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Abstract

In this paper we study the Lotka-Volterra models with fractional Laplacian. For
that, we study in detail the logistic problem and show that the sub-supersolution
method works for the scalar problem and in case of systems as well. We apply this
method to show existence and non-existence of positive solutions in terms of the system

parameters.
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1 Introduction
In this paper we study the following systems
(—A)*u =u(A—u—bv) in Q,
(=AY v =v(p—v—cu) inQ, (1.1)

u=v=0 on 0,

where Q@ ¢ RY, N > 1, is a bounded and regular domain, \, it,b,c € R and o, 3 € (0,1).
Here, v and v denote the densities of two species inhabiting in €2, the habitat, which is
surrounded by inhospitable areas, due to the homogeneous Dirichlet boundary conditions.
In (1.1) we are assuming that the species diffuse following the fractional laplacian, see
Section 2 where we have defined this non-local operator.

When a = g =1, (1.1) is the classical Lotka-Volterra system with random walk, widely
studied in the last years in all the cases: competition (b,c > 0), predator-prey (b > 0 and
¢ < 0) and symbiosis (b, ¢ < 0), see [8] and references therein.

Fractional operators are used in different contexts: physics, finance and ecology; see [14]
and [21] for the ecological meaning of the fractional diffusion. For many years, the non-
oriented animal movement was modelled by the classical Brownian motion. However,
it seems that when the species is searching for resources, the strategy based on Lévy
flights (supported in long jumps) could be more appropriate in some situations. This
kind of strategy is optimal for the location of targets which are randomly and sparsely
distributed, but the Brownian motion is optimal where the resources are abundant. The
Lévy diffusion processes are generated by fractional powers of the Laplacian (—A)7 for
v € (0,1).

We are interested in the existence of non-negative solutions of (1.1). It is clear that
(1.1) possesses the trivial solution (u,v) = (0,0) for all A\, 4 € R, since when u = 0 (resp.
v =0) then v (resp. u) verifies an equation of type

(—A)"w + ¢(z)w = w(o —w) in €,
(1.2)

w=70 on 0,

where v € (0,1), 0 € R and ¢ € L*°(Q2). This is the classical logistic equation, studied in

[19] and [20] with homogeneous Dirichlet and Neumann boundary conditions, respectively,
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with 7 = 1/2 in both papers. To study this equation, we previously analyze the eigenvalue

problem

(—A)"w + ¢(z)w = Aw in Q,

03

w=20 on Of).

We study the existence of a principal eigenvalue, the unique eigenvalue of (1.3) having a
positive eigenfunction, denoted by A1[7; ¢]. This problem has been analyzed in [1] and [19]
(for v = 1/2) and in [20] for the Neumman case. We study some properties of this
eigenvalue and of its eigenfunction associated.

Then, we prove that (1.2) possesses a positive solution if and only if o > Aj[y;¢].
Moreover, it is unique and we denote it by 0}, ;.

Moreover, we try to give an ecological interpretation of the result, comparing our results
with the obtained in local operator case, in which the fractional Laplacian is substituted
by the classical Laplacian operator.

For the existence, we employ the sub-supersolution method. Let us point some re-
marks. The sub-supersolution method has been used previously in non-linear fractional
diffusion problem, see for instance [3] and [9]. In both papers, the method is consequence
of a maximum principle and a classical iterative argument. However, we present a different
proof which is also valid, with minor technical changes, for systems.

Once studied in detail (1.2), we analyse the existence of solutions with both positive
components of (1.1). For that, we apply the sub-supersolution method. We first show
that this method works for systems, and then we apply it to (1.1). For that, we have
to find appropriate sub-supersolutions of (1.1) using the results obtained for the logistic

equations. We prove the following results:

a) If b,c > 0orb,c < 0andbec < C(a, ) for some positive constant (detailed in Section

6) and A and p verify

A > Mo b0g ] and > Ai[B;cliq ], (1.4) ‘ccndigeneralintrc

b) or b >0 and ¢ < 0 and A and p verify

A > Ao bﬁ[@’u_cg[a,m]] and p > \[B; CH[QN]], (1.5) ‘condigeneralppint




then there exists at least a positive solution of (1.1). We show that conditions (1.4) and
(1.5) define regions on the A\ — p plane.

The paper is organized as follows. In Section 2 we present the functional setting
necessary for the remainder of the work. Section 3 is devoted to the eigenvalue problem.
We study the existence and main properties of the principal eigenvalue. In Section 4 we
study equation (1.2). The sub-supersolution method for systems is shown in Section 5.

Finally, in the last Section we study the existence of positive solution of (1.1).

2 Preliminaries

In this section we begin introducing the functional framework necessary to develop the
theory, and recover some known results about the different forms to define the fractional

power of the Laplacian with Dirichlet boundary condition.

2.1 Functional setting

Consider a smooth bounded domain Q@ C R¥. Since in bounded domains there are
some non-equivalent definitions of the fractional laplacian operator, let us explain what we
mean by the symbol (—A)®. For u € C§°(2) such that u = Y77, bppk, where g, ¢, are
the eigenpairs of (—A, H}(Q)), (Ax repeated as much as its multiplicity and {py} forming

an ortonormal basis of L2(Q)), we define

(—A)Yu = Z A brpr.
k=1

Then the operator (—A)® is defined on D((—A)%) = {u € L*(Q); Y22, A2 < +oo} by
density.

Now, let us consider the half cylinder with base €2,
C:=Q x(0,+0),
and denote its lateral boundary by

OrC := 09 x [0, +00).



