
Automated Support for Quality Requirements
in Web–Service–Based Systems

Antonio Ruiz, Rafael Corchuelo, Amador Durán and Miguel Toro
Dep. de Lenguajes y Sistemas Informáticos, Universidad de Sevilla

Avda. de la Reina Mercedes, s/n. Sevilla 41.012, Spain
aruiz@lsi.us.es

Abstract

The automatic checking of quality requirements will play
a fundamental role in the future market of web services. The
reason is that it will allow to build economically–optimal
systems whose quality level can be guaranteed. In this pa-
per, we identify some of the main problems with which this
kind of futures systems are going to be faced, and also pro-
pose a realistic proposal to solve them. The key point is
to view quality requirements from a twofold perspective: a
natural language sentence and a constraint on a quality at-
tribute. Thanks to this principle, some of the classical dis-
advantages of formal methods may be overcome.

1. Introduction

The increasing demand and complexity of web appli-
cations, the need for reducing development and running
costs, and the new opportunities that web services offer
are the main reasons behind the forecast popularity of so
called Multi–Organisational Web–based Systems (MOWS).
In such a system, some organisations offer end–user web
services such as banking, booking or information retrieval,
whose functionality relies on a number of back–end web
services provided by other organisations. In order to
achieve optimal MOWS, they must be open systems that
must be able to search for the services on which they rely
automatically and dynamically. The final decision on which
to use should obviously depend on the ratio quality/price
[3].

In order to deal with MOWS, a new paradigm called
WOP (Web–Oriented Programming) is being studied. The
goal is to provide software architects with a number of tools
to solve critical problems such as optimality and confor-

� This article was supported by the Spanish Interministrial Commission
on Science and Technology under grant TIC2000–1106–C02–01, and by
the CYTED project “WEST”.

mance, which are both closely related to the automatic man-
agement and negotiation of quality requirements. In [3],
four extensions to current development methodologies and
run-time platforms were identified in order to solve these
problems:

1. Quality documents must be formalised so that they are
understandable and allow for automatic checking. Fur-
thermore, quality documents must include both QoS
clauses on attributes such as delays, jitting or mean
time to fails, and higher–level clauses on attributes
such as cost per connection, security level or binding
policies.

2. It is necessary to extend current architectural descrip-
tion languages so that they can take quality require-
ments into account.

3. It is necessary to extend current distributed run–time
platforms such as CORBA, COM+ or .NET so that
quality documents are first-class elements.

4. It is necessary to include quality monitoring mecha-
nisms so that it is possible to check if the provider
of a web service fulfills the quality level agreement it
reached with a customer.

5. It is necessary to include authentication mechanisms
that prevent both providers and clients from disowning
something they have done.

In this paper, we tackle extensions 1, 2 and 3 and present
a proposal for specifying quality requirements that offers
and effective solution to checking optimality and confor-
mance automatically. It improves on other proposals in the
following aspects: i) it provides a notation to express qual-
ity requirements in natural language that facilitates formal
reasoning and automatisation; ii) it allows for bilateral ne-
gotiation, so that both customers and providers can include
negotiation clauses in their conditions and offers; iii) it al-
lows to express optimisation criteria that help locating the

Conditions
• Medium time between fails greater than 90
minutes
• Medium time to repair smaller than 60
seconds
• Maximum cost 0.1 Euro per connection
• Streaming is required
• Negotiation:

•if cost is smaller than 0.03 then
streaming is not needed

•Criteria
•Minimise the cost per connection

ITrailersBank

playTrailer.html

Offer:
• Medium time between fails: 120
minutes
• Medium time to repair: 50 seconds
• 0.02 Euro per connection on
workdays
•0.05 Euro per connection at
weekends
• Streaming is not supported
• And so on

������������

	
���
��

http://zipi.lsi.us.es/Trailers

http://velazquez.fie.us.es/Trailers

Offer:
•Medium time between fails: 360 min
•Medium time to repair: 50 seconds
•Streaming is supported
•Media: BroadBand
•Cost: 0.4 euros (Broadband)
•Negotiation

•If Media is T1 or ISDN
then Cost is 0.3 euros
•If Media is Modem-56K
then Cost is 0.2 euros

•And so on

Figure 1. A fragment of the architecture of a web portal that offers films and trailers. It is annotated
with quality documents in natural language.

web service that optimally fulfills a number of quality re-
quirements; iv) it allows for temporal constraints, thus al-
lowing for systems whose requirements may change over
the time.

