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VOLTERRA OPERATORS ON SPACES OF ANALYTIC
FUNCTIONS - A SURVEY

ARISTOMENIS G. SISKAKIS

Abstract. We give a short and selective account of results known about
operators of the form

Vg(f)(z) =
1

z

Z z

0
f(ζ)g′(ζ) dζ,

where g is analytic on the disc and the operator Tg = zVg acts on spaces
of analytic functions.

1. Introduction

Let D denote the unit disc in the complex plane C. For g analytic on the
disc consider the linear transformation

(1) Vg(f)(z) =
1
z

∫ z

0

f(ζ)g′(ζ) dζ,

acting on the space H(D) of all analytic functions on D. We also consider the
modified transformation

(2) Tg(f)(z) =
∫ z

0

f(ζ)g′(ζ) dζ

which maps every f ∈ H(D) to a function vanishing at 0. In both cases g
is the symbol of the transformation, and these transformations have appeared
under various names such as Volterra operators, generalized Cesàro operators,
Riemann-Stieltjes operators, and integration operators.
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52 A. G. SISKAKIS

This class of operators includes the integration operator,

f(z) → 1
z

∫ z

0

f(ζ) dζ

obtained with g(z) = z. It also includes the Cesàro operator

C(f)(z) =
∞∑

n=0

(
1

n + 1

n∑
k=0

ak

)
zn,

which is defined on functions f(z) =
∑∞

n=0 anzn ∈ H(D). Indeed a power series
calculation shows

C(f)(z) =
1
z

∫ z

0

f(ζ)
1

1− ζ
dζ

=
1
z

∫ z

0

f(ζ)
(

log
(

1
1− ζ

))′
dζ

=
1
z

∫ z

0

f(ζ)g′(ζ) dζ,

where g(z) = log(1/(1− z)). With this g we thus have C = Vg.
These operators are closely related to the operation of integration on simply

connected domains. Consider a simply connected domain Ω ( C with 0 ∈ Ω.
Denote by H(Ω) the space of analytic functions on Ω, and let h : D → Ω be a
Riemann map with h(0) = 0. Then the operator

Ch : H(Ω) → H(D), Ch(f)(z) = f(h(z))

is a linear bijection between H(Ω) and H(D). Let

IΩ(f)(z) =
∫ z

0

f(ζ) dζ,

the operator of integration acting on H(Ω). Writing ĨΩ = Ch ◦ IΩ ◦ C−1
h we

obtain an operator ĨΩ acting on H(D), and we have

ĨΩ(f)(z) = Ch ◦ IΩ ◦ C−1
h (f)(z)

=
∫ z

0

f(ζ)h′(ζ) dζ,

for each f ∈ H(D). Thus ĨΩ = Th with h the above Riemann map.
Less directly but more interestingly, the averaged integration operator

JΩ(f)(z) =
1
z

∫ z

0

f(ζ) dζ

is also related to some Vg. Indeed the counterpart of JΩ on H(D) is

J̃Ω(f)(z) = Ch ◦ JΩ ◦ C−1
h (f)(z)

=
1

h(z)

∫ z

0

f(ζ)h′(ζ) dζ.
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Next, on H(D) define the transformations

Mz(f)(z) = zf(z) (the usual shift),

Bh(f)(z) =
1

zh(z)

∫ z

0

f(ζ)ζh′(ζ) dζ,

and

Rh(f)(z) =
1
z

∫ z

0

f(ζ)
ζh′(ζ)
h(ζ)

dζ.

A calculation shows that the following hold

(3) (i) Mz ◦Bh = J̃Ω ◦Mz, (ii) Rh = Bh + Rh ◦Bh.

From (i) we have J̃Ω ∼ Bh and from (ii) that Rh ∼ Bh, where the symbol ∼ is
used in a vague manner to mean that the operators have “similar” properties.
This can be made precise when the restrictions of these operators are made
to act on appropriate Banach spaces of analytic functions that are subspaces
of H(D). For example (ii) says that Rh and Bh belong to the same operator
ideals.

Further since
zh′(z)
h(z)

= 1 + z

(
log

h(z)
z

)′
,

we find

Rh(f)(z) =
1
z

∫ z

0

f(ζ) dζ +
1
z

∫ z

0

f(ζ)ζ
(

log
h(ζ)

ζ

)′
dζ

= JD(f)(z) + (Vg ◦Mz)(f)(z),

where

g(z) = log
h(z)

z
.

Since the integration JD is a “small” operator, we conclude that with this g, in
the vague sense mentioned above we have

JΩ ∼ Vg.