We denote (z,y) € C, z € Q and y > 0 and define
HY(C) = {v c HY(C); |v|la < -l—oo},

HG(C) :=={veH*C); v=0o0n9d.C},

where 1

3

oo o= (Kt [y i9oPasay)
C
21729P(1 — «) . . . .
ko = T a € (0,1) and I" is the Gamma function. It is not difficult to see
a

that G (C) is a Hilbert space when endowed with the norm || - ||o, which comes from the

following inner product
(v, w)e = k! /Cyl_QaVv - Vwdzdy.
Consider the following subspace of the fractional Sobolev space H*({2),

Vo' (Q) = {trou; v € H{(C)}

which is a Banach space when endowed with the norm
1
folsio o= (ol + [ [ Bt nay)

where trq is the trace operator defined by

trou =v(-,0) for v € H{(C).

Moreover, by Trace Theorem (see Proposition 2.1 in [9]) and embeddings for fractional

Sobolev spaces (see Theorem 6.7 in [12]) it follows that

ltravllsy < Cllvla, Vo € HS(C), where p & (1,2,) 21)

2N

where 20& = N—%a’

By Proposition 2.1 in [9] it holds that
(o] o0
Vi(Q) = {u € L*(Q);u= Zbks% satisfying Zb% B < +oo} :
k=1 k=1
As far as the following scalar nonlocal problem is concerned,

—A)*u = f(x,u) in Q,
(~A)*u = f(z,u) .

u=0 on 01},



the approach we are going to follow is by associating to (2.2) a one-more dimensional local

problem in C. This can be made by considering the procedure to get a local realization of

(—A)* described beneath.

As proved in [9] [Section 2.1], for each u € V§(2), there exists a unique v € H§(C),

called its a—harmonic extension such that

o

—div(y!~2*Vo) =0 inC,

on BLC,

on €2.

Moreover, if u = Z bry is its spectral decomposition, then

k=1

o(ey) = 3 beor(@B(Aiy), ¥(a,y) €C,
k=1

where 1) solves the Bessel equation

1/)” + (1 - 20&)¢l

S

s—0t

$(0) = 1.

=1 s>0

— lim s/ (s) = kg

(2.3) ‘harmonicextensior

(2.4) ‘besselequation

Let u € V§(Q) and v € H{(C) its a—harmonic extension. Define the functional

1 ov

= 0)*
ko Oy € V()

Qx{0}

by

1 oOv 1
kaaya('ao)vg> =

/ Yyt 2V0.Vgdzdy,
C

where ¢ is the a—harmonic extension of g € V§(€2) and

Then we can define an operator A, : V5 () — V§(2)* such that

——(2,0) = — lim y'~

y—07+

1

Q‘ng(x,y), Vz € (.

ov

Ayt = —— ,
ko Oy ax{0}



where v is the a—harmonic extension of u to C. Let us prove that the operators A, and

(—A)® are in fact the same, i.e., that for all u € V§(Q2),

(o) o
Aju = Z b AL vk, where u = Z b Pk
k=1 k=1

By linearity, it is enough to prove that for all ¢,

1 ov a
(i 0190 ) = (- 8) i) gy for all k€I

where v is the a—harmonic extension of w.

For u € V§(Q2) and k € N, let v and ¢ be the a—harmonic extensions of u and ¢y,

respectively. By (2.3), v(z,y) = 352, brpr(2)e (N *y) and Gi(x,9) = pr(@)v(N*y).

Now, integration by parts and properties of ¢ imply that for each y > 0, it holds
1 1
[V aaten) Dol = it (w0 + 6 OF2).
Then, by (2.4)
1 ov 1 1-2
— 7. = o dzd
<ka ayoé( ,0),<pk> / Vv - Vgpdzdy
1 1
_ L / y2, (Asz 0P+ O ) dy

1
= — lim y'~ QQ)\Qb RU4 ()‘Iiy)d)()\liy)
ka n—0+

= Ay

y=n

= ((=8)%, k) 2(q) -

Hence, in (2.2) we are going to understand (—A)® as A,.
For simplicity, without loss of generality, we can assume throughout this paper that

ko = 1. Then, we define

Definition 2.1. u € V() is a weak solution of (2.2) if u = trqu where v € H{(C) is a

weak solution of

—div(y'~**Vv) = 0 in C,
ov
y 7 (,0) = f(x,v(z,0)) on Q.

In this case, v is such that

/ Y1720V . Vydady = / Fl,v(z,0)p(x,0)dz, Vi € HE(C). (2.5)
C Q



2.2 Maximum principle

Along the paper, the following maximum principle will be very useful, see Lemma 2.5

in [9] for a related result.

Proposition 2.2. Let d € L>®(Q2) and v € H*(C) such that v > 0 in 9.C and

—div(y'~22Vv) >0 inC,
ov
@(x, 0) + d(z)v(z,0) >0 on .

a) Assume that d > 0 in Q, then v >0 in C.

b) Assume that v >0 in C. Then, either v=0 or v >0 in C.

XimumPrinciple‘

Proof.  a) The proof follows just by using —v~ as test function, where v = v+ +v™.

b) In this paragraph we follow the proof of Lemma 4.9 in [6]. Define
w(z,y) = e v(,y).

Then, w satisfies

—div(y! 20V (e=4¥*"w)) > 0 in C,
ow
@(x, 0) + (d(z) + 2Aa)w(xz,0) > 0 on .

We can choose A such that d(z) +2Aa < 0 in 2, and so

g;i(x,O) >0 inQ.

