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1. Dpto. de Matemática
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Abstract

In this paper we study the Lotka-Volterra models with fractional Laplacian. For

that, we study in detail the logistic problem and show that the sub-supersolution

method works for the scalar problem and in case of systems as well. We apply this

method to show existence and non-existence of positive solutions in terms of the system

parameters.
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1 Introduction

In this paper we study the following systems

(−∆)αu = u(λ− u− bv) in Ω,

(−∆)βv = v(µ− v − cu) in Ω,

u = v = 0 on ∂Ω,

(1.1) uno

where Ω ⊂ IRN , N ≥ 1, is a bounded and regular domain, λ, µ, b, c ∈ IR and α, β ∈ (0, 1).

Here, u and v denote the densities of two species inhabiting in Ω, the habitat, which is

surrounded by inhospitable areas, due to the homogeneous Dirichlet boundary conditions.

In (1.1) we are assuming that the species diffuse following the fractional laplacian, see

Section 2 where we have defined this non-local operator.

When α = β = 1, (1.1) is the classical Lotka-Volterra system with random walk, widely

studied in the last years in all the cases: competition (b, c > 0), predator-prey (b > 0 and

c < 0) and symbiosis (b, c < 0), see [8] and references therein.

Fractional operators are used in different contexts: physics, finance and ecology; see [14]

and [21] for the ecological meaning of the fractional diffusion. For many years, the non-

oriented animal movement was modelled by the classical Brownian motion. However,

it seems that when the species is searching for resources, the strategy based on Lévy

flights (supported in long jumps) could be more appropriate in some situations. This

kind of strategy is optimal for the location of targets which are randomly and sparsely

distributed, but the Brownian motion is optimal where the resources are abundant. The

Lévy diffusion processes are generated by fractional powers of the Laplacian (−∆)γ for

γ ∈ (0, 1).

We are interested in the existence of non-negative solutions of (1.1). It is clear that

(1.1) possesses the trivial solution (u, v) = (0, 0) for all λ, µ ∈ IR, since when u ≡ 0 (resp.

v ≡ 0) then v (resp. u) verifies an equation of type
(−∆)γw + c(x)w = w(σ − w) in Ω,

w = 0 on ∂Ω,

(1.2) log

where γ ∈ (0, 1), σ ∈ IR and c ∈ L∞(Ω). This is the classical logistic equation, studied in

[19] and [20] with homogeneous Dirichlet and Neumann boundary conditions, respectively,
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with γ = 1/2 in both papers. To study this equation, we previously analyze the eigenvalue

problem 
(−∆)γw + c(x)w = λw in Ω,

w = 0 on ∂Ω.

(1.3) eigenintro

We study the existence of a principal eigenvalue, the unique eigenvalue of (1.3) having a

positive eigenfunction, denoted by λ1[γ; c]. This problem has been analyzed in [1] and [19]

(for γ = 1/2) and in [20] for the Neumman case. We study some properties of this

eigenvalue and of its eigenfunction associated.

Then, we prove that (1.2) possesses a positive solution if and only if σ > λ1[γ; c].

Moreover, it is unique and we denote it by θ[γ,σ−c].

Moreover, we try to give an ecological interpretation of the result, comparing our results

with the obtained in local operator case, in which the fractional Laplacian is substituted

by the classical Laplacian operator.

For the existence, we employ the sub-supersolution method. Let us point some re-

marks. The sub-supersolution method has been used previously in non-linear fractional

diffusion problem, see for instance [3] and [9]. In both papers, the method is consequence

of a maximum principle and a classical iterative argument. However, we present a different

proof which is also valid, with minor technical changes, for systems.

Once studied in detail (1.2), we analyse the existence of solutions with both positive

components of (1.1). For that, we apply the sub-supersolution method. We first show

that this method works for systems, and then we apply it to (1.1). For that, we have

to find appropriate sub-supersolutions of (1.1) using the results obtained for the logistic

equations. We prove the following results:

a) If b, c > 0 or b, c < 0 and bc < C(α, β) for some positive constant (detailed in Section

6) and λ and µ verify

λ > λ1[α; bθ[β,µ]] and µ > λ1[β; cθ[α,λ]], (1.4) condigeneralintro

b) or b > 0 and c < 0 and λ and µ verify

λ > λ1[α; bθ[β,µ−cθ[α,λ]]]] and µ > λ1[β; cθ[α,λ]]], (1.5) condigeneralppintro
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then there exists at least a positive solution of (1.1). We show that conditions (1.4) and

(1.5) define regions on the λ− µ plane.

The paper is organized as follows. In Section 2 we present the functional setting

necessary for the remainder of the work. Section 3 is devoted to the eigenvalue problem.

We study the existence and main properties of the principal eigenvalue. In Section 4 we

study equation (1.2). The sub-supersolution method for systems is shown in Section 5.

Finally, in the last Section we study the existence of positive solution of (1.1).

2 Preliminaries

In this section we begin introducing the functional framework necessary to develop the

theory, and recover some known results about the different forms to define the fractional

power of the Laplacian with Dirichlet boundary condition.

2.1 Functional setting

Consider a smooth bounded domain Ω ⊂ RN . Since in bounded domains there are

some non-equivalent definitions of the fractional laplacian operator, let us explain what we

mean by the symbol (−∆)α. For u ∈ C∞0 (Ω) such that u =
∑∞

k=1 bkϕk, where λk, ϕk are

the eigenpairs of (−∆, H1
0 (Ω)), (λk repeated as much as its multiplicity and {ϕk} forming

an ortonormal basis of L2(Ω)), we define

(−∆)αu :=

∞∑
k=1

λαk bkϕk.

Then the operator (−∆)α is defined on D((−∆)α) = {u ∈ L2(Ω);
∑∞

k=1 λ
α
k b

2
k < +∞} by

density.

Now, let us consider the half cylinder with base Ω,

C := Ω× (0,+∞),

and denote its lateral boundary by

∂LC := ∂Ω× [0,+∞).
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We denote (x, y) ∈ C, x ∈ Ω and y > 0 and define

Hα(C) :=
{
v ∈ H1(C); ‖v‖α < +∞

}
,

Hα0 (C) := {v ∈ Hα(C); v = 0 on ∂LC} ,

where

‖v‖α :=

(
k−1
α

∫
C
y1−2α|∇v|2dxdy

) 1
2

,

kα =
21−2αΓ(1− α)

Γ(α)
, α ∈ (0, 1) and Γ is the Gamma function. It is not difficult to see

that Hα0 (C) is a Hilbert space when endowed with the norm ‖ · ‖α, which comes from the

following inner product

〈v, w〉α = k−1
α

∫
C
y1−2α∇v · ∇wdxdy.