In addition to the above connections to integration operators, the Volterra
type operators also arise when studying semigroups of composition operators.
Indeed they are closely related to the resolvent operators of those semigroups,
see [Si3] for details.

2. Some general observations

Before we consider these Volterra type operators to act on specific spaces of
analytic functions, let us take a more general point of view. Suppose X and Y
are two Banach spaces consisting of analytic functions on D. We may ask:
Question. For what symbols g is

Tg : X → Y
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a bounded operator? A compact operator? If further X = Y how do the
spectral properties of Tg : X → X depend on g?

Let us see how far we can go in this generality. Assume for simplicity X = Y
and define

V = VX := {g ∈ H(D) : Tg : X → X is bounded }

and
V0 = V0,X := {g ∈ H(D) : Tg : X → X is compact }.

Because
Tλg = λTg, Tg+h = Tg + Th,

both V and V0 are nontrivial vector spaces (both contain the constants) and
V0 ⊆ V . We introduce a norm on V

‖g‖ = ‖g‖V = |g(0)|+ ‖Tg‖X→X ,

which is also a norm on V0 ⊂ V . Then it is easy to show [SiZh] that if the
convergence fn → f in X implies uniform convergence on compact subsets of
D then V and V0 are complete under ‖ · ‖V and are therefore Banach spaces.
Further assume the multiplication operator Mz(f)(z) = zf(z) is bounded on
X. Then from

Tzn(f)(z) = n

∫ z

0

f(ζ)ζn−1 dζ = n

∫ z

0

Mn−1
z (f)(ζ) dζ,

we have
Tzn = nTz ◦Mn−1

z ,

and it follows that V contains all monomials zn whenever it contains z. Thus if
the integration operator Tz is bounded on X, then the linear space V contains
all polynomials. In the same way it follows that if Tz is compact on X, then
in fact the smaller space V0 contains all polynomials.

Now we consider the Möbius invariance of V and V0. Let

φa(z) =
a− z

1− āz
, a ∈ D.

be the Möbius maps which map the disc conformally onto itself and exchange
a with 0. Let Ca be the composition operator

Ca(f) = f ◦ φa,

induced by φa on H(D). For f ∈ H(D) write F (z) = Tg(f)(z), then

F ′(z) = f(z)g′(z).

Composing with φa(z) and multiplying by φ′a(z) we obtain

(F ◦ φa)′(z) = (f ◦ φa)(z)(g ◦ φa)′(z),

thus

(F ◦ φa)(z)− (F ◦ φa)(0) =
∫ z

0

(f ◦ φa)(ζ)(g ◦ φa)′(ζ) dζ.
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We write this equation in terms of Ca,

Ca ◦ Tg(f)(z)− Ca ◦ Tg(f)(0) = Tg◦φa
◦ Ca(f)(z),

equivalently,

(4) I0 ◦ Ca ◦ Tg ◦ Ca = Tg◦φa
,

where I0 is the operator I0(f)(z) = f(z)− f(0) acting on H(D).
Now consider the restriction of the above to the Banach space X ⊂ H(D).

If X contains the constant functions, then I0(f) ∈ X whenever f ∈ X. Using
(4) we conclude that if X contains the constants and is preserved by Ca (that
is f ◦ φa ∈ X for each f ∈ X) then V and V0 are also preserved by Ca.

Suppose again X contains the constants. Then for the function 1 ∈ X and
each g ∈ V we obtain

Tg(1)(z) =
∫ z

0

g′(ζ) dζ = g(z)− g(0) ∈ X

so g ∈ X, i.e. V ⊂ X. Further,

‖g‖X = ‖g(0) + g − g(0)‖X

≤ ‖g(0)‖X + ‖g(z)− g(0)‖X

= |g(0)|‖1‖X + ‖Tg(1)‖X

≤ |g(0)|‖1‖X + ‖Tg‖X→X‖1‖X

= ‖1‖X‖g‖V ,

so ‖g‖X ≤ C‖g‖V with the constant C = ‖1‖X independent of g ∈ V .
We can now iterate the above construction to obtain a sequence of spaces.

We start with a Banach space X with the properties:

(i) X contains the constant functions.
(ii) If fn → f in X then fn → f uniformly on compact subsets of D.
(iii) If f ∈ X and a ∈ D then f → f ◦ φa ∈ X.