Take R > 0, consider now the even extension of w in Q x (—R, R), defined by

w(z,y) if y >0,
w(z,y) =

w(z,—y) ify <O0.
We can show that

—div(jy|' 2V (e A G)) > 0 in Q x (=R, R).



Define now the problem
—div(|[yl2*V(e=AW**R) =0 in Q x (R, R),

h=w on (2 x {—=R})U (2 x {R}).
The above problem possesses a solution by [13] (see also Theorem 3.2 in [6]) and by

the maximum principle we get that
h<w@w inQx (—-R,R).

On the other hand, by the strong maximum principle, see Lemma 2.3.5 in [13], we
conclude that

h > 0.

This finishes the proof.
O

Remark 2.3. Observe that Proposition 2.2 can be stated in an equivalent way: Assume

de L>®(Q) and (—A)*u+d(x)u >0 in Q and w > 0 on 0S2. Then,
a) If d >0 in Q, then u > 0 in Q.

b) Assume that u > 0 in Q. Then, either u =0 or u > 0 in Q.

2.3 Regularity results

The following result follows by Lemma 3.3 in [10], see also Proposition 5.1 in [2].

Lemma 2.4. Assume that f € C(Q x R) and that there exists a constant C' and p €
(2,2N/(N — 2a)) such that

If(z,t)| <CA+tP™h, zeQ, teR.

If v e HE(C) is a solution of (2.5) and u = trqu, then v € L¥(C)NC?(C) and u € C°(Q)

for some o € (0,1).

Consider now the linear problem

(2.6)

u=20 on 0f2.

The following result is also taken from [10] (Lemma 3.2), see also [7].



Lemma 2.5. Assume that g € H=*(Q) andv € HE(C) is a solution of (2.6) and u = trqu.
Then,

a) If g € L™(QQ) forr > N/(2a), then v € L*®(C) and u € L*°(Q).
b) If g € L®(), then v € C°(C) and u € C7(Q) for some o € (0,1).
c) If g € C7(Q) and gloa =0, then v € CL9(C) and u € CH7(Q) for some o € (0,1).

d) If g € CY7(Q) and gloq =0, then v € C*°(C) and u € C%7(Q) for some o € (0,1).

3 The eigenvalue problem

Given ¢ € L*(Q), we study the eigenvalue problem

(—A)%u + c(x)u = Au in €,

@

u=20 on 011,

where o € (0,1) and A € R. Recall that v € V§(€2) is an eigenfunction associated to an
eigenvalue A of (3.1) if and only if u = trquv where v € H§(C) is a solution of

;

—div(y!~2*Vu) =0 in C,

v=20 on 9rC, (3.2) ‘eigenextended
ov

By (x,0) + c(x)v(x,0) = Av(z,0) on Q.

In the following result, we show the existence of principal eigenvalue and positive eigen-

function of (3.1) and their main properties.

Theorem 3.1. There exists the principal eigenvalue of (3.1), denoted by Ai[a;c]. This
eigenvalue is simple and possesses a unique eigenfunction ®1 of (3.2), up to multiplicative
constants, which can be taken positive. Moreover, the principal eigenfunction ®1 is strongly

positive, and \ila;c| is the only eigenvalue of (3.1) possessing a positive eigenfunction.

If we denote @1 = trq®1, we have that 1 € C7(Q) and &1 € L>*(C) N C7(C) for some
o € (0,1) Furthermore, the map from ¢ € L*(2) — Ai[a; ¢] is increasing.

10



Proof. For each v € H§(C) such that trqu # 0 in L?(Q), let us consider

/y1_2aVv|2dxdy+/ c(x)v(z,0)*dx
C Q

/Q v(x,0)%dx

and note that J if bounded from below. In fact, Trace Theorem and the boundedness of

J(v) = (3.3)

c imply that
/yl2“|Vv|2da:dy+/c(x)v(%o)zdx > C/ vz, 0 d«T+/ ( ) (a;,O)de
c & .

K/ :1:0

Vv

where K € R, for every such v.

Let us define
Ao c] == inf{J(v); v € H§(C) and trqv # 0 in L*(Q)}. (3.4)

Let (vp)nen C HE(C) be such that [, vn(z,0)%dz =1 and J(vs) — Ao ¢]. It is straight-
forward to see that (vy)nen is bounded in H§ (C) and hence there exists w € H{ (C) such
that w, — w in HY(C). Since HY(C) — V§(Q) continuously and V§(Q) — L3(Q) com-
pactly, then fQ (7,0)2dz = 1. Just by imitating the arguments of Section 8.12 in [18],
one can show that (v,)pen is a Cauchy sequence and then it strongly converges to v in
H§(C). Hence J(v) = Ao cl.
If ¢ € H§(C), setting p(t) = J(v + t1p), it follows that
0=¢'(0) = /C y' T2V - Vipdady + /

Q

c(x)v(x,0)(x,0)dr — A\i[a; ] / v(z,0)(x,0)dz.

Q
Hence v is a solution of (3.2) with A = A1[a; ¢] and it is therefore an eigenfunction associ-
ated to \[a; c].

Of course the definition implies that A\j[o;¢] is the smallest eigenvalue of (3.2).

Now let us prove that the eigenfunctions has at least C7(Q) regularity, where v =
min{1, 2a}. This follows easily from Lemmas 2.4 and 2.5 once we prove that |[trq¢|| ) <
+o00, for every eigenfunctions ¢. On the other hand, this L* estimate can be obtained by
a standard application of Moser iteration technique, which we describe below.