Consider the following subspace of the fractional Sobolev space Hα(Ω),

Vα0 (Ω) := {trΩv; v ∈ Hα0 (C)}

which is a Banach space when endowed with the norm

‖u‖Vα0 (Ω) :=

(
‖u‖2L2(Ω) +

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2α
dxdy

) 1
2

,

where trΩ is the trace operator defined by

trΩv = v(·, 0) for v ∈ Hα0 (C).

Moreover, by Trace Theorem (see Proposition 2.1 in [9]) and embeddings for fractional

Sobolev spaces (see Theorem 6.7 in [12]) it follows that

‖trΩv‖Lp(Ω) ≤ C‖v‖α, ∀v ∈ Hα0 (C), where p ∈ (1, 2α) (2.1) tracetheorem

where 2α = 2N
N−2α .

By Proposition 2.1 in [9] it holds that

Vα0 (Ω) =

{
u ∈ L2(Ω); u =

∞∑
k=1

bkϕk satisfying
∞∑
k=1

b2kλ
α
k < +∞

}
.

As far as the following scalar nonlocal problem is concerned,
(−∆)αu = f(x, u) in Ω,

u = 0 on ∂Ω,

(2.2) P2
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the approach we are going to follow is by associating to (2.2) a one-more dimensional local

problem in C. This can be made by considering the procedure to get a local realization of

(−∆)α described beneath.

As proved in [9] [Section 2.1], for each u ∈ Vα0 (Ω), there exists a unique v ∈ Hα0 (C),

called its α−harmonic extension such that

−div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

v(·, 0) = u on Ω.

Moreover, if u =

∞∑
k=1

bkϕk is its spectral decomposition, then

v(x, y) =

∞∑
k=1

bkϕk(x)ψ(λ
1
2
k y), ∀(x, y) ∈ C, (2.3) harmonicextension

where ψ solves the Bessel equation

ψ
′′

+
(1− 2α)

s
ψ
′

= ψ s > 0

− lim
s→0+

s1−2αψ′(s) = kα

ψ(0) = 1.

(2.4) besselequation

Let u ∈ Vα0 (Ω) and v ∈ Hα0 (C) its α−harmonic extension. Define the functional
1

kα

∂v

∂yα

∣∣∣∣
Ω×{0}

∈ V0(Ω)∗ by

〈
1

kα

∂v

∂yα
(·, 0), g

〉
:=

1

kα

∫
C
y1−2α∇v.∇g̃dxdy,

where g̃ is the α−harmonic extension of g ∈ Vα0 (Ω) and

∂v

∂yα
(x, 0) = − lim

y→0+
y1−2α∂v

∂y
(x, y), ∀x ∈ Ω.

Then we can define an operator Aα : Vα0 (Ω)→ Vα0 (Ω)∗ such that

Aαu :=
1

kα

∂v

∂yα

∣∣∣∣
Ω×{0}

,
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where v is the α−harmonic extension of u to C. Let us prove that the operators Aα and

(−∆)α are in fact the same, i.e., that for all u ∈ Vα0 (Ω),

Aαu =

∞∑
k=1

bkλ
α
kϕk, where u =

∞∑
k=1

bkϕk.

By linearity, it is enough to prove that for all ϕk,〈
1

kα

∂v

∂yα
(·, 0), ϕk

〉
= 〈(−∆)αu, ϕk〉L2(Ω) , for all k ∈ N,

where v is the α−harmonic extension of u.

For u ∈ Vα0 (Ω) and k ∈ N, let v and ϕ̃k be the α−harmonic extensions of u and ϕk,

respectively. By (2.3), v(x, y) =
∑∞

k=1 bkϕk(x)ψ(λ
1/2
k y) and ϕ̃k(x, y) = ϕk(x)ψ(λ

1/2
k y).

Now, integration by parts and properties of ϕk imply that for each y > 0, it holds∫
Ω
y1−2α∇xv(x, y) · ∇xϕ̃k(x, y)dx = y1−2αbk

(
λkψ(λ

1
2
k y)2 + ψ′(λ

1
2
k y)2

)
.

Then, by (2.4)〈
1

kα

∂v

∂yα
(·, 0), ϕk

〉
=

1

kα

∫
C
y1−2α∇v · ∇ϕ̃kdxdy

=
1

kα

∫ +∞

0
y1−2αbk

(
λkψ(λ

1
2
k y)2 + ψ′(λ

1
2
k y)2

)
dy

=
1

kα
lim
η→0+

y1−2αλ
1
2
k bkψ

′(λ
1
2
k y)ψ(λ

1
2
k y)

∣∣∣∣
y=η

= bkλ
α
k

= 〈(−∆)αu, ϕk〉L2(Ω) .

Hence, in (2.2) we are going to understand (−∆)α as Aα.

For simplicity, without loss of generality, we can assume throughout this paper that

kα = 1. Then, we define

debil Definition 2.1. u ∈ V0(Ω) is a weak solution of (2.2) if u = trΩv where v ∈ Hα0 (C) is a

weak solution of 
−div(y1−2α∇v) = 0 in C,

∂v

∂yα
(x, 0) = f(x, v(x, 0)) on Ω.

In this case, v is such that∫
C
y1−2α∇v · ∇ψdxdy =

∫
Ω
f(x, v(x, 0))ψ(x, 0)dx, ∀ψ ∈ Hα0 (C). (2.5) weakform
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2.2 Maximum principle

Along the paper, the following maximum principle will be very useful, see Lemma 2.5

in [9] for a related result.

Proposition 2.2. Let d ∈ L∞(Ω) and v ∈ Hα(C) such that v ≥ 0 in ∂LC and


−div(y1−2α∇v) ≥ 0 in C,

∂v

∂yα
(x, 0) + d(x)v(x, 0) ≥ 0 on Ω.

a) Assume that d ≥ 0 in Ω, then v ≥ 0 in C.

b) Assume that v ≥ 0 in C. Then, either v ≡ 0 or v > 0 in C.

MaximumPrinciple

Proof. a) The proof follows just by using −v− as test function, where v = v+ + v−.

b) In this paragraph we follow the proof of Lemma 4.9 in [6]. Define

w(x, y) := eAy
2α
v(x, y).

Then, w satisfies 
−div(y1−2α∇(e−Ay

2α
w)) ≥ 0 in C,

∂w

∂yα
(x, 0) + (d(x) + 2Aα)w(x, 0) ≥ 0 on Ω.

We can choose A such that d(x) + 2Aα ≤ 0 in Ω, and so

∂w

∂yα
(x, 0) ≥ 0 in Ω.

Take R > 0, consider now the even extension of w in Ω× (−R,R), defined by

w̃(x, y) =


w(x, y) if y > 0,

w(x,−y) if y ≤ 0.

We can show that

−div(|y|1−2α∇(e−A|y|
2α
w̃)) ≥ 0 in Ω× (−R,R).
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Define now the problem
−div(|y|2α∇(e−A|y|

2α
h) = 0 in Ω× (−R,R),

h = w̃ on (Ω× {−R}) ∪ (Ω× {R}).

