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INVARIANT SUBSPACES OF TRANSLATION SEMIGROUPS

STEPHEN C. POWER

In these lectures I shall give an account of some recent results and open prob-
lems relating to subspaces of square integrable functions on the real line which
are jointly invariant for a pair of semigroups of unitary operators. These semi-
groups are quite fundamental, namely, translation semigroups, Fourier trans-
lation semigroups, and dilation semigroups. A celebrated theorem of Beurling
gives a description of the closed subspaces that are simply invariant for trans-
lations (or Fourier translations) and as a result these subspaces are in bijective
correspondence with the set of all unimodular functions. In contrast, sub-
spaces that are invariant for two of these semigroups turn out to be finitely
parametrised by a family of specific unimodular functions.

I shall indicate how one goes about the identification of these sets of invariant
subspaces and how, with the natural topology, they are identifiable as Euclidean
manifolds. Also I shall discuss aspects of the relatively novel nonselfadjoint
operator algebras that are associated with them. These algebras are generated
by two non-commuting copies of H∞(R).

To identify the topology on the set of invariant subspaces it turns out that
one needs to establish some essentially function theoretic assertions, in which
a limit of a sequence of (projections onto) purely invariant subspaces is a par-
ticular reducing subspace (projection). We sketch below how one can obtain
such “strange limits”.

I would like to thank Alfonso Montes-Rodŕıguez for the opportunity to
present these lectures at the University of Seville to an ideal audience com-
posed of a good mix of old hands and young minds.
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Lecture I. Translation invariance

We start with some background by considering subspaces that are invariant
for a single unitary semigroup on L2(R), by reviewing Beurling’s theorem in
the context of H∞(R), and by proving a theorem of Sarason to the effect
that H∞(R) is determined by its invariant subspaces. Subspaces are always
considered to be closed and invariant subspaces are often denoted as K. A set
of operators that is closed in the weak operator topology will be said to be
WOT-closed.

Reflexive operator algebra

An operator algebra A on a Hilbert space is reflexive if A = Alg LatA where
LatA is the collection of all invariant subspaces,

LatA = {K : AK ⊆ K, for all A ∈ A}
and where, for a set S of (closed) subspaces of the Hilbert space,

AlgS = {B : BK ⊆ K, for all K ∈ S}.
A reflexive algebra is thus determined by its invariant subspaces. If, at the

outset, A is specified as the WOT-closed algebra generated by some family of
operators, that is, if A is specified intrinsically by generators, then by estab-
lishing reflexivity we obtain an alternative, extrinsic description of the algebra
as the set of all operators with specified invariant subspaces. Looked at the
other way round, we see that an operator which has these invariant subspaces
can be approximated, or synthesized, from polynomials in the generators.

Examples

For any family of subspaces S the set of operators AlgS is an operator
algebra and it is easily checked that it is reflexive algebra. Also, AlgS = Alg Ŝ
where Ŝ = Lat AlgS. Generally Ŝ contains S and is referred to as the reflexive
closure, or reflexive hull, of S.

By the Volterra nest I mean the family of subspaces

Nv = {L2[t,∞) : t ∈ R} ∪ {0, L2(R)}.
This is a totally ordered set (nest) of subspaces and its operator algebra AlgNv,
the Volterra nest algebra, can be naturally thought of as the algebra of all
“lower triangular operators” on L2(R). This idea becomes precise when one
characterises the kernel functions k(x, y) of the Hilbert-Schmidt operators in
the algebra. In this case k(x, y) is supported on the triangular set {(x, y) : x ≤
y}.

An elementary example of an operator algebra that is not reflexive is the
algebra on C2 of 2 × 2 complex matrices which are lower triangular and have
equal entries on the diagonal. The Alg Lat algebra is bigger and consists of all
lower triangular matrices.
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The examples above are straightforward exercises. Deeper is Sarason’s theo-
rem which asserts that H∞(R), as an operator algebra on L2(R), or on H2(R),
is reflexive.

Translation-multiplication algebras

In considering subspaces that are invariant for a family of operators, such
as multiplication and translation operators, it can be helpful to consider the
WOT-closed algebra generated by these operators as this algebra plainly has
the same set of invariant subspaces as its generators. Dually, such algebras are
of interest in their own right and knowing LatA gives insight into A.

For λ, µ real let Mλ and Dµ be the operators on L2(R) defined by

Mλf = eiλxf, Dµf(x) = f(x− µ).