Let v € H{(C) satistying (3.2) for some A and let M > 0. Denoting vy; = min{v, M},

note that it is an H{(C) function. Let b > 0 a constant to be chosen conveniently and let

11

‘mineigenvalue




b

us take vps” as a test function in (3.2). Denoting e(z) := (A — ¢(x)) it follows that

b/yl_QaUMb_1|VUM|2d$dy:/e(x)v(x’o)vM(x’O)bdx
c Q

which implies that

4b / 1—2«
b+1)2 )7

By Trace Theorem and embedding of fractional Sobolev spaces, we have that

_ 4
(b+1)2

Considering M — +oo and using Fatou Lemma, we have that

b+1

V(v 7))

2
dxdyg/e(a:)v(a:,O)bde.
Q

b1 |2 b+1
g |ramn T, o, < Clltravlithiey

1 2
g o [ g < Cherant o)
Then it follows that
1
(b4 1)\ &1
ol 2 gy < (€050 ) Heravlisoey (35)

Let us consider a sequence (ny)x defined by ng = 2 and n, = %an,l for k > 1. Taking b
in (3.5) such that b+ 1 = n;_1, we have that

1

771% 1
trou < | C————
ltravln < (€t

M1
1) HtTQ’UHLnkﬂ(Q).
Iterating this expression in k we get that
1

k—1 2 o

n; j
< | | —J )
ltroull Lo ) < | <C4(77j 1)) [travllr2()

Note that there exists a constant C' > 0 such that ( i) < Cz, for all z > 1. Taking into

account the fact that n; = it follows that

2] 17
-1
k—1 2{} 22£
ltrovlipmey < ][] Comt [trov|| L2
§=0
k—1 .
Ay 1-jy2a®’""
< 2.0 ] (6') [travli2()
j=0
k—1
2 1 1
where 0 = 5= € (0,1) and A = 267 . Now, since 0 < § < 1, the series in Ay
j 1
converges and
k—1 sio1
H (6177)2 < 400
j=0

12



Now, observing that 1y — 400, it follows that |[trqv| ) < +oo.

If v is a minimizer for J, then it is straightforward to see that |v| also is. Taking a
constant M > 0 such that M + ¢(x) > 0 in Q, Proposition 2.2 implies that |v| > 0 in C.
Since v is regular, it follows that v cannot change sign. As a consequence, two of them
cannot be ortogonal and \;[a; ¢| is simple.

The same procedure employed to Ai[c;c] applies to prove that, denoting by V; the
eigenspace associated to the j-th eigenvalue, the higher eigenvalues can be characterized
as

Aj = inf{J(u); u# 0, (u,v)12q) =0 Vv € span[V, ..., V;_1]}.

This characterization with the positiveness of the first eigenfunction implies that the first
eigenvalue is the only one which has a one-signed eigenfunction.

In order to end up the proof, note that the variational characterization of the eigen-
values still implies that if ¢1,co € L®(Q) and ¢; < ¢g in Q, then \[a; 1] < M[a;ez]. In
fact, let w € HE(C) such that trquw # 0 in L*(2) and J(w) = A1 [o; ca], note that

/y1_2a|Vw\2dxdy+/cl(x)w(x,0)2da: /y1_2°‘|Vw\2dxdy+/cz(az)w(a:70)2da:
C Q < C Q

/w(m,O)de /w(x,O)de

Q Q
and this finishes the proof. O

Let us point out that the behavior of A; [a; ¢] with respect to the weights is a challenging
problem, see for instance Section 3 in [20]. In any case, we would like to study Ai[«; (]
in some particular case. When ¢ = 0 we denote \j[a] := Aj[a;0]. Finally, for « = 1 we
denote A\1[1; ¢] the principal eigenvalue of the local operator —A+¢(z) under homogeneous

Dirichlet boundary conditions and by A; := A1[1;0]. Recall that A\i[a] = A\}.
Remark 3.2. Given ¢ € L*(Q), we denote
cr, = ess infoe(x) and cpp = ess supge(x).
Note that by the definition of J and the fact that \i[a;c] minimizes J, it follows that
Ala] + e < Moo < Aol + e

13



It is not hard to show that when ¢ € R we get
Mo = Mo]+e= AT +c.

In the following result we show the dependence of Aj[a;c] in N = 1 with respect to the
domain Q = B, = (—r,r). Denote by A1[a;c; B,] the principal eigenvalue of (3.1) in B,
and by A\i[1;¢; B;] the principal eigenvalue of the —A + ¢ in B,, that is, the principal

eigenvalue of
—Av+c(z)v=A[l;¢;Bylv in By, v=0 ondB,. (3.6)

With this notation, we can prove:

Proposition 3.3. It holds:

Mla; ¢; BA)r*® = Ae; r2%¢(r-); By, (3.7)
and
ML ¢ B, r? = M (L r2e(r); By). (3.8)

As consequence,

lim i [a; ¢; B, Jr?® = M\i]e; 0; By] = (M[1;0; By))®. (3.9)

r—0

Proof. By the definition of A\i[«;¢; B,], there exists v such that

—div(y'**Vv) =0 in By x (0, 00),
v=0 on 9B, x (0,00), (3.10)
aaz;u, 0) + c()v(,0) = M[a; &; B/Ju(x,0) on By.

The change of variables

z= E, t= y, and  w(z,t) = v(zrtr),
r r
transforms (3.10) into
—div(t!729Vw) = 0 in By x (0,00),
w=0 on 0B; x (0,00), (3.11)
B (2,0) + P2e(r2)u(=,0) = 7 Aifas ¢ B Ju(,0) on B
| r*c(rz)w(z,0) = 1[e; ¢; Bylw(z,0) on By.