The above problem possesses a solution by [13] (see also Theorem 3.2 in [6]) and by

the maximum principle we get that

h ≤ w̃ in Ω× (−R,R).

On the other hand, by the strong maximum principle, see Lemma 2.3.5 in [13], we

conclude that

h > 0.

This finishes the proof.

Remark 2.3. Observe that Proposition 2.2 can be stated in an equivalent way: Assume

d ∈ L∞(Ω) and (−∆)αu+ d(x)u ≥ 0 in Ω and u ≥ 0 on ∂Ω. Then,

a) If d ≥ 0 in Ω, then u ≥ 0 in Ω.

b) Assume that u ≥ 0 in Ω. Then, either u ≡ 0 or u > 0 in Ω.

2.3 Regularity results

The following result follows by Lemma 3.3 in [10], see also Proposition 5.1 in [2].

cotas1 Lemma 2.4. Assume that f ∈ C(Ω × IR) and that there exists a constant C and p ∈

(2, 2N/(N − 2α)) such that

|f(x, t)| ≤ C(1 + |t|p−1), x ∈ Ω, t ∈ IR.

If v ∈ Hα0 (C) is a solution of (2.5) and u = trΩv, then v ∈ L∞(C)∩Cσ(C) and u ∈ Cσ(Ω)

for some σ ∈ (0, 1).

Consider now the linear problem
(−∆)αu = g(x) in Ω,

u = 0 on ∂Ω.

(2.6) P2line

The following result is also taken from [10] (Lemma 3.2), see also [7].
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cotas2 Lemma 2.5. Assume that g ∈ H−α(Ω) and v ∈ Hα0 (C) is a solution of (2.6) and u = trΩv.

Then,

a) If g ∈ Lr(Ω) for r > N/(2α), then v ∈ L∞(C) and u ∈ L∞(Ω).

b) If g ∈ L∞(Ω), then v ∈ Cσ(C) and u ∈ Cσ(Ω) for some σ ∈ (0, 1).

c) If g ∈ Cσ(Ω) and gc∂Ω ≡ 0, then v ∈ C1,σ(C) and u ∈ C1,σ(Ω) for some σ ∈ (0, 1).

d) If g ∈ C1,σ(Ω) and gc∂Ω ≡ 0, then v ∈ C2,σ(C) and u ∈ C2,σ(Ω) for some σ ∈ (0, 1).

3 The eigenvalue problem

Given c ∈ L∞(Ω), we study the eigenvalue problem
(−∆)αu+ c(x)u = λu in Ω,

u = 0 on ∂Ω,

(3.1) eigen

where α ∈ (0, 1) and λ ∈ R. Recall that u ∈ Vα0 (Ω) is an eigenfunction associated to an

eigenvalue λ of (3.1) if and only if u = trΩv where v ∈ Hα0 (C) is a solution of

−div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

∂v

∂yα
(x, 0) + c(x)v(x, 0) = λv(x, 0) on Ω.

(3.2) eigenextended

In the following result, we show the existence of principal eigenvalue and positive eigen-

function of (3.1) and their main properties.

Theorem 3.1. There exists the principal eigenvalue of (3.1), denoted by λ1[α; c]. This

eigenvalue is simple and possesses a unique eigenfunction Φ1 of (3.2), up to multiplicative

constants, which can be taken positive. Moreover, the principal eigenfunction Φ1 is strongly

positive, and λ1[α; c] is the only eigenvalue of (3.1) possessing a positive eigenfunction.

If we denote ϕ1 := trΩΦ1, we have that ϕ1 ∈ Cσ(Ω) and Φ1 ∈ L∞(C) ∩ Cσ(C) for some

σ ∈ (0, 1) Furthermore, the map from c ∈ L∞(Ω) 7→ λ1[α; c] is increasing.teoremaeigen
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Proof. For each v ∈ Hα0 (C) such that trΩv 6= 0 in L2(Ω), let us consider

J(v) :=

∫
C
y1−2α|∇v|2dxdy +

∫
Ω
c(x)v(x, 0)2dx∫

Ω
v(x, 0)2dx

(3.3) J

and note that J if bounded from below. In fact, Trace Theorem and the boundedness of

c imply that∫
C
y1−2α|∇v|2dxdy +

∫
Ω
c(x)v(x, 0)2dx ≥ C

∫
Ω
v(x, 0)2dx+

∫
Ω
c(x)v(x, 0)2dx

≥ K

∫
Ω
v(x, 0)2dx,

where K ∈ R, for every such v.

Let us define

λ1[α; c] := inf{J(v); v ∈ Hα0 (C) and trΩv 6= 0 in L2(Ω)}. (3.4) mineigenvalue

Let (vn)n∈N ⊂ Hα0 (C) be such that
∫

Ω vn(x, 0)2dx = 1 and J(vn)→ λ1[α; c]. It is straight-

forward to see that (vn)n∈N is bounded in Hα0 (C) and hence there exists w ∈ Hα0 (C) such

that wn ⇀ w in Hα0 (C). Since Hα0 (C) ↪→ Vα0 (Ω) continuously and Vα0 (Ω) ↪→ L2(Ω) com-

pactly, then
∫

Ωw(x, 0)2dx = 1. Just by imitating the arguments of Section 8.12 in [18],

one can show that (vn)n∈N is a Cauchy sequence and then it strongly converges to v in

Hα0 (C). Hence J(v) = λ1[α; c].

If ψ ∈ Hα0 (C), setting ϕ(t) = J(v + tψ), it follows that

0 = ϕ′(0) =

∫
C
y1−2α∇v · ∇ψdxdy +

∫
Ω
c(x)v(x, 0)ψ(x, 0)dx− λ1[α; c]

∫
Ω
v(x, 0)ψ(x, 0)dx.

Hence v is a solution of (3.2) with λ = λ1[α; c] and it is therefore an eigenfunction associ-

ated to λ1[α; c].

Of course the definition implies that λ1[α; c] is the smallest eigenvalue of (3.2).

Now let us prove that the eigenfunctions has at least Cγ(Ω) regularity, where γ =

min{1, 2α}. This follows easily from Lemmas 2.4 and 2.5 once we prove that ‖trΩφ‖L∞(Ω) <

+∞, for every eigenfunctions φ. On the other hand, this L∞ estimate can be obtained by

a standard application of Moser iteration technique, which we describe below.