Note that these operators satisfy the Weyl Commutation Relations (WCR):

MλDµ = eiλµDµMλ.

The identification of the weak operator topology closed operator algebra
generated by the exponential multiplication operators follows from elementary
functional analysis. It consists of all multiplication operators:

WOT-alg({Mλ}λ∈R) = {Mϕ : ϕ ∈ L∞(R)}.
(Trigonometric polynomials can uniformly approximate continuous functions
on any large interval, and this is enough for weak operator topology density.)
We also have

WOT-alg({Mλ}λ≥0) = {Mϕ : ϕ ∈ H∞(R)}
which is a more challenging exercise. (The standard unitary equivalence of
H∞(R) and H∞(T) provides one route. Alternatively one can make use of the
Paley-Wiener theorem.)

The 1-parameter translation group above is in fact unitarily equivalent to
the 1-parameter multiplication group via the Fourier-Plancherel transform (see
Lecture 2). Thus there are similar function space identifications for the two
corresponding algebras generated by the operators Dµ.

Let us now discuss an identification which ties some ideas together:

WOT-alg({MλDµ}λ∈R,µ≥0) = AlgNv.

Since the Volterra nest algebra is WOT-closed and contains the given generators
of the algebra on the left hand side it will suffice to show that an operator X in
the nest algebra AlgNv can be synthesised as a WOT-limit of sums of products
of the generators. This can be done as follows. From general nest algebra theory
([2], [11]) it is known that the linear span of the rank one operators R in AlgNv

is WOT-dense, and so we may as well assume that X is such an operator R.
On the other hand, the small algebra (on the left hand side) contains operators
which are finite sums of operators of the form MϕDµ, ϕ ∈ L∞, µ ≥ 0. It can
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be shown that sums of such operators can approximate a rank one operator in
the weak operator topology.

Exactly the same style of constructive proof can be used to show that

WOT-alg({MλDµ}λ,µ∈R) = B(L2(R)).

An alternative abstract proof of this identification, based on von Neumann’s
double commutant theorem, is indicated below.

It is natural for us now to define an algebra intermediate between H∞(R)
and AlgNv, which is generated by two 1-parameter semigroups;

Ap = WOT-alg({MλDµ}λ,µ≥0).

The subscript p is for parabolic (as explained in the closing remarks below).
This is a curious and interesting operator algebra, generated by two non-
commuting copies of H∞(R). It is antisymmetric, that is, Ap ∩ A∗p = CI,
and it can be shown to contain no finite rank operators. We see later that it is
a reflexive algebra.

Beurling’s theorem

We shall make use of Beurling’s theorem in the following form.

Theorem 1. Suppose that K is a closed subspace of L2(R) with MλK ⊆ K
for all λ ≥ 0 and that ⋂

λ≥0

MλK = {0}.

(One says that K is purely invariant, or simply invariant.) Then K = ϕH2(R)
for some unimodular function ϕ. If, in addition, K ⊆ H2(R), then ϕ is in
H∞(R), that is, ϕ is an inner function.

Corollary 2. If we view H∞(R) as an algebra of multiplication operators on
L2(R), then Lat(H∞(R)) is the union

{ϕH2(R) : ϕ unimodular} ∪ {χEL2(R) : E ⊆ R measurable}.
Proof. Exercise. ¤

Corollary 3. If we view H∞(R) as an algebra of multiplication operators on
H2(R) then

LatH∞(R) = {φH2(R) : φ is an inner function }.
Proof. Exercise. ¤

The last corollary obtains a complete explicit characterisation of the in-
variant subspaces for H∞ multiplication. Nevertheless it is a “wild set” of
subspaces parametrised by all unimodular functions. But in the subsequent
lectures we shall make further demands on these subspaces - that they are also
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invariant for right translation for example - and this will result in a finitely
parametrised or “tame set”.

Theorem 4. (Sarason [14])) H∞(R), as an algebra of multiplication operators
on H2(R), is a reflexive operator algebra.

Remarks.

1. The double commutant theorem of von Neumann asserts that a von
Neumann algebra M (i.e. a WOT closed unital self-adjoint operator algebra)
is equal to its second commutant. Since the commutant is generated by its
subset of projections it is straightforward to deduce from this that

M = Alg LatM.