14



This concludes the proof of (3.7).

In a similar way, under the change of variable

in (3.6), we get (3.8). (3.9) is trivial from (3.7). O

Let us compare the eigenvalues of the laplacian and fractional laplacian for the case

N=1,ce R and Q = B,.

casoconstante| Lemma 3.4. Assume ¢ € R. Then,

Mlase; Br] > M[L;e By (resp. <,=) <= 1>/ A[1;B1] (resp. <,=).

On the other hand, o — Ai|o; ¢; By] is decreasing when r > \/A1[1;0; B1] and increasing

when r < \/A1[1;0; By].

Proof. Observe that
M[L;¢; Bplr? = M[1;72¢(r); By,
and so, if ¢ is a constant,

Ai[1;0; Bi]

M[l;¢ By = 5

+ ¢,
r

and by Proposition 3.3 we get

)\1 {a; & Br] = r2a r2

-0: B 1:0: B @
)\1[04707 1] +e= ()\1[ 707 1]) +ec

This concludes the result. O

Remark 3.5. Recall that \1[1;0; By] = n2/4.

4 The logistic equation

In this section, we want to study the logistic equation

(=A)u + c(z)u = Mu—u? in §,
)

u=0 on 01},

15



where o € (0,1) and ¢ € L*(Q2) or equivalently the equation

¢

—div(y!=22Vv) =0 in C,
o= moe, (2
ov 9
@(1:,0) + c(z)v(z,0) = Av(x,0) — v(x,0)* on Q.
\

Theorem 4.1. FEquation (4.1) possesses a positive solution if and only if X > A]a;c].
Moveover, if it exists, this is the unique positive solution and we denote it by 0}, _-
Furthermore, 0 x_q € C?7(Q) for some o € (0,1) and the following property holds: if
we denote by @1 the principal eigenfunction associated to Ai|a;c] such that ||o1)leo = 1,
then

(A= Mla;e])p1(x) <Opa—q(z) <A —c, Vrel. (4.3) |ine

Remark 4.2. A similar result holds for (4.2). In this case, we denote by O, r_ the
unique positive solution of (4.2), that is, Olar—q = tra®ar—c- Moreover, O, _q €

C27(C) N L=(C).

In the proof of Theorem 4.1 we are going to apply the well known sub-supersolution
method. Despite of the definitions and results about this subject in the fractional set-
ting are a rather standard adaptation of the sub-supersolution method to second order
operators, we present them here for the sake of completeness.

Let us consider the problem (2.2) which is associated to the extension problem

div(y'=2eVu) =0 in C,
=0 o, m
v
—(z,0) = ,v(z,0)) on €,
\ aya(x ) = f(z,v(z,0)) on

where f € C(Q x R). Recall the definition of solution of (4.4), Definition 2.1.

Definition 4.3. We say that (v,v) is a sub-supersolution of (4.4) if v,v € H*(C), u :=

trou,u = trqv € L>(Q) and:
a) v<vinC andv <0<7 on JrC.
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b) For all ¢ € HF(C), ¢ >0, it holds
[0 Gudsiy < [ o000tz 00 (45)
C Q

and

/yl—Qoav,U_ Vipdrdy > / f(:[j,@(x,()))l/)(.%',(])dx (46) ‘supersolution‘
C Q

Theorem 4.4. Assume that (v,7) is a sub-supersolution of (4.4). Then, there ezists a

solution v of (4.4) such that

v<ov<v nC.

In consequence, there exists a solution u € V§(S2) of (2.2) such that

IN

u=trouv<u<u=trou in .

eoremasubsuper ‘

Proof. Let v, v be such that (4.5) and (4.6) hold, respectively. Let us define for z € Q
andt € R
fxuz)) it <u(z),

fl@,t) =4 flz,b) if w(z) <t <u(w),

fz,u(z)) if ¢ > u(x),

and consider the problem

div(y'=29Vv) =0 inC,

v=0 on J;C, (4.7)

ov

@(ac,O) = f(z,v(z,0)) on Q.

Observe that by the definition of f we have that

/Q Fl,ulz, 0))b(x, 0)dz| < Cllv(x, 0)l| 2, (4.8)

for some positive constant C, for all v € H*(C) and ¢ € H{(C). Here, we have used that
w, € L®(Q) and f € C(Q x R)

First, we show that (4.7) possesses at least a solution. Define the operator
T:HG(C) = (H5(C))

17



given by
(Tu,v) = /yl_zaVu - Vodzdy —/ f(z,u(z,0)v(z,0)dz, Yu,ve HC).
C Q
We study some properties of the map T'.

e T is a bounded map. It is clear, using (4.8), that if u belongs to a bounded set of
HG(C), then T'(u) is also bounded in (H§(C))'.

e T is pseudomonotone: given a sequence u, — w in H§(C) such that
lim sup(Tup,, up — u) < 0,
we have to show that
lim inf(Tuy, up, —v) > (Tu,u —v) Yo € H(C). (4.9)

Observe that from (4.8) we have that

/Q (@, 0)) (un(@, 0) — u(x, 0))dz

< Cllun — ullp2(0) — 0,
hence using that u, — u in H§(C)
0 > lim sup(Tuy,, uy, — u) = limsup/cy1_2aVun -V (ty —u) = limsup ||un |2 — ||ul/3.
We can conclude that
[ullf, > limsup g3 > lminf [fu, |3 > 3,

and then

lim [|un |3 = [[ullz-

Consequently, u, — u in H{(C) and we get that

lHm inf(Tup, up, — v) = Uminf{(Tup, up — u) + (Tup, u —v)} > (Tu,u — v).

e T is coercive, that is,

lim (T'(v),v) C s
[v]la—oo  ||V]|a

It is clear that
(T(v),0) > [[0]Z = Cllv]| 720,

18



whence it follows that T is coercive.