Let v ∈ Hα0 (C) satisfying (3.2) for some λ and let M > 0. Denoting vM = min{v,M},

note that it is an Hα0 (C) function. Let b > 0 a constant to be chosen conveniently and let

11



us take vM
b as a test function in (3.2). Denoting e(x) := (λ− c(x)) it follows that

b

∫
C
y1−2αvM

b−1|∇vM |2dxdy =

∫
Ω
e(x)v(x, 0)vM (x, 0)bdx

which implies that

4b

(b+ 1)2

∫
C
y1−2α

∣∣∣∇(vM
b+1
2 )
∣∣∣2 dxdy ≤ ∫

Ω
e(x)v(x, 0)b+1dx.

By Trace Theorem and embedding of fractional Sobolev spaces, we have that

4b

(b+ 1)2

∥∥∥trΩvM
b+1
2

∥∥∥2

L2α (Ω)
≤ C‖trΩv‖b+1

Lb+1(Ω)
.

Considering M → +∞ and using Fatou Lemma, we have that

4b

(b+ 1)2

∥∥∥trΩv
b+1
2

∥∥∥2

L2α (Ω)
≤ C‖trΩv‖b+1

Lb+1(Ω)
.

Then it follows that

‖trΩv‖
L

2α
2 (b+1)(Ω)

≤
(
C

(b+ 1)2

4b

) 1
b+1

‖trΩv‖Lb+1(Ω). (3.5) moser

Let us consider a sequence (ηk)k defined by η0 = 2 and ηk = 2α
2 ηk−1 for k ≥ 1. Taking b

in (3.5) such that b+ 1 = ηk−1, we have that

‖trΩv‖Lηk (Ω) ≤

(
C

η2
k−1

4(ηk−1 − 1)

) 1
ηk−1

‖trΩv‖Lηk−1 (Ω).

Iterating this expression in k we get that

‖trΩv‖Lηk (Ω) ≤
k−1∏
j=0

(
C

η2
j

4(ηj − 1)

) 1
ηj

‖trΩv‖L2(Ω).

Note that there exists a constant C > 0 such that z2

4(z−1) ≤ Cz, for all z ≥ 1. Taking into

account the fact that ηj = 2jα
2j−1 , it follows that

‖trΩv‖Lηk (Ω) ≤
k−1∏
j=0

(
C

2jα
2j−1

) 2j−1

2
j
α

‖trΩv‖L2(Ω)

≤ (2αC)Ak
k−1∏
j=0

(
δ1−j) 1

2α
δj−1

‖trΩv‖L2(Ω),

where δ = 2
2α
∈ (0, 1) and Ak =

1

2a

k−1∑
j=1

δj−1. Now, since 0 < δ < 1, the series in Ak

converges and
k−1∏
j=0

(
δ1−j) 1

2α
δj−1

< +∞.
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Now, observing that ηk → +∞, it follows that ‖trΩv‖L∞(Ω) < +∞.

If v is a minimizer for J , then it is straightforward to see that |v| also is. Taking a

constant M > 0 such that M + c(x) > 0 in Ω, Proposition 2.2 implies that |v| > 0 in C.

Since v is regular, it follows that v cannot change sign. As a consequence, two of them

cannot be ortogonal and λ1[α; c] is simple.

The same procedure employed to λ1[α; c] applies to prove that, denoting by Vj the

eigenspace associated to the j-th eigenvalue, the higher eigenvalues can be characterized

as

λj = inf{J(u); u 6= 0, 〈u, v〉L2(Ω) = 0 ∀v ∈ span[V1, ..., Vj−1]}.

This characterization with the positiveness of the first eigenfunction implies that the first

eigenvalue is the only one which has a one-signed eigenfunction.

In order to end up the proof, note that the variational characterization of the eigen-

values still implies that if c1, c2 ∈ L∞(Ω) and c1 < c2 in Ω, then λ1[α; c1] < λ1[α; c2]. In

fact, let w ∈ Hα0 (C) such that trΩw 6= 0 in L2(Ω) and J(w) = λ1[α; c2], note that

∫
C
y1−2α|∇w|2dxdy +

∫
Ω
c1(x)w(x, 0)2dx∫

Ω
w(x, 0)2dx

<

∫
C
y1−2α|∇w|2dxdy +

∫
Ω
c2(x)w(x, 0)2dx∫

Ω
w(x, 0)2dx

and this finishes the proof.

Let us point out that the behavior of λ1[α; c] with respect to the weights is a challenging

problem, see for instance Section 3 in [20]. In any case, we would like to study λ1[α; c]

in some particular case. When c ≡ 0 we denote λ1[α] := λ1[α; 0]. Finally, for α = 1 we

denote λ1[1; c] the principal eigenvalue of the local operator −∆+c(x) under homogeneous

Dirichlet boundary conditions and by λ1 := λ1[1; 0]. Recall that λ1[α] = λα1 .

remark3.2 Remark 3.2. Given c ∈ L∞(Ω), we denote

cL := ess infΩc(x) and cM := ess supΩc(x).

Note that by the definition of J and the fact that λ1[α; c] minimizes J , it follows that

λ1[α] + cL ≤ λ1[α; c] ≤ λ1[α] + cM .
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It is not hard to show that when c ∈ IR we get

λ1[α; c] = λ1[α] + c = λα1 + c.

In the following result we show the dependence of λ1[α; c] in N = 1 with respect to the

domain Ω = Br = (−r, r). Denote by λ1[α; c;Br] the principal eigenvalue of (3.1) in Br

and by λ1[1; c;Br] the principal eigenvalue of the −∆ + c in Br, that is, the principal

eigenvalue of

−∆v + c(x)v = λ1[1; c;Br]v in Br, v = 0 on ∂Br. (3.6) otra1

With this notation, we can prove:

bola Proposition 3.3. It holds:

λ1[α; c;Br]r
2α = λ1[α; r2αc(r·);B1], (3.7) bolita

and

λ1[1; c;Br]r
2 = λ1[1; r2c(r·);B1]. (3.8) bolita1

As consequence,

lim
r→0

λ1[α; c;Br]r
2α = λ1[α; 0;B1] = (λ1[1; 0;B1])α. (3.9) conse

Proof. By the definition of λ1[α; c;Br], there exists v such that

−div(y1−2α∇v) = 0 in Br × (0,∞),

v = 0 on ∂Br × (0,∞),

∂v

∂yα
(x, 0) + c(x)v(x, 0) = λ1[α; c;Br]v(x, 0) on Br.

(3.10) parti

The change of variables

z =
x

r
, t =

y

r
, and w(z, t) = v(zr, tr),

transforms (3.10) into

−div(t1−2α∇w) = 0 in B1 × (0,∞),

w = 0 on ∂B1 × (0,∞),

∂w

∂tα
(z, 0) + r2αc(rz)w(z, 0) = r2αλ1[α; c;Br]w(z, 0) on B1.

(3.11) parti2
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This concludes the proof of (3.7).

In a similar way, under the change of variable

z =
x

r
, w(z) = v(zr),

in (3.6), we get (3.8). (3.9) is trivial from (3.7).