The rest of the paper is organised as follows: Section 2
presents some of the problems we tackle in the context of
a simple but realistic MOWS; Section 3 describes the main
features of QRL, a language that aims at providing software
engineers with an adequate tool to express quality require-
ments; Section 4 sketches an experimental prototype that
deals with the management of MOWS and offers a set of
components to implement them; Section 5 compares our
proposal with other authors’ work, and some conclusions
and future work are shown in Section 6.

2. Problems in the context of MOWS

2.1. A web video server

In this section, we present a simple MOWS in order to
illustrate the main problems our proposal tackles. It is a
quality–aware web portal that offers film trailers and aggre-
gates three web services: an authentication service such as
Microsoft Passport, a film store and a trailer store. Figure
1 shows a fragment of the software architecture. In order
to show a trailer, we use an HTML page that relies on a
web component that must implement interface ITrail-
ersBank. This component is stereotyped using a world
icon and drawn using a dashed line, which means that it is
not bound when the system is set up, but requested when it

is needed. Thus, any web service satisfying the quality con-
straints the portal requires may be used and bound at run
time so that the system can select the best one of which it is
aware each time a film is going be shown.

Hereinafter, we call conditions the document that de-
scribes the quality level the portal requires, and offers the
one that describes the requirements a provider can fulfill.

2.2. Conformance

Conformance is defined as the ability to guarantee that
the web services that compose a MOWS are adequate to sat-
isfy its quality requirements. In this context, the word guar-
antee should not be understood as uninterrupted satisfaction
of the requirements, but as a way to identify the organisa-
tion responsible for a failure if something goes wrong. In
order to be able to guarantee conformance, it is necessary
to check if the conditions for which a customer asks can be
fulfilled with the offers of a potential provider.

Figure 1 shows two providers called zipi and ve-
lazquez that offer a service for storing trailers. Infor-
mally, it is easy to check that the offer by zipi does not
satisfy the conditions of the portal because it cannot stream
trailers; on the contrary, the offer by velazquez fulfill
them completely.

Unfortunately, things are not so easy in a real Internet set,
and checking for conformance cannot be done manually in
most cases due to two main reasons:

� When the number of requirements is high, checking
them all for conformance may consume a lot of time,

which may be unacceptable if a customer is waiting
for a trailer to be displayed. Also, this process is er-
ror prone, and subject to ambiguity if requirements are
only expressed using natural language.

� Both conditions and offers depend on criteria that are
likely to change because the web is a dynamic scenario
where requirements are evolving continuously. Thus, a
human procedure is not likely to be successful in such
a dynamic set.

2.3. Negotiation

The results of checking a web service for conformance is
part of the document that describes both the responsibilities
of our portal and the providers of the services on which it
relies. In the context of application service providers (ASP),
such a document is known as the Service Level Agreement
(SLA) [1]. Unfortunately, it is not likely that an agree-
ment may be reached immediately because customers al-
ways search for inexpensive, but highly quality services and
providers always try to sell their high–quality services at
higher costs than their low–quality ones.

Therefore, customers and providers usually have to ne-
gotiate on the final required quality. For instance, our web
portal might agree on using a service that cannot stream
trailers as long as the connection cost is not greater than
0.03 Euro. If this negotiation clause is added to the condi-
tions, zipi might also be selected. Not only negotiation
clauses are applicable on the customer side, but also on the
provider side so that they can offer the same functionality
at different quality levels and prices. For instance, ve-
lazquez has three different fares, depending on the speed
at which a trailer is provided.

2.4. Optimality

Having an automatic mechanism for checking and nego-
tiating conformance is necessary, but not enough if we are
interested in finding a web service that optimally fulfills a
set of conditions. In our example, after negotiating, both
providers fulfill the required quality level, so any of them
might be hired. However, there is also an optimality cri-
terium in the conditions that specifies that the selected web
service must minimise the cost, so that zipi should be se-
lected according to this criterium. If this criterium had been
the minimum time to fails, velazquez should have been
selected, instead.

In general, optimality criteria are expressed as utility
functions over the set of quality attributes in which we are
interested. These functions are usually expressed as a linear
combination of the quality attributes in which higher coeffi-
cients indicate that the attribute to which they applied must
be maximised.

2.5. Temporal awareness

We are in no doubt that one of the most important fea-
tures of a service is its price. In the mobile telephony world,
temporal–aware fares was an important feature introduced
some years ago, and it attracted an important number of
users. In the world of web services, temporal fares are
also very important, and both conditions and offers must
be annotated with the period of time during which they are
valid. For instance, in our example, it is specified that zipi
charges its users with 0.02 Euro on workdays and 0.05 Euro
at weekends.

Designing temporal–aware systems bring architects a
lot of advantages because they can, for example, forecast
the workload of their servers more accurately, which helps
avoiding overload situations.