Here
Lat M = {P : P = P ∗ = P 2, P ∈ M ′},

where M ′ is the commutant of M . Note that this theorem can be used to give
a quick (nonconstructive) proof of the equality

WOT-alg({MλDµ}λ,µ∈R) = B(L2(R)).

Sarason’s theorem can be viewed as a first move towards generalisations of the
double commutant theorem in the direction of non-self-adjoint operator alge-
bras.

2. L∞(R), as a von Neumann algebra on L2(R), is its own commutant and
so is a maximal abelian self-adjoint algebra. Likewise, H∞(R), as an operator
algebra on H2(R), is maximal abelian. We use this fact in the following proof
of Sarason’s theorem.

Proof. The operator algebra H∞(R) is naturally unitarily equivalent to its
counterpart algebra on the Hardy space of the unit circle T and it is in this
setting that we prove reflexivity.

Let A ∈ Alg Lat H∞(T). For α ∈ C, |α| < 1, let vα = Σn∈Z+αnzn. This
element of H2(T) is an eigenvector for the backward shift operator; T ∗z vα =
αvα. Thus {vα}⊥ ∈ Lat Tz = Lat H∞(T), where the last equality of lattices of
invariant subspaces holds because H∞(T) is the WOT-closed algebra generated
by Tz. It follows that Cvα ∈ Lat A∗ and so A∗vα = λvα for some λ depending
on α.

Let A1 = h. We shall show that h is in H∞(T) and that A = Th (the
Toeplitz operator of multiplication by h) and this will complete the proof.

We have

T ∗z A∗vα = T ∗z λvα = λαvα = A∗αvα = A∗T ∗z vα.
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This is true for all vα and it can be shown that these vectors span the Hardy
space. Thus ATz = TzA and since H∞(T) is a maximal abelian algebra it
follows that A is an analytic Toeplitz operator, as desired. ¤

Remarks

1. In the proof we did not need all the subspaces in Lat H∞(R). This is
fairly typical for arguments that establish reflexivity and we see this again in
the subsequent lectures.

2. The proof above extends readily to the multivariable case of H∞(Tn)
viewed as an operator algebra on the Hardy space of the n-torus.

3. The reflexivity of an operator algebra generated by two commuting pure
isometries is investigated in Horák and Müller [4]. They conjecture that all
such algebras are reflexive and it could be that this problem is still open.

4. An elaboration of the eigenvalue argument above is given in Kribs and
Power [8] to obtain a simple proof of the reflexivity of the so-called noncom-
mutative analytic Toeplitz algebras Ln. These algebras are generated by freely
noncommuting copies of H∞ and so are rather different from our algebras in
which generators have commutation relations. Reflexivity here was originally
obtained by Arias and Popescu [1]. See also [3], [7] for other considerations of
reflexivity in the presence of free generators.

5. Background on invariant subspaces, reflexive algebras and Hardy space
function theory can be found in the books of Radjavi and Rosenthal [13], and
Davidson [2].

Lecture II. Translation-multiplication invariance

We now describe the closed subspaces on the real line that are invariant
for the operators Mλ, Dµ for nonnegative λ, µ. First we note the two obvious
classes of invariant subspaces.

Let K = eiαxH2(R). Then

DµK = eiα(x−µ)DµH2(R) = eiαxe−iαµH2(R) = K

for all µ in R. So these subspaces are actually fixed by translations (and are
reducing subspaces). Also

MλK = eiλxeiαxH2(R) ⊆ K

if λ ≥ 0. Thus K is doubly invariant, and K ∈ LatAp. Note that the collection
of these subspaces is totally ordered by inclusion and so gives rise to another
nest, Na say, which we call the analytic nest.

On the other hand let K = L2[t,∞). Then MλK = K, for all λ, so that
these subspaces are fixed by the multiplication operators, while DµK ⊆ K if
µ ≥ 0.
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Theorem 5. (Katavolos and Power 1997) If K ⊆ L2(R) is a closed subspace
with MλK ⊆ K,DµK ⊆ K for all λ, µ ≥ 0, then either K = L2[t,∞) for some
t ∈ [−∞,∞] or K = ϕse

iαxH2(R) for some s ≥ 0, α ∈ R.

We give the essentials of the proof, omitting various measure theoretic de-
tails.

Assume that K is not of the form L2[t,∞). Then K must be simply invariant
for {Mλ : λ ≥ 0}, i.e.

⋂

λ≥0

MλK = {0}

(or else K = L2[E] for some E ⊆ R and then Dµ invariance implies E = [t,∞)).
Thus K = uH2(R) with u unimodular.