Let us compare the eigenvalues of the laplacian and fractional laplacian for the case

N = 1, c ∈ IR and Ω = Br.

casoconstante Lemma 3.4. Assume c ∈ IR. Then,

λ1[α; c;Br] > λ1[1; c;Br] (resp. <,=)⇐⇒ r >
√
λ1[1;B1] (resp. <,=).

On the other hand, α 7→ λ1[α; c;Br] is decreasing when r >
√
λ1[1; 0;B1] and increasing

when r <
√
λ1[1; 0;B1].

Proof. Observe that

λ1[1; c;Br]r
2 = λ1[1; r2c(r·);B1],

and so, if c is a constant,

λ1[1; c;Br] =
λ1[1; 0;B1]

r2
+ c,

and by Proposition 3.3 we get

λ1[α; c;Br] =
λ1[α; 0;B1]

r2α
+ c =

(
λ1[1; 0;B1]

r2

)α
+ c.

This concludes the result.

Remark 3.5. Recall that λ1[1; 0;B1] = π2/4.

4 The logistic equation

In this section, we want to study the logistic equation
(−∆)αu+ c(x)u = λu− u2 in Ω,

u = 0 on ∂Ω,

(4.1) logis
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where α ∈ (0, 1) and c ∈ L∞(Ω) or equivalently the equation

−div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

∂v

∂yα
(x, 0) + c(x)v(x, 0) = λv(x, 0)− v(x, 0)2 on Ω.

(4.2) logis2

Theorem 4.1. Equation (4.1) possesses a positive solution if and only if λ > λ1[α; c].

Moveover, if it exists, this is the unique positive solution and we denote it by θ[α,λ−c].

Furthermore, θ[α,λ−c] ∈ C2,σ(Ω) for some σ ∈ (0, 1) and the following property holds: if

we denote by ϕ1 the principal eigenfunction associated to λ1[α; c] such that ‖ϕ1‖∞ = 1,

then

(λ− λ1[α; c])ϕ1(x) ≤ θ[α,λ−c](x) ≤ λ− cL, ∀x ∈ Ω. (4.3) ine

theorem4.1

Remark 4.2. A similar result holds for (4.2). In this case, we denote by Θ[α,λ−c] the

unique positive solution of (4.2), that is, θ[α,λ−c] = trΩΘ[α,λ−c]. Moreover, Θ[α,λ−c] ∈

C2,σ(C) ∩ L∞(C).

In the proof of Theorem 4.1 we are going to apply the well known sub-supersolution

method. Despite of the definitions and results about this subject in the fractional set-

ting are a rather standard adaptation of the sub-supersolution method to second order

operators, we present them here for the sake of completeness.

Let us consider the problem (2.2) which is associated to the extension problem



div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

∂v

∂yα
(x, 0) = f(x, v(x, 0)) on Ω,

(4.4) subsuper

where f ∈ C(Ω× IR). Recall the definition of solution of (4.4), Definition 2.1.

Definition 4.3. We say that (v, v) is a sub-supersolution of (4.4) if v, v ∈ Hα(C), u :=

trΩv, u := trΩv ∈ L∞(Ω) and:

a) v ≤ v in C and v ≤ 0 ≤ v on ∂LC.
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b) For all ψ ∈ Hα0 (C), ψ ≥ 0, it holds∫
C
y1−2α∇v · ∇ψdxdy ≤

∫
Ω
f(x, v(x, 0))ψ(x, 0)dx (4.5) subsolution

and ∫
C
y1−2α∇v · ∇ψdxdy ≥

∫
Ω
f(x, v(x, 0))ψ(x, 0)dx. (4.6) supersolution

Theorem 4.4. Assume that (v, v) is a sub-supersolution of (4.4). Then, there exists a

solution v of (4.4) such that

v ≤ v ≤ v in C.

In consequence, there exists a solution u ∈ Vα0 (Ω) of (2.2) such that

u = trΩv ≤ u ≤ u = trΩv in Ω.
teoremasubsuper

Proof. Let v, v be such that (4.5) and (4.6) hold, respectively. Let us define for x ∈ Ω

and t ∈ IR

f̃(x, t) :=



f(x, u(x)) if t ≤ u(x),

f(x, t) if u(x) ≤ t ≤ u(x),

f(x, u(x)) if t ≥ u(x),

and consider the problem

div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

∂v

∂yα
(x, 0) = f̃(x, v(x, 0)) on Ω.

(4.7) T

Observe that by the definition of f̃ we have that∣∣∣∣∫
Ω
f̃(x, u(x, 0))ψ(x, 0)dx

∣∣∣∣ ≤ C‖ψ(x, 0)‖L2(Ω), (4.8) clave

for some positive constant C, for all u ∈ Hα(C) and ψ ∈ Hα0 (C). Here, we have used that

u, u ∈ L∞(Ω) and f ∈ C(Ω× IR)

First, we show that (4.7) possesses at least a solution. Define the operator

T : Hα0 (C) 7→ (Hα0 (C))′
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given by

(Tu, v) =

∫
C
y1−2α∇u · ∇vdxdy −

∫
Ω
f̃(x, u(x, 0))v(x, 0)dx, ∀u, v ∈ Hα0 (C).

We study some properties of the map T .

• T is a bounded map. It is clear, using (4.8), that if u belongs to a bounded set of

Hα0 (C), then T (u) is also bounded in (Hα0 (C))′.

• T is pseudomonotone: given a sequence un ⇀ u in Hα0 (C) such that

lim sup(Tun, un − u) ≤ 0,

we have to show that

lim inf(Tun, un − v) ≥ (Tu, u− v) ∀v ∈ Hα0 (C). (4.9) claim

Observe that from (4.8) we have that∣∣∣∣∫
Ω
f̃(x, un(x, 0))(un(x, 0)− u(x, 0))dx

∣∣∣∣ ≤ C‖un − u‖L2(Ω) → 0,

hence using that un ⇀ u in Hα0 (C)

0 ≥ lim sup(Tun, un−u) = lim sup

∫
C
y1−2α∇un ·∇(un−u) = lim sup ‖un‖2α−‖u‖2α.

We can conclude that

‖u‖2α ≥ lim sup ‖un‖2α ≥ lim inf ‖un‖2α ≥ ‖u‖2α,

and then

lim ‖un‖2α = ‖u‖2α.

Consequently, un → u in Hα0 (C) and we get that

lim inf(Tun, un − v) = lim inf{(Tun, un − u) + (Tun, u− v)} ≥ (Tu, u− v).

• T is coercive, that is,

lim
‖v‖α→∞

(T (v), v)

‖v‖α
=∞.

It is clear that

(T (v), v) ≥ ‖v‖2α − C‖v‖2L2(Ω),
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whence it follows that T is coercive.