Then, we can conclude from Theorem 2.7 in Chapter 2 of [15] that there exists a

solution of (4.7), that is, T'(v) = 0. Now, we show that
v € [v,7],

and hence v is solution of (4.4). Indeed, define ¢ := v — v. Note that, for all

Y e HG(C), ¥ =0,

Taking 1) = (v — v)", we have that
/yl_Qa]V17+2da;dy <0.
C

Then v <wv in C and in a similar way one can prove that v < 7.

Now let us present the proof of the Theorem 4.1.

Proof of Theorem 4.1. First consider a positive solution u € V§ () of (4.1), and consider
v € H§ solution of (4.2). If A — ¢z, < 0, then by the maximum principle it follows that

v < 0. So, assume that A — ¢y, > 0. Taking in (4.2) ) = (v— (A —cg))" ,we can show that
v<A—c¢r inC.

By Lemma 2.4, we have that u € L*°(2); and then, using Lemma 2.5 we arrive that u
and v are regular functions.

Now, suppose that there exists a positive solution u € V§(Q2) of (4.1) for some A € R.
Then note that w is a positive solution of (3.1) with ¢(z) substituted by (c(z) + u(x)).
Then by Theorem 3.1

A= Aasc+u] > Ao cl.

Now let us prove that A > Ai[a; c] is sufficient to the existence of a positive solution. Let

Q cc &,  an open bounded set, C' = Q' x (0, +00) and E € H§(C') the unique positive
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solution of

div(y!22Vv) =0 in (',

v=0 on (', (4.10)
;@;(m, =1  in®.
Denote by
6(1’) = tTQ/E.

Observe that from the regularity results, e € L>°(€') and by Proposition 2.2 we get that
E > 0.

Note in particular that for ) € H§(C), we can extend it in such a way that ) € H§(C')
and then, it holds

/yl_QaVE-de:rdy— / Y (x,0)dz.
C Q

Let us take v = KFE where K is a positive constant to be chosen. Note that v is a

supersolution of (4.2) if and only if for all ¢ € H{(C), y» >0

/y12aVE.wdxdy+K/ c(z)E(z,0)¢(x, 0)dx > /(AE(x,O)—KE(%O)Z)w(:v,O))dx,
c Q @

this is equivalent to
/ W(,0) (Ke(@)? + e(@)(e(@) — \) +1)de >0 Vi € HE(C), > 0.
Q

It suffices that Ke(x)? + e(x)(c, — A) + 1 > 0 a.e. in €2, which is possible by choosing K
large enough.

For the subsolution, let us take v = eV where € > 0 is a constant to be chosen and
Uy € H(C) is a positive eigenfunction associated to Aj[a;c]. Then, for all ¢ € H, ¢ > 0,
writing A\; = A1[a; ¢] we have

/yl_QaVv-deﬂ:dy-l-/C($)U($»O)¢($vo)d$ = E/AllelZ)(x,O)da:
g Q

Q
< /enplq/;(a:,O)()\— ep1)dz
Q

if and only if
ep1 < (A—=A1) in Q, (4.11)
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compa

where we have denoted ¢ = trqW¥;. Since ¢1 € V§(Q), ¢1 € L>®(Q) and ¢1 > 0 in Q,
(4.11) is possible and it follows that we have a sub-supersolution pair if € > 0 is small
enough. Now Theorem 4.4 implies the existence of solution if A > Ai[a;¢].

To prove the uniqueness of positive solution, all the arguments of [4] (see also [5]) can
be adapted to the fractional setting, see Lemma 5.2 in [3] or Proposition 4.2 in [19].

Then, there exists a solution 0, \_q € V§(£2) of (4.1) if and only if A > Aj[a;c].

We prove now (4.3). The first inequality follows since ep; is a subsolution for all

€ € (0, A — Me; c]]. For the second, note that 0, y— < A — cp. O
To compare different solutions of the logistic equation we need the following result:
Proposition 4.5. Assume that v is a bounded subsolution of (4.2), then
trov < Ojq -

Proof. Since v is bounded, it is clear that we can choose K > 0 such that K F is superso-

lution of (4.2) and v < KE. By uniqueness, we conclude that v(x,0) < 04 - O
As a direct consequence of Proposition 4.5, we deduce
Corollary 4.6. If A1 < Ay and c2 < c1 in 2, then Ojq x, —¢;] < Ojaro—cs)-

Let us give an interesting biological interpretation of this result, comparing with the

linear diffusion case. Recall that the classical logistic equation

—Au+ c(x)u = I —u? in Q,
(4.12)
u=0 on 0§,
possesses a unique positive solution if and only if

A > AL —¢].

Let us compare this result with the obtained for (4.1) in the particular case N =1, c € R
and Q = B,. In Figure 1 we have represented by continuous line G1(r) := Ai[1; ¢; B, and
by pointed line G,(r) := Ai]o; ¢; By] with ¢ = 0 (a similar representation can be made

with ¢ # 0). Take A large (A > 1). Then, there exist r, < 71 such that
A = Gl('f‘l) = Ga(Ta).
Then,

21



Figure 1: We have represented in continuous line the map G1(r) = A\[1;¢; By] and by

pointed line G (r) = A\[o; ¢; B;]. We have denoted by A\g = v/A;.

a) If r < rq, for (4.1) and (4.12) the species die.
b) If r > 71, the species persists in both cases.

c) Assume that r € (r4,7r1). Then, the species disappears in the local diffusion and it

persists in the fractional diffusion case.
Assume now A small, (A < 1). Then, there exist Ry < R, such that
A=Gi(R1) = Ga(Ry).
Moreover,
a) If r < Ry, for (4.1) and (4.12) the species die.
b) If r > R,, the species persists in both cases.

c) Assume that r € (R1, R,). Then, the species disappears in the fractional diffusion

and it persists in the local diffusion case.