Write X1 for the space V defined above. Thus X1 contains the constants,
and is preserved by composition with φa. Further X1 ⊂ X and ‖f‖X ≤ C‖f‖X1

for each f ∈ X1. It follows that convergence in X1 implies convergence in X
and by (ii) this implies uniform convergence on compact subsets of D. We see
therefore that X1 is a Banach space which also satisfies the properties (i), (ii)
and (iii). Proceeding inductively, suppose Xk−1 has been defined. Define Xk

by
Xk =: {g ∈ H(D) : Tg : Xk−1 → Xk−1 is bounded },

and equip it with the norm

‖g‖Xk
= |g(0)|+ ‖Tg‖Xk−1→Xk−1 .
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By induction, Xk is a Banach space of analytic functions which satisfies prop-
erties (i), (ii) and (iii). We have

X ⊇ X1 ⊇ X2 ⊇ · · ·Xk · · · ,

and
‖g‖Xk−1 ≤ ‖g‖Xk

, k > 1, g ∈ Xk.

We may ask various questions about these spaces Xk. For example if we start
with a specific space for X, what are the subsequent spaces Xk? Do they all
contain non constant functions? Are they strictly smaller from one step to the
next? Does their infinite intersection contain non constant functions?

3. Spaces of functions

Below we will survey some known results about Volterra type operators
acting on some classical spaces of analytic functions. We give the definitions
and basic properties of the spaces first.

Hardy spaces and BMOA. For 0 < p < ∞ the Hardy space Hp contains all
analytic functions f : D → C for which

‖f‖Hp = sup
0<r<1

(∫ 2π

0

|f(reiθ)|p dθ

2π

)1/p

< ∞.

With this norm, Hp is a complete metric linear space and a Banach space for
p ≥ 1. It is a Hilbert space for p = 2. For p = ∞ the Banach space H∞

consists of the bounded analytic functions with norm

‖f‖∞ = sup
z∈D

|f(z)|.

The space BMOA consists of all f ∈ H2 such that

‖f‖∗ = |f(0)|+ sup
a∈D

‖f ◦ φa − f(a)‖H2 < ∞,

where φa(z) are the Möbius automorphisms of D. The space V MOA consists
of the functions f ∈ BMOA such that

lim
|a|→1

‖f ◦ φa − f(a)‖H2 = 0.

Equivalently, V MOA is the closure of polynomials in BMOA. Both BMOA
and V MOA can be described in terms of Carleson measures.

Recall that a positive measure µ on the disc is a Carleson measure if

(5) sup
I⊂∂D

µ(S(I))
|I|

< ∞,

where S(I) = {z : 1 − |I| ≤ |z| < 1, z/|z| ∈ I} is the Carleson box based
on the arc I ⊂ ∂D of length |I|. A vanishing Carleson measure µ is one for
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which µ(S(I)) = o(|I|) as |I| → 0. It is a basic theorem that condition (5) is
equivalent to

(6) ‖f‖L2(D,µ) ≤ C‖f‖H2 f ∈ H2,

i.e. the inclusion operator i : H2 ↪→ L2(D, µ) is bounded. Vanishing Carleson
measures are those for which this inclusion is compact.

The Carleson measure characterization of BMOA is as follows. A function
f ∈ H2 is in BMOA if and only if the measure

dµ(z) = |f ′(z)|2 log(z−1)dm(z)

is a Carleson measure on D (here dm(z) is the Lebesgue area measure). And
a function f ∈ BMOA is in V MOA if and only if this measure is a vanishing
Carleson measure.

Functions f ∈ Hp have radial limits almost everywhere on the boundary and
a boundary function, denoted by f(eiθ), is well defined. For p ≥ 1 the boundary
function is in Lp(∂D), and Hp embeds in Lp(∂D) by this correspondence. Hp

then can alternatively be described as the subspace of functions in Lp(∂D)
whose Fourier series have all coefficients of negative index equal to zero. For
1 < p < ∞ the pairing

〈f, h〉 =
∫ 2π

0

f(eiθ)h(eiθ)
dθ

2π

establishes a duality between Hp and Hq with 1
p + 1

q = 1. Interpreted in a
wider sense, 〈f, h〉 = limr→1〈fr, hr〉, where fr(z) = f(rz), this pairing gives
also the dualities V MOA∗ = H1 and (H1)∗ = BMOA. This pairing can be
written by the Littlewood-Paley formula as

〈f, h〉 = f(0)h(0) + 2
∫

D
f ′(z)h′(z) log

(
1
z

)
dm(z).

More information on Hardy spaces and BMOA can be found in [Du], [Bae] and
in [Sar].