Then, we can conclude from Theorem 2.7 in Chapter 2 of [15] that there exists a

solution of (4.7), that is, T (v) = 0. Now, we show that

v ∈ [v, v],

and hence v is solution of (4.4). Indeed, define ṽ := v − v. Note that, for all

ψ ∈ Hα0 (C), ψ ≥ 0,∫
C
y1−2α∇ṽ · ∇ψdxdy ≤

∫
Ω

(
f(x, v(x, 0))− f̃(x, v(x, 0))

)
ψ(x, 0)dx.

Taking ψ = (v − v)+, we have that∫
C
y1−2α|∇ṽ+|2dxdy ≤ 0.

Then v ≤ v in C and in a similar way one can prove that v ≤ v.

Now let us present the proof of the Theorem 4.1.

Proof of Theorem 4.1. First consider a positive solution u ∈ Vα0 (Ω) of (4.1), and consider

v ∈ Hα0 solution of (4.2). If λ − cL ≤ 0, then by the maximum principle it follows that

v ≤ 0. So, assume that λ− cL > 0. Taking in (4.2) ψ = (v− (λ− cL))+ ,we can show that

v ≤ λ− cL in C.

By Lemma 2.4, we have that u ∈ L∞(Ω); and then, using Lemma 2.5 we arrive that u

and v are regular functions.

Now, suppose that there exists a positive solution u ∈ Vα0 (Ω) of (4.1) for some λ ∈ R.

Then note that u is a positive solution of (3.1) with c(x) substituted by (c(x) + u(x)).

Then by Theorem 3.1

λ = λ1[α; c+ u] > λ1[α; c].

Now let us prove that λ > λ1[α; c] is sufficient to the existence of a positive solution. Let

Ω ⊂⊂ Ω′, Ω′ an open bounded set, C′ = Ω′× (0,+∞) and E ∈ Hα0 (C′) the unique positive
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solution of 

div(y1−2α∇v) = 0 in C′,

v = 0 on ∂LC′,

∂v

∂yα
(x, 0) = 1 in Ω′.

(4.10) e

Denote by

e(x) := trΩ′E.

Observe that from the regularity results, e ∈ L∞(Ω′) and by Proposition 2.2 we get that

E > 0.

Note in particular that for ψ ∈ Hα0 (C), we can extend it in such a way that ψ ∈ Hα0 (C′)

and then, it holds ∫
C
y1−2α∇E · ∇ψdxdy =

∫
Ω
ψ(x, 0)dx.

Let us take v = KE where K is a positive constant to be chosen. Note that v is a

supersolution of (4.2) if and only if for all ψ ∈ Hα0 (C), ψ ≥ 0∫
C
y1−2α∇E ·∇ψdxdy+K

∫
Ω
c(x)E(x, 0)ψ(x, 0)dx ≥

∫
Ω

(λE(x, 0)−KE(x, 0)2)ψ(x, 0))dx,

this is equivalent to∫
Ω
ψ(x, 0)

(
Ke(x)2 + e(x)(c(x)− λ) + 1

)
dx ≥ 0 ∀ψ ∈ Hα0 (C), ψ ≥ 0.

It suffices that Ke(x)2 + e(x)(cL − λ) + 1 ≥ 0 a.e. in Ω, which is possible by choosing K

large enough.

For the subsolution, let us take v = εΨ1 where ε > 0 is a constant to be chosen and

Ψ1 ∈ Hα0 (C) is a positive eigenfunction associated to λ1[α; c]. Then, for all ψ ∈ Hα0 , ψ ≥ 0,

writing λ1 = λ1[α; c] we have∫
C
y1−2α∇v · ∇ψdxdy +

∫
Ω
c(x)v(x, 0)ψ(x, 0)dx = ε

∫
Ω
λ1ϕ1ψ(x, 0)dx

≤
∫

Ω
εϕ1ψ(x, 0)(λ− εϕ1)dx

if and only if

εϕ1 ≤ (λ− λ1) in Ω, (4.11) cond1

20



where we have denoted ϕ1 = trΩΨ1. Since ϕ1 ∈ Vα0 (Ω), ϕ1 ∈ L∞(Ω) and ϕ1 > 0 in Ω,

(4.11) is possible and it follows that we have a sub-supersolution pair if ε > 0 is small

enough. Now Theorem 4.4 implies the existence of solution if λ > λ1[α; c].

To prove the uniqueness of positive solution, all the arguments of [4] (see also [5]) can

be adapted to the fractional setting, see Lemma 5.2 in [3] or Proposition 4.2 in [19].

Then, there exists a solution θ[α,λ−c] ∈ Vα0 (Ω) of (4.1) if and only if λ > λ1[α; c].

We prove now (4.3). The first inequality follows since εϕ1 is a subsolution for all

ε ∈ (0, λ− λ1[α; c]]. For the second, note that θ[α,λ−c] ≤ λ− cL.

To compare different solutions of the logistic equation we need the following result:

compa Proposition 4.5. Assume that v is a bounded subsolution of (4.2), then

trΩv ≤ θ[α,λ−c].

Proof. Since v is bounded, it is clear that we can choose K > 0 such that KE is superso-

lution of (4.2) and v ≤ KE. By uniqueness, we conclude that v(x, 0) ≤ θ[α,λ−c].

As a direct consequence of Proposition 4.5, we deduce

Corollary 4.6. If λ1 ≤ λ2 and c2 ≤ c1 in Ω, then θ[α,λ1−c1] ≤ θ[α,λ2−c2].

Let us give an interesting biological interpretation of this result, comparing with the

linear diffusion case. Recall that the classical logistic equation
−∆u+ c(x)u = λu− u2 in Ω,

u = 0 on ∂Ω,

(4.12) logiscla

possesses a unique positive solution if and only if

λ > λ1[1;−c].

Let us compare this result with the obtained for (4.1) in the particular case N = 1, c ∈ IR

and Ω = Br. In Figure 1 we have represented by continuous line G1(r) := λ1[1; c;Br] and

by pointed line Gα(r) := λ1[α; c;Br] with c = 0 (a similar representation can be made

with c 6= 0). Take Λ large (Λ > 1). Then, there exist rα < r1 such that

Λ = G1(r1) = Gα(rα).

Then,
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Figure 1: We have represented in continuous line the map G1(r) = λ1[1; c;Br] and by

pointed line Gα(r) = λ1[α; c;Br]. We have denoted by λ0 =
√
λ1.

a) If r < rα, for (4.1) and (4.12) the species die.

b) If r > r1, the species persists in both cases.

c) Assume that r ∈ (rα, r1). Then, the species disappears in the local diffusion and it

persists in the fractional diffusion case.

Assume now λ small, (λ < 1). Then, there exist R1 < Rα such that

λ = G1(R1) = Gα(Rα).

Moreover,

a) If r < R1, for (4.1) and (4.12) the species die.

b) If r > Rα, the species persists in both cases.

c) Assume that r ∈ (R1, Rα). Then, the species disappears in the fractional diffusion

and it persists in the local diffusion case.

