiθ − z|2︸ ︷︷ ︸
=2(R2−|z|2)−1

dR

≤ C

∫ ∞

1

ω(R− 1)
(R− 1)(R− |z|)dR

= C

∫ ∞

0

ω(t)
t(t + 1− |z|)dt

= C

(∫ 1−|z|

0

+
∫ ∞

1−|z|

)
ω(t)

t(t + 1− |z|)dt

. . . ≤ C
ω(1− |z|)

1− |z| ,
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which proves that f ∈ Λω. ¤

As a consequence of this characterization we have the following result.

Theorem 13. Let ω be a regular majorant. Then Λω has the K-property.

Proof. Let f ∈ Λω and ψ ∈ H∞. We have to show that g
def= Tψf ∈ Λω.

Since the boundary function of (ψf) is in L∞ then, by the M. Riesz theorem
on conjugate functions, we have that g ∈ Hp for all p < ∞. Moreover, since
g = P (ψf) is the orthogonal projection of (ψf) in H2, then it is ψf = g + h
for some h ∈ H2 ⊂ H1. From here we get the expression, valid in D,

g = ψf − h,

and on ∂D, it is valid at least in the both desired senses, radially-a.e. and in
L1(∂D).

By Theorem 12, f has a bounded pseudoanalytic extension F to C, satis-
fying (4). Consider also the following extensions of ψ and h. For |z| > 1, set
z∗ = 1/z ∈ D, and set

Ψ(z) = ψ(z∗), H(z) = h
(
z∗), .

Finally, consider an extension G of g, given by G = g on D (on the boundary it
is understood as radial convergence a.e. and in the L1(∂D) sense), and in D−,
set

G(z) = F (z)Ψ(z)−H(z),
Observe that G is of class C1 in D−, because so is F , and because Ψ are H

are both analytic in D−. Also, it is clear that, as R → 1+, G(Reiθ) → g(eiθ)
both a.e. and in L1(∂D). So G is a pseudoanalytic extension of g, which
obviously satisfies that G(z) = O(1), as |z| → ∞. Let us now check the
property (4). Since Ψ and H are analytic in D−, then ∂G(z) = Ψ(z) · ∂F (z),
z ∈ D−. So, using that F satisfies the property (4), there exists a positive
constant C such that, for z ∈ D−,

|∂G(z)| = |ψ(z∗)| |∂F (z)| ≤ C‖ψ‖H∞
ω(|z| − 1)
|z| − 1

.

All this proves that G is a pseudoanalytic extension of g satisfying (4) and
G(z) = O(1), as |z| → ∞. So, by Theorem 12 again, we have that g ∈ Λω as
desired. ¤

Examples of other spaces that have been characterized in terms of pseudoan-
alytic extension and, as a result, they have been proved to have the K-property,
are the following.

(a) The Besov spaces Bp
s , s > 0, 1 ≤ p < ∞, consisting of those Hp-functions

such that ∫

D
|f ′(z)|p(1− |z|)p(1−s)

dA(z) < ∞.
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See [17].
(b) The Qp spaces, 0 < p < 1, consisting of those analytic functions on the

unit disk such that

sup
a∈D

∫∫

D
|f ′(z)|2 logp

∣∣∣1− az

z − a

∣∣∣dA(z) < ∞.

See [14]. Here we should mention that Qp is defined for all p ≥ 0, and that
they arose in connection to finding equivalent norms in the Bloch space B, to
be defined below. Observe that Q0 is the Dirichlet class D, that Q1 = BMOA
and, as it turned out, cf. [3], Qp = B for all p > 1. Also, cf. [4], Qp ( Qq,
0 ≤ p < q ≤ 1.

Dyakonov and Girela [14] proved the following.

Theorem 14. If 0 < p < 1 and f ∈ ∩0<q<∞Hq, then the following conditions
are equivalent.

(i) f ∈ Qp.

(ii) sup
|a|<1

∫

D
|f ′(z)|2

(
1

|ϕa(z)|2 − 1
)p

dA(z) < ∞.

(iii) There exists a function F ∈ C1(D−) satisfying

F (z) = O(1), as z →∞,

lim
r→1+

F (reiθ) = f(eiθ), a.e. and in Lq([−π, π]) for all q ∈ [1,∞) ,

and
sup
|a|<1

∫

D−

∣∣∂F (z)
∣∣2 (|ϕa(z)|2 − 1

)p
dA(z) < ∞.

Using this characterization, it was proved in [14] that the spaces Qp, 0 <
p < 1 satisfy the K-property.

J. Xiao has proved in Theorem 5.4.1 of [56] that if 0 < p < 1 and f ∈ H1,
f 6≡ 0, then f ∈ Qp if and only if f can be factored in the form f = IO where
O is an outer function in Qp and I is an inner function for which

sup
a∈D

∫

D
|O(z)|2(1− |I(z)|2)

(
(1− |a|2)(1− |z|2)

|1− az|2
)p

dA(z) < ∞.

This result can be used to deduce that Qp (0 < p < 1) has the f -property.
The space Qp,0 (0 < p < ∞) consists of those analytic functions on the unit

disk such that
lim
|a|→1

∫

D
|f ′(z)|2 logp

∣∣∣1− az

z − a

∣∣∣dA(z) = 0.

For all p, Qp,0 is a subspace of Qp. For 1 < p < ∞, Qp,0 = B0 and Q1,0 =
V MOA. It is possible to find a substitute for Qp,0 (0 < p < 1) of Xiao’s
factorization theorem. This result implies that the Qp,0 spaces (0 < p < 1) also
have the f -property. However, a characterization of the Qp,0 spaces (0 < p < 1)
in terms of pseudoanalytic extension is not known and, in fact, the question of
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whether the spaces Qp,0 (0 < p < 1) have the K-property remains open. This
question is closely related to that of determining whether Qp,0 (0 < p < 1) is
the closure of the polynomials in Qp. An affirmative answer to this would show
that Qp,0 has the K-property.