Bergman and Bloch spaces. Suppose w : [0, 1) → (0,∞) is a weight function
which is integrable on [0, 1). We extend w on D by w(z) = w(|z|) and assume
that w is normalized so that

∫
D w(z)dm(z) = 1.

For 1 ≤ p < ∞ the weighted Bergman space Ap
w is the space of all analytic

functions f : D → C such that

‖f‖p
p,w =

∫
D
|f(z)|pw(z)dm(z) < ∞.

These are Banach spaces. We write simply Ap when w ≡ 1.
The Bloch space B consists of all f analytic on D such that the Bloch norm

‖f‖B := |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)|
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is finite, while the little Bloch space B0 contains those f ∈ B for which
lim|z|→1(1 − |z|2)|f ′(z)| = 0. Equivalently, B0 is the closure of polynomials
in the Bloch norm. Both B and B0 are Banach spaces under the Bloch norm.
Bloch spaces are the area measure versions of BMOA and V MOA. In this
connection, a useful characterization is the following. Suppose 1 ≤ p < ∞ and
let φa denote the usual Möbius automorphisms of D. Then we have, see [Axl],

(7) g ∈ B ⇔ sup
a∈D

‖g ◦ φa − g(a)‖Ap < ∞,

and
g ∈ B0 ⇔ lim

|a|→1
‖g ◦ φa − g(a)‖Ap = 0.

Besov spaces. For 1 < p < ∞ the Besov space Bp consists of all analytic
functions f on D such that

‖f‖p
Bp

=
∫

D
|f ′(z)|p(1− |z|2)p−2 dm(z) < ∞.

The space Bp is a Banach space for p > 1. For p = 2, B2 is a Hilbert space, also
known as Dirichlet space and denoted by D. More information about Bergman,
Bloch and Besov spaces can be found in [Zhu].

4. Boundedness and compactness

In this section we will present the main theorems that characterize those g
for which Tg is bounded or compact. The setting is on Hardy spaces, Bergman
spaces and on BMOA.

We consider Hardy spaces first. It was proved by Pommerenke in [Pom,
Lemma 1] that Tg is bounded on H2 if and only if g ∈ BMOA. To see this
assume f is a polynomial and use the Littlewood-Paley formula to write

‖Tg(f)‖2H2 = 〈Tg(f), Tg(f)〉

= 2
∫

D
|f(z)|2|g′(z)|2 log(z−1) dm(z)

= 2‖f‖2L2(D, µg),

where

(8) µg(z) = |g′(z)|2 log(z−1)dm(z).

Since polynomials are dense in H2, we see that Tg : H2 → H2 is bounded if
and only if the inclusion operator

i : H2 ↪→ L2(D, µg)

is bounded, and this is equivalent to that µg is a Carleson measure. In other
words, Tg is bounded on H2 if and only if g ∈ BMOA. The same argument
shows that Tg is compact on H2 if and only if g ∈ V MOA.
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The same characterization of boundedness and compactness of Tg on Hp

is valid for any 0 < p < ∞, the proofs however are more difficult. The case
p ≥ 1 was proved in [AleSi1] while the extension for 0 < p < 1 was obtained in
[AleCi]. Thus we have

Theorem 4.1. Let 0 < p < ∞. Then Tg : Hp → Hp is bounded if and only if
g ∈ BMOA.

In [AleCi] the authors in fact consider any pair of indices p, q ∈ (0,∞) and
characterize the symbols g for which Tg maps Hp into Hq (the closed graph
theorem then implies that for those g, Tg maps Hp boundedly into Hq). We will
not state the details of all cases but we remark that [AleCi, Theorem 1(iii)] is a
substantial strengthening of a classical result of Hardy and Littlewood. Indeed
they prove: If p < q and 1

p −
1
q ≤ 1, then Tg maps Hp into Hq if and only

if g ∈ Λ 1
p−

1
q
. Here the Lipschitz class Λα, 0 < α ≤ 1, consists of all analytic

functions g on D such that

|g′(z)| = O((1− |z|)α−1), |z| → 1.

Now apply this with 1
p −

1
q = 1 and g(z) = z ∈ Λ1, to obtain the following

theorem of Hardy and Littlewood. If 0 < p < 1, f ∈ Hp and F ′ = f then F ∈
Hq and q = p/(1− p). Theorem 1(iii) of [AleCi] in its full generality as stated
above is a nontrivial strengthened form of the Hardy-Littlewood theorem, see
[AleCi] for details.

As a byproduct in the proof of the boundedness of Tg one obtains the fol-
lowing corollary for compactness which was proved for p ≥ 1 in [AleSi1] and
for all p > 0 in [AleCi].