Hence, in the case of favourable habitats (abundant resources) there exist domains such

that the species with fractional diffusion persists, while the species with linear diffusion
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dies. In a contrary way, for unfavourable habitats, there exist domains when the opposite

occurs.

5 The sub-supersolution method for systems

In this section we extend the sub-supersolution method employed in the last section

to the system setting. Let us consider



(−∆)αu = f(x, u, v) in Ω,

(−∆)βv = g(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(5.1) subsupersystem

where f, g ∈ C0(Ω× R2) and α, β ∈ (0, 1).

definew Definition 5.1. We say that (u, v) ∈ Vα0 (Ω)× Vβ0 (Ω) is a solution of (5.1) if there exists

(U, V ) ∈ Hα0 (C)×Hβ0 (C) such that trΩU := u, trΩV := v and (U, V ) is solution of

div(y1−2α∇U) = div(y1−2β∇V ) = 0 in C,

U = V = 0 on ∂LC,

∂U

∂yα
(x, 0) = f(x, U(x, 0), V (x, 0)) on Ω,

∂V

∂yβ
(x, 0) = g(x, U(x, 0), V (x, 0)) on Ω,

(5.2) subsupersystem2

Definition 5.2. We say that U,U ∈ Hα(C), V , V ∈ Hβ(C) is a pair of sub-supersolution

of (5.1) if

u := trΩU, u := trΩU, v := trΩV , v := trΩV ∈ L∞(Ω),

and

a) U ≤ U and V ≤ V in C and U ≤ 0 ≤ U and V ≤ 0 ≤ V on ∂LC.

b) For all (ψ, φ) ∈ Hα0 (C)×Hβ0 (C), ψ, φ ≥ 0 and (u, v) ∈ [U,U ]× [V , V ], it holds∫
C
y1−2α∇U · ∇ψdxdy ≤

∫
Ω
f(x, U(x, 0), v(x, 0))ψ(x, 0)dx,∫

C
y1−2α∇U · ∇ψdxdy ≥

∫
Ω
f(x, U(x, 0), v(x, 0))ψ(x, 0)dx,
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∫
C
y1−2β∇V · ∇φdxdy ≤

∫
Ω
f(x, u(x, 0), V (x, 0))φ(x, 0)dx,∫

C
y1−2β∇V · ∇φdxdy ≥

∫
Ω
f(x, u(x, 0), V (x, 0))φ(x, 0)dx,

where [U,U ] = {w ∈ Hα(C); U ≤ w ≤ U in C} and analogous for [V , V ].

Theorem 5.3. Assume that there exists a pair (U,U)-(V , V ) of sub-supersolution of (5.2).

Then, there exists a solution (U, V ) ∈ Hα0 (C)×Hβ0 (C) of (5.1) such that

U ≤ U ≤ U, V ≤ V ≤ V in C.

Moreover, there exists a solution (u, v) ∈ Vα0 (Ω)× Vβ0 (Ω) of (5.1) such that u ≤ u ≤ u in

Ω and v ≤ v ≤ v in Ω.teoremasubsupersistemas

Proof. The proof is similar to Theorem 4.4. Define the operators T1 and T2 by

T1(w) =



u if w ≤ u,

w if u ≤ w ≤ u,

u if w ≥ u,

T2(z) =



v if z ≤ u,

z if v ≤ z ≤ v,

v if z ≥ v,

and the functions

f̃(x, u, v) = f(x, T1(u), T2(v)), g̃(x, u, v) = g(x, T1(u), T2(v)).

Consider the problem

div(y1−2α∇U) = div(y1−2β∇V ) = 0 in C,

U = V = 0 on ∂LC,

∂U

∂yα
(x, 0) = f̃(x, U(x, 0), V (x, 0)) on Ω,

∂V

∂yβ
(x, 0) = g̃(x, U(x, 0), V (x, 0)) on Ω.

(5.3) fractionalsystem

First, we prove that (5.3) has at least a solution. For that, consider the space

H := Hα0 (C)×Hβ0 (C)

with the norm ‖(u, v)‖ = ‖u‖α + ‖v‖β and the map T : H 7→ (H)′ defined by

(T (u, v), (w, z)) =

(∫
C
y1−2α∇u · ∇wdxdy −

∫
Ω
f̃(x, u(x, 0))w(x, 0)dx,∫

C
y1−2β∇v · ∇zdxdy −

∫
Ω
g̃(x, v(x, 0))z(x, 0)dx

)
.

24



Now, we can follow just the arguments of Theorem 4.4 and show that there exists (U, V )

solution of (5.3), that is, T (U, V ) = (0, 0). Again, we can prove that (U, V ) is solution of

(5.1), for that it suffices to show that (U, V ) ∈ [U,U ] × [V , V ]. Define Ũ = U − U , then

taking T2(V ) in the definition of sub-solution, we get that for all ψ ∈ Hα0 , ψ ≥ 0,∫
C
y1−2α∇Ũ · ∇ψdxdy ≤

∫
Ω

[
f(x, U, T2(V ))− f̃(x, U, V )

]
ψ(x, 0)dx ≤ 0.

Taking ψ = (U − U)+ we get that U ≤ U . The same argument can be used to the other

inequalities.

6 Application to the Lotka-Volterra systems

In this section we apply the above results to system (1.1), or equivalently, to the system

div(y1−2α∇U) = div(y1−2β∇V ) = 0 in C,

U = V = 0 on ∂LC,

∂U

∂yα
(x, 0) = U(x, 0)(λ− U(x, 0)− bV (x, 0)) in Ω,

∂V

∂yβ
(x, 0) = V (x, 0)(µ− V (x, 0)− cU(x, 0)) in Ω,

(6.1) uno2

First, we deduce some bounds of the solutions of (1.1).

cotassol Proposition 6.1. a) Assume that b, c > 0 and let (u, v) a positive solution of (1.1).

Then,

u ≤ θ[α,λ], v ≤ θ[β,µ].

b) Assume that b > 0 and c < 0 and let (u, v) a positive solution of (1.1). Then,

u ≤ θ[α,λ−bθ[β,µ]] ≤ θ[α,λ], θ[β,µ] ≤ v ≤ θ[β,µ−cθ[α,λ]].

c) Assume that b, c < 0 and let (u, v) a positive solution of (1.1). Then,

θ[α,λ] ≤ u, θ[β,µ] ≤ v.

Proof. a) Assume that b, c > 0 and and let (u, v) a positive solution of (1.1), that is,

(u, v) = (trΩU, trΩV ), being (U, V ) solution of (6.1). With a similar reasoning to the
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used in Theorem 4.1 we can show that U, V ∈ L∞(C). Moreover, u ∈ L∞(Ω). Now,

it is clear that U is a bounded subsolution of (4.1) with c ≡ 0. Then, U ≤ Θ[α,λ]

and so

u ≤ θ[α,λ] in Ω.