Hence, in the case of favourable habitats (abundant resources) there exist domains such

that the species with fractional diffusion persists, while the species with linear diffusion
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dies. In a contrary way, for unfavourable habitats, there exist domains when the opposite

occurs.

5 The sub-supersolution method for systems

In this section we extend the sub-supersolution method employed in the last section

to the system setting. Let us consider

;

(=A)%u = f(z,u,v) in £,
(—=A)Pv = g(z,u,v) in Q, (5.1)

u=v=0 on 0,

where f,g € C°(Q x R?) and «, 8 € (0,1).

Definition 5.1. We say that (u,v) € V§(€2) % Voﬁ(ﬂ) is a solution of (5.1) if there exists
(U, V) e H§(C) x Hg(C) such that trqU := u, trqV := v and (U,V) is solution of

div(y'=20VU) = div(y'=2’VV) =0 inC,
U=V=0 on 01C,
(5.2)
oU
Tya(m70) :f(IE,U(JI,O),V(III,O)) on Q;
oV
\ 8—?!3(@0) =g(z,U(z,0),V(x,0)) on §Q,

Definition 5.2. We say that U,U € H*(C), V.,V € HP(C) is a pair of sub-supersolution

of (5.1) if
u:=troU, u:=trqU, v :=trqV, v:=trqV € L*(Q),

and
a) USU and V<V inCandU <0< U and V<0<V on 9;C.

b) For all (1,¢) € HI(C) x HE(C), 1, > 0 and (u,v) € [U, U] x [V, V], it holds

/yl—QaVU, Vipdady < / f(z,U(x,0),v(z,0))(x,0)dx,
c Q
/ ST Vodedy > / 2, T (2, 0), v(z, 0))d(z, 0)da,
c Q
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[V Vodady < | (o.u(w,0),V(,0)6(z. 00
c Q
/M”ﬁw&mMMyz/f@m@ﬂ%W%@M@ﬁM%
c Q
where [U,T] = {w € Ho(C); U < w < U inC} and analogous for [V, V].

Theorem 5.3. Assume that there exists a pair (U, U)-(V, V) of sub-supersolution of (5.2).
Then, there ezists a solution (U, V) € HF(C) x ’Hg(C) of (5.1) such that

U<U<LU, V<V<V inC.

Moreover, there exists a solution (u,v) € V§ () X V(’)B(Q) of (5.1) such that u < u <7 in

bsupersistemas‘ Qandv <v<vin

Proof. The proof is similar to Theorem 4.4. Define the operators T and T5 by

/

u if w < u, v if z <w,
Ti(w) =4 ifu<w<mu, To(z) = z ifv<z<w,
w if w >, v if z > 7,

and the functions

f(:n,u,v) = f($,T1(U),T2(U)), g(sv,u, U) = g(val(u)aT2(U))'

Consider the problem
div(y'=2eVU) = div(y'=?VV) =0 inC,

U=V =0 ond;C,

(5.3) ‘ fractionalsystem

5x(5:0) = F(@.U(2.0,V(5,0) on
oV
L aTﬁ(x?O) = g(z,U(x,0),V(x,0)) on Q.

First, we prove that (5.3) has at least a solution. For that, consider the space
H = HG(C) x HE(C)
with the norm |[|(u,v)| = ||ulla + ||v||s and the map T": H — (H)" defined by
(T(u,v), (w,z)) = (/c y 72V - Vwdzdy — /Qf(x,u(x,O))w(x,O)dx,
/Cyl_va -Vzdxdy — /Qg(x, v(x,0))z(z, O)da:) .
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Now, we can follow just the arguments of Theorem 4.4 and show that there exists (U, V)
solution of (5.3), that is, T'(U, V) = (0,0). Again, we can prove that (U, V) is solution of
(5.1), for that it suffices to show that (U, V) e [U,U] x [V, V]. Define U = U — U, then
taking T5(V') in the definition of sub-solution, we get that for all ¢ € H§, ¥ > 0,

/y1—2av(7 - Vpdady < / [f(:c,Q, To(V)) = f(2.U,V) | ¢(x,0)dz < 0.
C Q

Taking ¢ = (U — U)" we get that U < U. The same argument can be used to the other

inequalities. O

6 Application to the Lotka-Volterra systems

In this section we apply the above results to system (1.1), or equivalently, to the system

div(y' 22VU) = div(y'=2/VV) = 0 in C,
U=V =0 on JrC,
o (6.1)
@(x,O) =U(z,0)(A—=U(z,0) — bV (z,0)) in £,
ov .
7(‘7;70) :V(.%',O)(,U,—V(JI,O) —CU(.%'7O)> m Qa
\ 8y5

First, we deduce some bounds of the solutions of (1.1).

Proposition 6.1.  a) Assume that b,c > 0 and let (u,v) a positive solution of (1.1).
Then,

U< by, v <Op,
b) Assume that b > 0 and ¢ <0 and let (u,v) a positive solution of (1.1). Then,
U S Olan-vo5,) < Vaxy O V=0 u-co )
c) Assume that b,c < 0 and let (u,v) a positive solution of (1.1). Then,
Oy <u,  Opgp <.