6. Blaschke products

Blaschke products are typical inner functions, and they are used in this
subject mainly to prove that a given subspace of H1 does not have the f -
property.

The Bloch space B consists of those functions f analytic in D such that

sup
z∈D

(
1− |z2|)

∣∣f ′(z)
∣∣ < ∞,

while the little Bloch space B0 consists of those functions f analytic in D such
that

lim
|z|→1

(
1− |z2|)

∣∣f ′(z)
∣∣ = 0.

We mention [2] as a general reference for Bloch functions. Let us point out
that H∞ ( BMOA ( B, that B0 is the closure of the polynomials in B, that
V MOA ( B0, and that B and B0 are not subspaces of H1 for they contain
functions without finite radial limit on sets of positive measures.

In 1979, Anderson [1] showed that B0 ∩ H∞ does not have the f -property
using results of Shapiro [47] and Kahane [32], from 1968 and 1969 respectively,
on the existence of certain positive singular measures on ∂D. These results were
also used by Sarason [45] in 1984 to prove that there exist infinite Blaschke
products in B0. It is remarkable to see how Anderson’s theorem can be easily
deduced from Sarason’s result.

Theorem 15. B0 ∩Hp, p ≥ 1 does not have the f -property.

Proof. Fix p ≥ 1. Let B an infinite Blaschke product in B0, whose infinite se-
quence of zeros is {an}. Let {anj} be a subsequence of {an} which is uniformly
separated (see [10, Chapter 9] for the definition and properties of uniformly
separated sequences). If B1 is the Blaschke product with zeros {anj} then
there exists δ > 0 such that

(1− |anj |2)|B′
1(anj

)| > δ, for all j,

which implies that B/(B/B1) = B1 /∈ B0. Consequently, we have that B ∈
B0 ∩ Hp, I = B/B1 is inner, B1 = B/I ∈ H1, and, however, B1 /∈ B0. This
proves that B0 ∩Hp does not have the f -property. ¤

In view of this result it is natural to formulate the following question: Does
B ∩Hp (1 ≤ p ≤ ∞) have the f - or K-property?

Since H∞ ⊂ B, we see that B ∩ H∞ = H∞ has the f -property but does
not have the K-property. However, using that B0 ∩ H∞ does not have the
f -property and an argument by polynomial approximation, the authors [21]
have proved the following result.
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Theorem 16. B ∩Hp (1 ≤ p ≤ ∞) does not have the K-property.

Actually, adapting the proof of Theorem 10, more can be said.

Theorem 17. If X is a subspace of B ∩H1 containing B0 ∩H∞, then it fails
to have the K-property.

Proof. Assume by contradiction that X has the K-property. Then for any
ψ ∈ H∞, Tψ(X) ⊆ X, and hence, by the Closed Graph Theorem they are
continuous, and by the hypothesis,

Tψ(B0 ∩H∞) ⊆ Tψ(X) ⊆ X ⊆ B ∩H1.

Next using the same notation as in the proof of Theorem 15, we have that
TIB = B/I = B1 /∈ B0. However, since B ∈ B0, there exists a sequence of
polynomials {qn} that approximate B in the Bloch norm. So, bearing in mind
that TI transforms polynomials into polynomials and that TI is continuous
from B0 ∩ H∞ to B ∩ H1, we obtain that TIqn is a sequence of polynomials
approaching to TIB = B1 in the B ∩ H1-norm. This implies that B1 ∈ B0,
which is false. ¤

In the same paper [21] a result is proved which answers the above question.

Theorem 18. If 1 ≤ p < ∞ then B ∩Hp does not have the f -property.

Sketch of the proof. It goes as follows. Let B be an infinite Blaschke product
in B0, whose sequence of zeros have a subsequence accumulating at 1. Then

µ(r) = sup
r≤|z|<1

(
1− |z|2)

∣∣B′(z)
∣∣ ↘ 0, as r ↗ 1.

Let B1 be an interpolating Blaschke product, subproduct of B, whose se-
quence of zeros accumalate at 1.

Construct now a conformal mapping F from D onto a circularly symmetric
and starlike domain with respect to 0 satisfying the following conditions (see [7,
Section 3] for the construction of such mappings):

F ∈ BMOA; F (z) −−−→
z→1

∞; M∞(r, F ) = O
( 1

µ(r)

)
, as r → 1.

From this, obtain that f = B · F ∈ B ∩ Hp, (p < ∞), I = B/B1 is inner,
f/I = B1 · F ∈ H1, but f/I /∈ B. ¤

7. Final comments

First of all, we have to remark that, in addition to those that we have
considered, many other results have been obtained in this subject. Let us
simply mention the works of F.A. Šamojan [42, 43, 44], R.F. Shamoyan [46],
N.A. Širokov [49, 50, 51, 52, 53, 54] and S.A. Vinogradov [55], as well as, those
of Axler and Gorkin [5], K. Izuchi and Y. Izuchi [30, 31] and Gorkin and Mortini
[22, 23, 24] where these and other related questions are studied in the setting
of Douglas algebras, for further reading.
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[48] N.A. Širokov, Ideals and factorization in algebras of analytic functions that are smooth
up to the boundary, (in Russian), Spectral theory of functions and operators. Trudy Mat.
Inst. Steklov. 130 (1978), 196-222. English translation in ‘Proc. Steklov Inst. Math. 130
(1979), 205-233’.
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