In a similar way, we can show that v ≤ θ[β,µ].

b) It is easy to show that u ≤ θ[α,λ] and θ[β,µ] ≤ v, this last inequality showing that

Θ[β,µ] is subsolution of (−∆)βv = v(µ−v−cu). Moreover, using that V ≥ Θ[β,µ], we

can show that U is sub-solution of (4.2) with c(x) = −bθ[β,µ], and so u ≤ θ[α,λ−bθ[β,µ]].

c) Similar to the above paragraphs.

Corollary 6.2. a) Assume that b, c > 0. If there exists a positive solution of (1.1),

then λ > λ1[α] and µ > λ1[β].

b) Assume that b > 0 and c < 0. If there exists a positive solution of (1.1), then

λ > λ1[α; bθ[β,µ]] and µ > λ1[β; cθ[α,λ]].

We introduce now some notation. Denote by Eα the unique positive solution of (4.10)

in C and eα = trΩE. We call

C(α, β) :=

(
eα
eβ

)
M

(
eβ
eα

)
M

.

The main result is:

principal Theorem 6.3. a) Assume b, c > 0 (Competitive case). Assume that λ > λ1[α] and

µ > λ1[β]. If (λ, µ) verifies

λ > λ1[α; bθ[β,µ]] and µ > λ1[β; cθ[α,λ]], (6.2) condigeneral

then there exists at least a coexistence state of (1.1).

b) Assume that b > 0 and c < 0 (Prey-predator case). If (λ, µ) verifies

λ > λ1[α; bθ[β,µ−cθ[α,λ]]]] and µ > λ1[β; cθ[α,λ]]], (6.3) condigeneralpp

then there exists at least a coexistence state of (1.1).
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c) Assume that b < 0, c < 0 and bc < C(α, β) (Symbiosis case). If (λ, µ) verifies (6.2),

then there exists at least a coexistence state of (1.1).

Proof. a) Assume that b, c > 0. We te take following sub-supersolution

(U,U) = (Θ[α,λ−bθ[β,µ]],Θ[α,λ]), (V , V ) = (Θ[β,µ−cθ[α,λ]],Θ[β,µ]).

Indeed, observe that for ψ ∈ Hα0 (C), ψ ≥ 0∫
C
y1−2α∇U · ∇ψdxdy =

∫
Ω
U(x, 0)(λ− U(x, 0))ψ(x, 0)dx

≥
∫

Ω
U(x, 0)(λ− U(x, 0)− bV (x, 0))ψ(x, 0)dx,

for all V ∈ [V , V ].

On the other hand, observe that if V ∈ [V , V ], then V ≤ Θ[β,µ]; and so,

V (x, 0) ≤ θ[β,µ].

Hence, for ψ ∈ Hα0 (C), ψ ≥ 0∫
C
y1−2α∇U · ∇ψdxdy =

∫
Ω
U(x, 0)(λ− U(x, 0)− bθ[β,µ])ψ(x, 0)dx

≤
∫

Ω
U(x, 0)(λ− U(x, 0)− bV (x, 0))ψ(x, 0)dx,

for all V ∈ [V , V ].

In a completely similar way, we can proceed with V and V .

Finally, observe that thanks to (6.2) we have that U > 0 and V > 0. Moreover,

since b, c > 0 then U ≤ U and V ≤ V in C.

b) Assume that b > 0, c < 0 and (6.3). Now, we take as pair of sub-supersolution

(U,U) = (Θ[α,λ−bV (x,0)],Θ[α,λ]), (V , V ) = (Θ[β,µ],Θ[β,µ−cθ[α,λ]]).

First, since b > 0 and c < 0 it is clear that U ≤ U and V ≤ V , and thanks to (6.3)

we get that U > 0 and V > 0.

It is not hard to show that V and U are sub-supersolution. Consider V . We have

that for φ ∈ Hα0 (C), φ ≥ 0∫
C
y1−2α∇V · ∇φdxdy =

∫
Ω
V (x, 0)(µ− V (x, 0)− cθ[α,λ])φ(x, 0)dx

≥
∫

Ω
V (x, 0)(µ− V (x, 0)− cU(x, 0))φ(x, 0)dx,
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for all U ∈ [U,U ] because c < 0.

Finally, we consider U . In this case, we have

∫
C
y1−2α∇U · ∇φdxdy =

∫
Ω
U(x, 0)(λ− U(x, 0)− bV (x, 0))φ(x, 0)dx

≤
∫

Ω
U(x, 0)(λ− U(x, 0)− bV (x, 0))φ(x, 0)dx,

for all V ∈ [V , V ].

c) Assume b, c < 0, bc < C(α, β) and (6.2). Take

(U,U) = (Θ[α,λ−bθ[β,µ]],M1Eα), (V , V ) = (Θ[β,µ−cθ[α,λ]],M2Eβ),

where M1,M2 are positive constants to be chosen and Eα is the unique solution of

(4.10). It is easy to show that U and V are sub-solutions. On the other hand, U

and V are super-solutions provided of

M1e
2
α ≥ eαλ+ bM2eαeβ − 1 and M2e

2
β ≥ eβµ+ cM1eαeβ − 1 ∀x ∈ Ω.

Since bc < C(α, β), we can take M1 and M2 large.

Remark 6.4. Conditions (6.2) and (6.3) define a region in the λ − µ plane, they could

eventually be empty. There are detailed studies in the case α = β = 1 of these regions,

see for example [8], [16], [17], [11]. This study is out of the scope of this paper, but let us

only point out that if b > 0 the map

µ ∈ [λ1[β],∞) 7→ λ1[α; bθ[β,µ]] ∈ IR

is a increasing map, because µ 7→ θ[β,µ] is increasing and c 7→ λ1[α; c] is also increasing.

Similarly, it is decreasing when b < 0.
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lgs [17] J. López-Gómez, and J. C. Sabina de Lis, Coexistence states and global attractivity

for some convective diffusive competing species models, Trans. Amer. Math. Soc., 347

(1995), 3797-3833.

Trudinger [18] D. Gilbarg, and N. Trudinger, Elliptic partial differential equations of second order,

Reprint of 1998 edition, Springer-Verlag, Berlin, (2001).

marinelli [19] A. Marinelli, and D. Mugnai, The generalized logistic equation with indefinite weight

driven by the square root of the Laplacian, Nonlinearity, 27 (2014), 2361-2376.

monte [20] E. Montefusco, B. Pellacci, and G. Verzini, Fractional diffusion with Neumann bound-

ary conditions: the logistic equation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013),

2175-2202.

bio2 [21] A. M. Reynolds, and C. J. Rhodes, The Lévy flight paradigm: Random search patterns
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