Corollary 4.2. Let 0 < p < ∞. Then Tg : Hp → Hp is compact if and only if
g ∈ V MOA.

Analogous characterization for the symbols g hold for Tg to be bounded on
Bergman spaces. In the unweighted case, for 1 ≤ p < ∞ and f ∈ Ap it is well
known that one can write

‖f‖p
Ap =

∫
D
|f(z)|p dm(z)

' |f(0)|p +
∫

D
|f ′(z)|p(1− |z|2)p dm(z),

where ' means the two sides are comparable. Thus we have

‖Tg(f)‖p
Ap '

∫
D
|f(z)|p|g′(z)|p(1− |z|2)p dm(z).

We see that if g is in the Bloch space B then |g′(z)|(1 − |z|2) ≤ ‖g‖B for all
z ∈ D, and we have

‖Tg(f)‖Ap ≤ C‖f‖Ap‖g‖B,

so Tg : Ap → Ap is bounded.
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This last inequality together with the fact that integration in Ap is a compact
operator (and therefore TP is compact on Ap for any polynomial P ) and the
fact that the little Bloch space B0 is the closure of polynomials in B, imply
that if g ∈ B0 then Tg : Ap → Ap is compact.

The converse of this is also true. To prove it we will make use of the char-
acterization of Bloch and little Bloch functions given in (7). Indeed assume
1 < p < ∞ and Tg : Ap → Ap is bounded. We will show that g ∈ B, by
showing that supa∈D ‖g ◦ φa − g(a)‖A1 < ∞. We have,

‖g ◦ φa − g(a)‖A1 '
∫

D
|(g ◦ φa)′(z)|(1− |z|2) dm(z)

=
∫

D
|(g′(φa(z)))||φ′a(z)|(1− |z|2) dm(z)

=
∫

D
|(g′(φa(z)))|(1− |φa(z)|2) dm(z)

=
∫

D
|g′(z)|(1− |z|2)|φ′a(z)|2 dm(z)

=
∫

D
|g′(z)|(1− |z|2) (1− |a|2)2

|1− āz|4
dm(z)

=
∫

D
|g′(z)|(1− |z|2) (1− |a|2)2/p

|1− āz|2
(1− |a|2)2/q

|1− āz|2
dm(z),

where 1
p + 1

q = 1. Write ka(z) = (1−|a|2)2/p

(1−āz)2 , ha(z) = (1−|a|2)2/q

(1−āz)2 and use Hölder’s
inequality to obtain

‖g ◦ φa − g(a)‖A1 ≤ ||ka||Lq‖|g′(z)|(1− |z|2)|ha(z)|‖Lp

' ‖ka‖Lq‖Tg(ha)‖Ap

≤ ‖ka‖Lq‖Tg‖Ap→Ap‖ha‖Ap

≤ C‖Tg‖Ap→Ap

because ‖ka‖Lq ' ‖ha‖Ap ' 1 for each a ∈ D. By assumption Tg is bounded
on Ap. Thus

sup
a∈D

‖g ◦ φa − g(a)‖A1 < ∞

so g ∈ B. The case p = 1 can be handled similarly.
An analogous argument, based on weak convergence of test functions gives

that if Tg : Ap → Ap is compact then g ∈ B0. We summarize

Theorem 4.3. Let 1 ≤ p < ∞. Then
(i) Tg : Ap → Ap is bounded if and only if g ∈ B.
(ii) Tg : Ap → Ap is compact if and only if g ∈ B0.
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This theorem can be extended to a class of weighted Bergman spaces for
some general weights. The details can be found in [AleSi2]. We will only
describe here the weights w for which the above theorem is valid on Ap

w.

Theorem 4.4. Suppose w : [0, 1) → (0,∞) is a weight function which is
integrable on [0, 1) and satisfies the conditions
(P1) There is a constant C such that

w(r) ≥ C

1− r

∫ 1

r

w(u) du, 0 < r < 1.

(P2) There is an s ∈ (0, 1) and a constant D such that

w(sr + 1− s) ≥ Dw(r), 0 < r < 1.

Then:
(i) Tg is bounded on Ap

w if and only if g ∈ B.
(ii) Tg is compact on Ap

w if and only if g ∈ B0.