The space DtK is also simply invariant for {Mλ : λ ≥ 0} (by the WCR),
and DtK ⊆ K for t > 0, by hypothesis, so

DtK = wtuH2(R),

where wt is inner. It follows that wt divides ws if 0 < t < s.

We also have DtK = DtuH2(R) = u(x − t)H2(R) so, without loss of gen-
erality, we may assume that u(x− t) = wt(x)u(x). This equation implies that
the wt satisfy the cocycle equation

ws+t(x) = wt(x− s)ws(x).

We shall analyse this equation and find that for some ρ > 0, σ real,

wt(x) = ei(−ρ t2
2 +σt+ρtx).

Thus
u(x0 − t) = u(x0)ei(−ρ t2

2 +σt+ρtx0)

or equivalently

u(y) = cei(−ρ y2

2 −σy),

as required.

The cocycle equation implies wt(x−r)|ws, for 0 < r < s−t. Now, if wt has a
zero in the upper half plane then ws would have a segment of zeros, so there are
no such zeros and each ws is a singular inner function, with singular measure µs

say. It can be shown that the divisibility condition wt(x− r)|ws, 0 < r < s− t,
forces each µs to be a mass at infinity, that is,

wt(x) = α(t)eiβ(t)x,

where β(t) is increasing.
The cocycle identity becomes

α(s + t)eiβ(s+t)x = α(t)eiβ(t)(x−s)α(s)eiβ(s)x.
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In particular β(s + t) = β(s) + β(t) and hence β(t) = ρt for some ρ ≥ 0.
Define γ(t) = α(t)eiρ t2

2 . Then

γ(s + t) = α(s + t)
[
eiρ s2

2 eiρ t2
2 eiρst

]

= (α(t) α(s)e−ipts)
[
eiρ s2

2 eiρ t2
2 eiρst

]

= γ(s)γ(t),

and so γ(t) = eiσt for some σ, and the desired form follows.

Further Facts

1. Let (Ff)(x) = 1√
2π

∫∞
−∞ e−ixyf(y)dy for a set of appropriate functions

f dense in L2(R). Then F extends to a unitary which we refer to as the
Fourier-Plancherel transform. We have

FMλF ∗ = Dλ, λ ∈ R,

so we define

Dψ = FMψF ∗

for ψ ∈ L∞(R). Thus Ap contains the operators MφDψ for φ, ψ in H∞(R).
Such an operator has the integral operator representation

f → 1√
2π

∫ ∞

−∞
φ(x)ψ(y)e−ixy (F ∗f) (y) dy

and so is a Hilbert-Schmidt operator if, in addition, φ, ψ ∈ H2(R) ∩ H∞(R).
In particular, if

φn(x) = ψn(x) =
ni

x + ni
, Xn = Mφn

Dψn
,

then {Xn} is a norm bounded sequence of Hilbert-Schmidt operators with
Xn → I (SOT) as n →∞.

2. The algebra Ap is a reflexive operator algebra. In fact, as in the proof of
Sarason’s theorem, we “do not need all the invariant subspaces”. It turns out
that

Ap = Alg (Nv ∪Na)

where Nv ∪ Na is the boundary of the lattice in the diagram above. The
proof of this can be structured as follows. In view of {Xn}, the “bounded
approximate identity of Hilbert-Schmidt operators”, both the smaller algebra
Ap and the containing algebra Alg(Nv ∪ Na) are equal to the SOT-closure of
their Hilbert-Schmidt operators. Thus it suffices to show that these subspaces
of Hilbert-Schmidt operators coincide. It can be shown that a Hilbert-Schmidt
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operator in the larger algebra has a “doubly triangular” integral operator form,
namely

f →
∫

a(x, y)e−ixy (F ∗f) (y) dy

with a(x, y) in the Hilbert space tensor product H2(R) ⊗ H2(R). This two-
variable symbol function can be approximated in L2(dxdy) norm by sums of
elementary tensors and these approximating symbol functions correspond to
operators of the form

∑N
i=1 Mφi

Dψi
, which are in the smaller algebra. The

equality of the Hilbert-Schmidt operators follows.

Strange Limits.