3. Our proposal

In this section, we briefly outline the main features of
QRL (Quality Requirements Language), a formal specifica-
tion language whose expressiveness and execution model
allow to solve the problems we have presented previously.

3.1. Formalising requirements

In section 2, we made evident the need for automa-
tising conformance, negotiation, optimality and temporal
awareness. Roughly speaking, this implies that we need to
transform quality requirements into a formal language with
which we can reason automatically.

There are only a handful languages for expressing qual-
ity requirements, and even less languages with enough for-
mal support so as to be able to proof properties such as op-
timality. QRL relies on mathematical constrains as a means
to transform quality requirements expressed in natural lan-
guage into a language that is amenable to formal reasoning.
Thus, the problems we referred to in Section 2 can be ex-
pressed formally as CSPs (Constraint Satisfaction Problem)
[8], and proofing conformance and optimality amounts to
solving such a problem.

In order to facilitate the translation of a quality require-
ment expressed in natural language, QRL uses the linguis-
tic patterns presented in [4] (See Figure 2.a). A linguistic
pattern, or L–pattern for short, is a standard sentence that
represents the whose set of requirements that can be ex-
pressed using that sentence. It should be as clear and syn-
thetic as possible in order to avoid ambiguity and redun-
dancy as much as possible. An L–pattern consists of a sen-
tence in which there are a number of placeholders written
within angles that represent values that must be substituted
before obtaining an instance of the pattern. Thus, an L–
pattern may also be viewed as a way to define the meaning

catalogue com.acme.stdMOWS �
category Reliability �

TTF �
description: ”Time to Fails”;
domain: increasing numeric (0, 10*365*24] hour;
pattern: “The mean time to fails will be ������ at least”� “TTF.mean� ������”;

�
TTR �

description: ”Time to recover from errors”;
domain: decreasing numeric (0, 14*24] hour;
pattern: “The mean time to recover from a fail will be less than ������”� “TTF.mean� ������”;
pattern: “The maximum time to recover from a fail will be less than ������”� “TTF.max� ������”;

�
�
�

a) Ontology

using com.acme.stdMOWS;

conditions for ITrailersBank �
require �

c1: TTF � 90 min
c2: TTR � 60 seg
c3: COST � 0.1 Euro
c4: STREAMING � Yes

�
negotiation �

r1 �
weaken

c4: STREAMING = No;
strenght

c3: COST � 0.03 Euro;
�

�
weights �

TTF = -90;
TTR = 30;

�
�

// Provided by zipi
using stdMOWS.lsi.us.es;

offer for ITrailersBank �
provide

c1: TTF = 120 min
c2: TTR = 50 seg
c3: COST = 0.02 Euro on [MON..FRI]
c4: COST = 0.05 Euro on [SAT, SUN]
c5: STREAMING = No

�

// Provided by velazquez
using com.acme.stdMOWS;

offer for ITrailersBank �
provide

c1: TTF = 360 min
c2: TTR = 50 seg
c3: COST = 0.4 Euro
c4: STREAMING = Yes
c5: MEDIA = BroadBand

negotiation �
r1 �

weaken � c5: MEDIA � �ISDN, T1�; �
strenght � c3: COST = 0.3 Euro; �

�
�

�

b) Conditions c) Offers

Figure 2. A specification in QRL of the requirements in Figure 1

of a quality requirement using natural language, but with
precise semantics due to its corresponding constraints. This
way, if we want to test if a given document is consistent, we
only have to check if the set of constraints into which it is
translated is consistent or not.

The dual nature of requirements as sentences in natural
language and in formal language is simple, but very expres-
sive. So far, we have not found a problem that cannot be
expressed using constraints on quality attributes. However,
its application in a real–world set has an important problem:
the vocabulary. What happens if the customer uses a num-
ber of quality requirements the provider cannot understand?
Or even worst, what happens if both use the same identifiers
but the implied semantics are different? In general, quality
documents must have a pointer to the ontology over which
they are defined, and an offer can be checked against a num-
ber of conditions as long as they share the same ontology or
there is a mapping between them. The details concerning
such mappings fall beyond the scope of this paper, but there
are a number of tools such as BIZTALK that can be used to
map an ontology onto another (www.biztalk.net) .

Figure 2 shows a formal description in QRL of the con-
ditions and offers of the example we presented in Figure 1.
We use the same ontology in both documents.

3.2. Negotiation clauses

In QRL, we can define negotiation clauses in both the
conditions and the offers, and they are considered valid as
long as it weakens a number of clauses and strengths others
or introduces new ones.