Condition (P1) in the above theorem is used to prove an inequality of the
form∫

D
|f(z)|pw(z) dm(z) ≤ C

(
|f(0)|p +

∫
D
|f ′(z)|p(1− |z|)pw(z) dm(z)

)
,

for f analytic on D, which clearly gives the sufficiency assertions for Tg. Con-
dition (P2) which is a generalized version of w( 1+r

2 ) ≥ Dw(r) (s = 1/2) is used
to prove the necessity. All standard weights w(r) = (1 − r)α, α > −1, satisfy
conditions (P1) and (P2). Other weights that satisfy them are,

w(r) = (1− r)α

(
log

e

1− r

)β

, α > −1, β ∈ R,

w(r) = exp
(
−β

(
log

e

1− r

)α)
, 0 < α ≤ 1, β > 0.

However the exponential weight

w(r) = exp
(

−β

(1− r)α

)
, α, β > 0

does not satisfy condition (P2), see [AleSi2] for details.

We now consider Tg acting on BMOA. If Tg is bounded on BMOA then
Tg(1) = g(z) − g(0) ∈ BMOA so g ∈ BMOA. On the other hand, for g(z) =
log( 1

1−z ) ∈ BMOA we have

Tg(g)(z) =
∫ z

0

g(ζ)g′(ζ) dζ =
1
2

log2

(
1

1− z

)
and this function is not in BMOA. Thus the space of g’s for which Tg is
bounded is a proper subspace of BMOA. This space was determined in [SiZh]



62 A. G. SISKAKIS

and is a space of functions that are of bounded logarithmically weighted mean
oscillation as described in the following

Theorem 4.5. The operator Tg maps BMOA boundedly into itself if and only
if

(9) sup
I⊂∂D

{(log 2
|I|
)2

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z)
}

< ∞.

We now show that this condition also characterizes those g for which Tg is
bounded on V MOA. First observe that under this condition Tg(VMOA) ⊂
VMOA. Indeed suppose g satisfies (9) then clearly g ∈ V MOA. Since Tg(1) =
g − g(0), the constant functions are mapped into V MOA. Let n be a positive
integer. An integration by parts gives

Tg(zn) = zng(z)− n

∫ z

0

ζn−1g(ζ) dζ.

Since multiplication by z and the integration operator are bounded on V MOA
we see that Tg(zn) ∈ V MOA, and the same is true for Tg(p) for any polynomial
p. Next let f ∈ V MOA. There is a sequence (pn) of polynomials such that
‖f − pn‖∗ → 0 and we have

‖Tg(f)− Tg(pn)‖∗ = ‖Tg(f − pn)‖∗ ≤ ‖Tg‖‖f − pn‖∗.

This shows that Tg(f) can be approximated in the ‖ · ‖∗ norm by V MOA
functions. Since V MOA is closed in this norm the assertion follows.

Now assume Tg : V MOA → V MOA is bounded and recall the dualities
between V MOA, H1 and BMOA. Let

Ag = T ∗g : H1 → H1

be the adjoint of Tg acting on H1 = (V MOA)∗, and let

A∗
g : BMOA → BMOA

be the adjoint of Ag. Because V MOA is weak∗ dense in BMOA and since
Tg(VMOA) ⊂ VMOA, we see that A∗

g = Tg. It follows that Tg is bounded on
V MOA if and only if it is bounded on BMOA.

The following theorem from [SiZh] asserts that the little oh condition cor-
responding to (9) characterizes those g for which Tg is a compact operator on
BMOA.

Theorem 4.6. Tg is compact on BMOA if and only if

(10) lim
|I|→0


(
log 2

|I|
)2

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z)

 = 0.
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5. Schatten ideals

Let H be a Hilbert space and T : H → H a bounded operator. The singular
numbers of T are defined by

λn = inf{‖T − F‖ : F : H → H is an operator of rank ≤ n}.

The operator T is compact if and only if λn → 0, and of finite rank if and
only if λn = 0 for all sufficiently large n. For 0 < p < ∞ the Schatten
classes Sp contain those bounded linear operators on H for which (λn) ∈ lp,
the space of p-summable sequences. For p ≥ 1 the Schatten norm in Sp is
defined by |T |Sp = ‖(λn)‖lp . Each Sp is a two sided self-adjoint ideal in the
space of all bounded operators on H and is a Banach space under the Schatten
norm. Further T ∈ Sp if and only if T ∗T ∈ Sp/2. The classes S2 and S1 are the
Hilbert-Schmidt and trace class respectively. An operator T is Hilbert-Schmidt
if and only if

∑
n ‖T (en)‖2 < ∞ for some orthonormal basis {en} of H.

Before we consider the Schatten classes of Tg on specific Hilbert spaces let
us consider a general case. Suppose the Hilbert space H consists of analytic
functions on the disc D. For each p ≥ 1 define

Wp = Wp,H = {g ∈ H(D) : Tg ∈ Sp}.