The diagram above suggests that perhaps LatAp with the weak operator
topology is homeomorphic to the closed unit disc. The key step to proving this
is to show that for the projections Pλ,s onto the spaces eiλxϕsH

2 we have

Pλs,s → PL2[λ,∞)

in the weak operator topology, as s → ∞. From this we conclude that the
projections corresponding to the boundary of the lattice in the diagram form a
topological boundary. This key step may be readily obtained from the following
lemma of [5].

Lemma 6. For s > 0, F (e−isx2/2H2(R)) = eis−1x2/2H2(R).

Formal proofs of the assertions above can be found in [5]. There the lattice
Nv ∪ Na is referred to as the Fourier binest and its reflexive algebra AFB =
Alg(Nv ∪ Na) is called the Fourier binest algebra. The unitary automorphism
group of Ap is determined in [5] and is shown in [12] to coincide with the
isometric automorphism group. Interestingly, this automorphism group is a
Lie group of automorphisms X → UXU∗, where U is of the form MλDµVt

with λ, µ, t in R, where the Vt are the dilation unitaries given below. From
this point of view Ap is closer in mathematical flavour to the operator algebra
H∞(R) than it is to the nest algebra AlgNv.

Lecture III. Translation-dilation invariance

Let Vt be the dilation unitary operator defined by Vtf(x) = et/2f(etx), for
each real t. Note that these operators fix the space H2(R). We now describe the
closed subspaces on the real line that are invariant for the operators Mλ, Vt for
nonnegative λ, t. First we note the two obvious classes of invariant subspaces.

Let w ∈ C\{0} and let uw(x) be the two-valued function which is equal to
w for x < 0 and equal to 1 otherwise. Then the space uwH2(R) is a closed
subspace which is fixed by each Vt and which is invariant for Mλ, λ ≥ 0.
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On the other hand consider, for each a, b ≥ 0, the subspace L2[−a, b] of
functions supported on the interval [−a, b]. For t > 0 these spaces are invariant
for Vt and of course they are fixed by the multiplication operators Mλ.

A unimodular description of uwH∞(R) may be derived as follows. Let w =
esπθ where s ∈ R, |θ| = 1, and let

gs,θ(x) =
{ |x|is, x ≥ 0;

θ|x|is, x < 0.

Also consider the function gs(z) = zis = exp(is log z), which is bounded and
holomorphic on the upper half plane, where log z takes its principal value. Then
the boundary function gs(x) is in H∞(R) and

gs(x) =
{ |x|is, x ≥ 0;

e−sπ|x|is, x < 0.

Thus uwgs is equal to the unimodular function gs,θ. Since gs is invertible in
H∞(R) it follows that uwH2(R) = gs,θH

2(R).

We now describe some less obvious invariant subspaces that are purely in-
variant for both semigroups.

Let λ, µ ≥ 0 and let K = eiλxeiµx−1
H2(R). Note that

Vte
iµx−1

H2(R) = eiµe−tx
−1

H2(R) = eiµx−1
[eiµ(e−t−1)x−1

H2(R)].

Since eiαx−1
is inner if α ≤ 0, and µ(e−t − 1) ≤ 0 when µ, t ≥ 0, it now follows

that the subspaces eiµx−1
H2(R) are invariant and hence that the subspaces K

are invariant.

Theorem 7. (Katavolos-Power 2002) If K ⊆ L2(R) is a closed subspace with
MλK ⊆ K, VtK ⊆ K for all λ, t ≥ 0, then either K = L2[−a, b] for some
a, b ∈ [0,∞] or K = uweiλxeiµx−1

H2(R) for some nonzero w ∈ C and λ, µ ≥ 0.

Remarks

1. The proof is similar to the proof of Theorem 5.
2. Let us now associate with the lattice Lh of doubly invariant subspaces

K the set of all orthogonal projections PK endowed with the weak operator
topology. Note that the subset

LL = {PL2[−a,b] : 0 ≤ a, b ≤ ∞}
is homeomorphic to a unit square, realised as [−∞, 0] × [0,∞], while the rest
of the lattice,

LM = {PK : K = gs,θe
i(λx+µx−1)H2(R)}

is homeomorphic to R×S1×R+×R+ (via the (s, θ, λ, µ) parametrisation). In
fact the lattice is a connected topological space by virtue of various “strange
limits” of projections, with the unit square providing a compactification of
R × S1 × R+ × R+. The compactness of Lh follows in fact from a useful
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general result of Wogen [16] for reflexive algebras that contain a weak operator
topology bounded approximate identity consisting of a sequence of Hilbert-
Schmidt operators of bounded operator norm. That such a sequence exists in
Ah is given a direct proof in [10].