It is important to emphasise that negotiation is bilateral
because if a customer and a provider do not agree on the
main clauses of a contract, they both can express additional
constraints. In the example, the negotiation clause in the
conditions express that the customer can accept a provider
that does not have streaming capabilities as long as the con-
nection cost is less or equal than 0.03 Euro. zipi does not
include any negotiation clauses, but velazquez can of-
fer an ISDN or T1 connection as long as the customer can
afford to pay 0.3 Euro per connection.

3.3. Optimisation criteria

In QRL, optimisation criteria may be expressed by as-
signing weights to the set of attributes under consideration.
If the attribute vector is represented as �� and the weight
vector as �� , the service we select is a service for which
an agreement may be reached that maximises the function
�� �

�
��. Thus, if an attribute has a negative weight, it is

minimised, if its weight is zero, it does not matter, and if its
weight is positive, then it is maximised.

In the example in Figure 2 the weights indicate that at-
tribute ��� is more important to the customer than at-
tribute ���.

3.4. Temporal requirements

Sometimes, the quality level a web–service may require
or offer depends completely on the hour, the day or the
month. Thus, quality requirements may be temporal. In
our example, provider zipi states that clause c3 is valid
on workdays, and clause c4 at weekends.

Such constraints may be expressed in QRL by means of
temporal constraints on hours, days of the week or months.
Below you can find several examples of such constraints:

� ��	�
 � � at ������ � �� �	���� � ��
. This con-
straint indicates that the response time must be smaller
than two seconds every day during the specified time
slices.

� ��	�
 � � on ���������
 of ��������	
��������
. This constraint indicates that the re-
sponse time must be smaller than two seconds from
Monday to Saturday at any time, except for August.

4. Run–time support

Figure 3 shows the basic architecture of MEEM (Man-
agement and Execution Environment for MOWS), an exper-
imental development framework that offers support for the
administration and execution of MOWS. The details con-
cerning monitorisation and authentication have been inten-
tionally omitted because they fall beyond the scope of this
paper.

MEEM is composed of three main components: an inter-
face repository, an implementation repository, and a quality
trader. Its similarity to standard CORBA elements is not by
chance because its basic functionality is close to the one de-
fined in CORBA, being the main difference that these com-
ponents are QA (Quality Aware).

Managing a MOWS consists of two tasks, namely: reg-
istering interfaces, and registering web services. Register-
ing an interface consists of registering its syntactic signature
and the set of conditions that may be necessary in a given
organisation. Note that several conditions documents may
be attached to the same interface according to the different
sets in which a web service implementing it may be used.
Registering an implementation consists of registering both
information about how to have access to it and also its asso-
ciated quality document.

The needed run–time support is necessary only when
an application asks for a service implementing an interface
with a given quality level. In such cases, the quality trader

Interface
Repository

Implementation
Repository

Quality
Trader

ITrailersBank

http://velazquez.fie.us.es/
TrailersBank.asmx

UDDI
Repository

SalCentral
Repository

Figure 3. Basic architecture of our MOWS run–time system.

is responsible for searching for the web service that both
conforms to the conditions and is optimal over the set of
registered services in the implementation repository.

In order to optimise the effectiveness of the quality
trader, it has access to a database that associates each pair
(interface, conditions) to an implementation, if it exists.
This database acts as a cache so that the first time the quality
trader has to find an implementation for a given interface at
a given quality level, it has to search the whole implementa-
tion repository for services satisfying that quality level. If it
finds such a service, then a record is stored in the cache so
that the next time a customer asks for such a service it may
be found quickly and efficiently.

5. Related work

In this section, we compare our proposal with other au-
thors’ work. Comparisons are brief and hardly justice to the
creativity and hard work of their authors. Our purpose is to
give the reader a view of the spectrum of possibilities that
are available, their strengths and weaknesses.

There are a number of notations and languages for speci-
fying quality requirements. NoFun [5] and QML [6] fit into
this category. Unfortunately, none of them has support for
automatic, bilateral negotiation, optimum search or tempo-
ral constraints; furthermore QML does not have linguistic
support to import ontologies, which hinders its effective-
ness in open and heterogeneous systems.

There are a number of authors who focus on describ-
ing quality requirements by means of standard sentences or
linguistic patterns in natural language. The pattern–based
language presented in [4] fits into this category. Unfortu-
nately, this language does not allow for a precise definition
of quality requirements, thus leaving room for inaccuracies
or vague remarks. QRL uses the same notation as in [4]
for specifying linguistic patterns, but it also allows the re-
quirements engineer to annotate each linguistic pattern with

its corresponding mathematical constraint in order to state
their semantics precisely.