Proof.  a) Assume that b,c¢ > 0 and and let (u,v) a positive solution of (1.1), that is,
(u,v) = (trqU, trqV), being (U, V') solution of (6.1). With a similar reasoning to the
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used in Theorem 4.1 we can show that U,V € L*(C). Moreover, u € L*>(€2). Now,
it is clear that U is a bounded subsolution of (4.1) with ¢ = 0. Then, U < 0, y

and so

u <0y in

In a similar way, we can show that v <03 ;.

b) It is easy to show that u < 0|, 5 and g, < v, this last inequality showing that
O3,y is subsolution of (—=A)Pv = v(p—v —cu). Moreover, using that V > O, We

can show that U is sub-solution of (4.2) with c(z) = —b0|g ), and so u < Ola —b0y5,]-

c¢) Similar to the above paragraphs.

O]

Corollary 6.2.  a) Assume that b,c > 0. If there exists a positive solution of (1.1),
then A > A\i[a] and p > Ai[f].

b) Assume that b > 0 and ¢ < 0. If there exists a positive solution of (1.1), then
A > Mo b0 ] and p > M[B; el x]-

We introduce now some notation. Denote by E, the unique positive solution of (4.10)

in C and e, = troE. We call
€q e
o2, ),
€8/ m \Ca/ M

Theorem 6.3. a) Assume b,c > 0 (Competitive case). Assume that X > Ai[a] and
> MIB). I (A ) verifies

A > )\1[0@()9[[3’“]} and > )\1[5;09[@)\]], (6.2)

then there exists at least a coexistence state of (1.1).

The main result is:

b) Assume that b > 0 and c < 0 (Prey-predator case). If (A, ) verifies

A > Ao be[ﬁvlﬁfﬂ[a,x]ﬂ] and > M[B; o] (6.3) ‘ccndigeneralpp

then there exists at least a coezistence state of (1.1).
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c) Assume that b < 0, ¢ < 0 and bec < C(a, B) (Symbiosis case). If (A, u) verifies (6.2),

then there exists at least a coezistence state of (1.1).

Proof.  a) Assume that b,c > 0. We te take following sub-supersolution

(Qv U) = (@[a,)\fbH[ﬁ’u]]v G)[a,)\])v (Zv V) = (e[ﬁ,,quG[a’)\]]v @[ﬁ,u})

Indeed, observe that for ¢ € H§(C), v >0
/yl_QO‘VU- Vipdrdy = /U(x,())()\ —U(z,0))(x,0)dz
c Q

> / T(@,0)(\ — T(a, 0) — bV (x, 0))ib(x, 0)da,
Q
forall V € [V, V].

On the other hand, observe that if V' € [V, V], then V' < ©3 ,); and so,

)
V(ac, 0) S 9[5#] .

Hence, for ¢ € HG(C), ¥ >0
/cy1_2aVU~de1:dy = /QU(x,O)()\ — U(x,0) — b5 ,))¢(x,0)dx
< /Q T(@,0)(\ — T(x, 0) — bV (x, 0))b(, 0},
forall V € [V, V].

In a completely similar way, we can proceed with V and V.
Finally, observe that thanks to (6.2) we have that U > 0 and V. > 0. Moreover,
since b,¢ > 0then U < U and V <V in C.

b) Assume that b > 0, ¢ < 0 and (6.3). Now, we take as pair of sub-supersolution

(Qa U) = (@[a,)\fbV(x,O)P @[a,)\])v (Ka V) = (Q[B,u]v 6[,8,;1—00[&7/\]])‘

First, since b > 0 and ¢ < 0 it is clear that U < U and V. <V, and thanks to (6.3)
we get that U > 0 and V > 0.

It is not hard to show that V and U are sub-supersolution. Consider V. We have
that for ¢ € HG(C), ¢ >0

/ y'"OVV - Vdady = / V(@ 0)(n = V(2,0) = cBja,n)d(, 0)dx
C Q

v

/Q Vi, 0) (4 — V{2, 0) — cUU(x,0))é(x, 0)d,
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for all U € [U, U] because ¢ < 0.

Finally, we consider U. In this case, we have

[ VU Vodady = [ UG, 000~ Ulw0) = 07 (2,0))0(z.0)do
c Q
< [ U0~ T(w.0) - V(w,0)o(z,0)dz,
Q
forall V € [V, V].
c¢) Assume b,c < 0, bc < C(«, B) and (6.2). Take

(U.U) = (Olar-sog, ) MiEs), (V,V) = (Opu ) M2Es),

where M7, My are positive constants to be chosen and FE, is the unique solution of
(4.10). Tt is easy to show that U and V are sub-solutions. On the other hand, U

and V are super-solutions provided of
Mlei > eqA + bMoeqes —1 and Mge% > egpt + cMieqeg —1 Vo € Q.

Since be < C(a, 3), we can take M; and My large.
O

Remark 6.4. Conditions (6.2) and (6.3) define a region in the A — p plane, they could

eventually be empty. There are detailed studies in the case « = 3 = 1 of these regions,

see for example [8], [16], [17], [11]. This study is out of the scope of this paper, but let us

only point out that if b > 0 the map

n e [/\1[,8],00) — Al[a;bﬁ[ﬁ#ﬂ eR

is a increasing map, because p + 05 ) is increasing and c — A[a; c] is also increasing.

Similarly, it is decreasing when b < 0.
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