3. It has been shown recently in Levene and Power [10] that Ah is a reflexive
operator algebra and in fact

Ah = Alg(LL ∪ Ls)

where Ls is the lattice {|x|isH2(R) : s ∈ R}∪{0, I} consisting of the projections
in Lh which commute with the dilation operators. (This is in parallel with the
case for the Fourier binest.)

Furthermore, Levene [9] has studied a superalgebra of Ah which comes from
a (standard) representation of SL2(R+) and has shown that this algebra is
also reflexive and that its lattice is Ls. Here one has additional generators that
“translate through infinity”.

More strange limits.

Let us denote the orthogonal projection onto the closed subspace K as [K].

Theorem 8. We have

[eiλxeiλx−1
H2(R)] → [L2[−1, 1]],

as λ →∞, and
[|x|isH2(R)] → [L2(−∞, 0]],

as s →∞, with convergence in the strong operator topology.

Remark. Note that the orthogonal projections for the spaces eiλxH2(R) tend
to the zero operator 0 as λ → ∞. (The Fourier-Plancherel transform maps
these spaces to the spaces L2[λ,∞).) On the other hand, with Z the unitary
defined by Zf(x) = x−1f(−x−1) we have

Z(eiλx−1
H2(R)) = e−iλxZH2(R) = e−iλxH2(R),

and so the projection for eiλx−1
H2(R) tends to the identity operator I as λ →

∞. We can imagine then that in the first limit above, the inner functions eiλx

compensate for the co-inner functions eiλx−1
and the result is between 0 and

I.

We now outline the proof of the first strange limit in the theorem above, as
given in [6]. It would be of interest to obtain a direct proof.

Proof. It can be shown that Ah contains Hilbert-Schmidt operators Kn with
Kn ≤ 1 and Kn → I (SOT) as n → ∞. (See [10].) It can be shown that this
implies that the lattice for the hyperbolic algebra, Lh, is compact in the SOT.
(This useful general fact is due to Wagner [15].) Thus, there exists a sequence
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λn → ∞ such that the projections Pn = [eiλnxeiλnx−1
H2(R)] converge to [K]

for some K ∈ Lh.
Note that if U is the unitary operator with Uf(x) = x−1f(x−1) then

UH2(R) = H2(R)⊥ and so

Ueiλxeiµx−1
H2(R) = eiλx−1

eiµxH2(R)

and thus UPnU = P⊥n for each n and so U [K]U = [K]⊥. If K = L2[−a, b], a, b ≥
0 then it follows that a = b = 1. Thus it suffices to show that for the remaining
invariant subspaces K in Lh, the ones parametrised by unimodular functions,
this symmetry equation for U does not prevail and this can be done with a
short argument. ¤

Formal proofs of the assertions above can be found in [6], [10]. The algebra
Ah is referred to as the hyperbolic algebra, while Ap is called the parabolic
algebra. This terminology derives from the nature of the generators; the gener-
ators Vt are associated with hyperbolic automorphisms of the upper half plane,
while the generators Dµ correspond to parabolic automorphisms.

Finally, let me remark that these operator algebras, through their doubly
nonselfadjoint nature, are still rather novel and mysterious and undoubtedly
some new ideas and tools are needed to make them less so. For example there
should certainly be some more direct (purely function-theoretic) approaches to
understanding the “strange limits” that I have highlighted above. Also, one
can turn to the well-developed nest algebra theory, as expounded in David-
son’s book for example, to quickly come up with natural lines of investigation.
Can the detailed knowledge of the Hilbert-Schmidt operators in the algebras
Ap and Ah really provide an effective substitute for the finite rank operators
that repeatedly arise in proofs in the nest algebra theory? Is the compactly
perturbed algebra AFB+K equal to the intersection of the quasitriangular alge-
bras AlgNv +K and AlgNa +K? Are the algebras Ap and Ah hyper-reflexive?
This last question may be a particularly hard one to resolve!

An indication of the current lack of knowledge of the algebraic structure of
these algebras is the following open problem. Is Ap an integral domain, that
is, if X,Y are operators in the algebra with zero product does it follow that X
or Y is zero? On aesthetic grounds I would prefer the answer to be “yes”, so
that, once again, Ap would have mathematical affinities with H∞(R) (rather
than with the Volterra nest algebra).
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