Since each Sp is a Banach space under the Schatten norm, each Wp is a vector
space always containing the constants. We can give it a norm

‖g‖Wp
= |g(0)|+ ‖Tg‖Sp ,

under which Wp is a Banach space. This follows from the fact that a Cauchy
sequence of operators in the Schatten norm is also Cauchy in the operator
norm. For p = 2 the inner product

〈g, h〉W2 = g(0)h(0) + 〈Tg, Th〉S2

makes W2 a Hilbert space.
Further if H contains the constants and the compositions Ca(f) = f ◦ φa

with Möbius automorphisms of D are bounded operators on H, using arguments
similar to those in section 2 we find that Wp are preserved by composition with
φa.
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We will now consider the Schatten classes of Tg on the Hardy space H2. For
the basis {en(z) = zn : n = 0, 1, 2, . . . } of H2 we have

∞∑
n=0

‖Tg(en)‖2H2 =
∞∑

n=0

∥∥∥∥∫ z

0

ζng′(ζ) dζ

∥∥∥∥2

H2

'
∞∑

n=0

∫
D
|z|2n|g′(z)|2(1− |z|) dm(z)

=
∫

D

( ∞∑
n=0

|z|2n

)
|g′(z)|2(1− |z|) dm(z)

=
∫

D

1
1− |z|2

|g′(z)|2(1− |z|) dm(z)

'
∫

D
|g′(z)|2 dm(z).

This says that Tg is Hilbert-Schmidt on H2 if and only if g is in the Dirichlet
space D. To determine the other Schatten classes observe that for f, h ∈ H2

we have by the Littlewood-Paley formula

〈T ∗g Tg(f), h〉 = 〈Tg(f), Tg(h)〉 = 2
∫

D
f(z)h(z)|g′(z)|2 log(z−1) dm(z).

Choosing h(z) = kw(z) = (1− w̄z)−1, the reproducing kernel of H2, the above
equation becomes

T ∗g Tg(f)(w) = 2
∫

D
f(z)

1
1− z̄w

dµ(z),

with

dµ(z) = |g′(z)|2 log(z−1) dm(z).

Thus the operator T ∗g Tg is a generalized Toeplitz operator and the Schatten
ideals for those operators have been determined in [Lu]. Applying the main
theorem of [Lu] we can determine the Schatten class of T ∗g Tg and therefore also
that of Tg, see [AleSi1] for details.

Theorem 5.1. Suppose 1 < p < ∞. Then Tg ∈ Sp on H2 if and only if g is
in the Besov space Bp. Further Tg is not in S1 unless g is a constant.



VOLTERRA OPERATORS ON SPACES OF ANALYTIC FUNCTIONS 65

We now consider the Schatten classes of Tg on the Bergman space A2. Taking
{en(z) =

√
n + 1zn : n = 0, 1, · · · } as an orthonormal basis we have

∞∑
n=0

‖Tg(en)‖2A2 '
∞∑

n=0

∫
D
(n + 1)|z|2n|g′(z)|2(1− |z|)2 dm(z)

=
∫

D

( ∞∑
n=0

(n + 1)|z|2n

)
|g′(z)|2(1− |z|)2 dm(z)

=
∫

D

1
(1− |z|2)2

|g′(z)|2(1− |z|)2 dm(z)

'
∫

D
|g′(z)|2 dm(z),

thus Tg is Hilbert-Schmidt on A2 if and only if g ∈ D.
More generally consider the weighted Bergman spaces A2

α with weights

w(r) = (α + 1)(1− r2)α, α > −1.

The reproducing kernel here is

kw(z) =
1

(1− w̄z)α+2
,

and the inner product can be written

〈f, h〉 = (α + 1)
∫

D
f(z)h(z)(1− |z|2)α dm(z)

= f(0)h(0) +
∫

D
f ′(z)h′(z)v(|z|) dm(z),

where

v(r) = 2
∫ 1

r

(1− u2)α+1

u
du.

We can now work as in the Hardy space case to obtain the operator T ∗g Tg in
the form

T ∗g Tg(f)(w) =
∫

D
f(z)

1
(1− z̄w)α+2

dµ(z)

with dµ(z) = |g′(z)|2v(|z|)dm(z). Applying again the work of [Lu] we obtain

Theorem 5.2. Let α > −1 and 1 < p < ∞. The operator Tg is in Sp on A2
α

if and only if g ∈ Bp. Further Tg is not in S1 unless g is a constant.

6. Some final remarks

Volterra type operators and some variations of them have been also studied
on various spaces in [Hu], [Xi], [AMN], [You1], [You2], [You3]. We will not
recount the results of these papers here. We will make however some remarks
about such operators.
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1. Cyclicity. Consider Tg acting on H2 and without loss of generality
assume g(0) = 0. Then

Tg(1)(z) =
∫ z

0

g′(ζ)dζ = g(z),

T 2
g (1)(z) =

∫ z

0

g(ζ)g′(ζ) dζ =
1
2
g(z)2

and inductively

Tn
g (1)(z) =

1
n!

g(z)n, n = 1, 2, . . .

Set also T 0
g (1)(z) = 1. We see that the linear span of the orbit of 1 under Tg

is dense in H2 if and only if the polynomials in g(z) are dense in H2. Observe
that this can happen only if g is univalent. Indeed if there are z, w ∈ D such
that g(z) = g(w) then for any polynomial P we will have P (g(z)) = P (g(w))
and any limit f of a sequence of such polynomials must satisfy f(z) = f(w),
so the set of polynomials in g cannot be dense in H2.

Let Ω = g(D), and let H2(Ω) to be the Hardy space on Ω defined through
harmonic majorants i.e. f : Ω → C belongs to H2(Ω) if and only if there is a
harmonic function u(z) on Ω such that |f(z)|2 ≤ u(z) for each z ∈ Ω. In this
situation polynomials in g are dense in H2 if and only if the polynomials in z
are dense in H2(Ω). We therefore have

Proposition 6.1. The vector 1 is a cyclic vector for Tg on H2 if and only if
polynomials are dense on H2(Ω) with Ω = g(D).

It would be interesting to see if the role of the vector 1 can be removed in
the above proposition. In other words to prove that Tg is cyclic on H2 if and
only if polynomials are dense in H2(Ω).

2. A new proof of an old result. It is well known that if g is a function
in BMOA then eg is in Hp for some p > 0. And if g ∈ V MOA then eg ∈ Hp

for all p < ∞ [CiSc]. We are going to give a proof of these facts using the
operators Tg.

Indeed let g ∈ BMOA. Then Tg is bounded on H2. Assume without loss
of generality g(0) = 0. Applying Tg repeatedly to the constant function 1 we
have

Tn
g (1)(z) =

1
n!

g(z)n, n = 0, 1, 2, . . .

Let rg denote the spectral radius of Tg and let s be a number such that 0 <
s < 1/rg. Then the series

∑∞
n=0 snTn

g converges in the operator norm topology,
thus the series

∞∑
n=0

(sg(z))n

n!
=

∞∑
n=0

snTn
g (1)(z)

converges in H2. The sum of this series coincides with the pointwise sum which
is esg(z). Thus esg(z) is in H2 and eg(z) is in H2s.
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If g ∈ V MOA then Tg is compact in H2, and it can be checked by hand that
Tg has no eigenvalues so its spectrum is {0}, and the spectral radius rg = 0.
Thus we can choose the number s in the previous argument to be any number
in (0,∞). It follows that esg(z) is in H2 for all s ∈ (0,∞) so eg(z) is in every
Hp, p < ∞.

The same reasoning proves the analogous statements for g in the Bloch or
little Bloch space. We have

Theorem 6.2. Let g be analytic on D, then
(i) If g ∈ BMOA, then eg ∈ Hp for some p > 0.
(ii) If g ∈ V MOA, then eg ∈ Hp for all p > 0.
(iii) If g ∈ B, then eg ∈ Ap for some p > 0.
(iv) If g ∈ B0, then eg ∈ Ap for all p > 0.

This theorem can be extended to the spaces Xk of section 2. The same
reasoning can be applied to prove the following. Suppose X is a Banach space
of analytic functions on D which contains the constant functions, Mz : X → X
is bounded, and the point evaluations are bounded on X. Then for the Cesàro
operator to be bounded on X it is necessary that X contains the functions
1/(1 − z)s for all sufficiently small s, see [Si2]. This is because the Cesàro
operator is obtained as Tg with g = log(1/(1− z)) and esg(z) = 1/(1− z)s.

3. Spectral properties. The spectrum of the Cesàro operator has been
determined by using its relation to a semigroup of weighted composition op-
erators, see [Si1]. This method can not be applied to the general Volterra
operators Tg. The spectral properties of these operators remain unknown even
though there have been some papers with sporadic results see [You1], [You2],
[AMN], [MMN] and [Mil].
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