Regarding negotiation, we are not aware of any proposal
allowing for so many possibilities as ours. We think that
this is due to the fact that other proposals focus on QoS re-
quirements, which are mainly defined on attributes whose
value depend on the workload the provider of a service or
the network must support. In this context, the most com-
plete automatic negotiation model of which we are aware is
the one proposed in [7]. In this model, only providers can
make counter-offers when their offers do not satisfy a cus-
tomer’s request or when the offer selected by a customer is
no longer valid.

As for optimality, Koistinen [7] proposed the use of some
functions for calculating the value of a quality attribute re-
garding the preferences of the customer. This proposal
has several drawbacks, as shown in [2], where the authors
present a model based on hierarchies of contracts to specify
clients preferences. However, it cannot dealt with providers
that can also negotiate its quality level.

Finally, there are also a number of proposals related to
the supporting tools. The main advantage of our proposal is
that quality requirements expressed in natural language can
be assigned precise semantics because they are translated
into formal constraints that can be checked automatically
for consistency or conformance with respect to another set
of constraints. Furthermore, there a number of commercial
tools such as ILOG (www.ilog.com) that can solve CSPs
automatically, so our proposal is highly automatisable.

6. Conclusions and future work

The automatic checking of quality requirements will
play a fundamental role in the future market of web ser-
vices, because it will allow to build quality–aware systems
that are optimal from an economic point of view and whose
quality level can be guaranteed. In this paper, we have iden-

tified some of the main problems with which MOWS are
faced, and we have also presented a proposal that can be
used to solve them in practice.

We think that the formal and informal view of quality
requirements overcomes some of the problems of using for-
mal methods: i) constraints are an usual tool for software
engineers, so it is not difficult to work with them; ii) it is
possible to define the semantics associated with a sentence
in natural language; iii) it is possible to reason using math-
ematical constraints; iv) there are a number of commercial
libraries with which CPS over reals, integers or enumera-
tions can be solved efficiently, so QRL can be implemented.

As for the expansiveness of our proposal, its main advan-
tages with respects to other are the following: i) it allows for
bilateral negotiation rules; ii) it allows for optimisation cri-
teria; iii) it allows for temporal constraints.

Currently, we are trying to apply our proposal to the eval-
uation of design alternatives. The idea is to use conditions
as a means to express the requirements a design must sat-
isfy, and offer documents as a means to express what re-
quirements a design alternative fulfills. Thus, selecting the
best alternative amounts to an optimisation problem.

In the future, we are planning on developing an agent–
based solution for filling the implementation repository so
that web services are not searched for on demand but be-
forehand, every time a new interface is registered. This way
the cache with which the quality trader works can be up-
dated incrementally, and the connection time might be re-
duced considerably.

References

[1] ASP Industry Consortium. An Overview of The Guide to
Service Level Agreements. White Paper, 2001. Disponible en
http://www.aspindustry.com.

[2] C. Becker, K. Geihs, and J. Gramberg. Representing quality
of service preferences by hierarchies of contracts. In In Pro-
ceedings of Elektronische Dienstleistungswirtschaft und Fi-
nancial Engineering (FAN’99), Augsburg/Germany, 1999.

[3] R. Corchuelo, A. Ruiz, J. Mühlbacher, and J. Garcı́a-
Consuegra. Object-Oriented Business Solutions. In Chapter
18 of ECOOP’2001 Workshop Reader, LNCS no (to appear).
Springer-Verlag, 2001.

[4] A. Durán, B. Bernárdez, M. Toro, R. Corchuelo, A. Ruiz,
and J. Pérez. Expressing Customer Requirements Using Nat-
ural Language Requirements Templates and Patterns. In
Proc. of the III�� Conference on Circuits, Systems, Commu-
nications and Computers CSCC’99, Athens, (Greece), 1999.
IMACS/IEEE.

[5] X. Franch. Systematic formulation of non–functional cahrac-
teristics of software. In Proc. of the International Conference
on Requirements Engineering (ICRE’98), Colorado, USA,
April 1998.

[6] S. Frolund and J. Koistinen. Quality–of–Service
Specification in Distributed Object Systems. Dis-
tributed Systems Engineering Journal, 5(4), 1998.

Disponible como informe técnico HPL–98–159 en
http://www.hpl.hp.com/techreports.

[7] J. Koistinen and Seetharaman. Worth–based Multi-Category
Quality–Of–Service Negotiation in Distributed Object Infras-
tructures. In Proc. of the Second International Enterprise Dis-
tributed Object Computing Workshop, EDOC’98, La Jolla,
San Diego, USA, 1998.

[8] K. Marriot and P. Stuckey. Programming with Constraints:
An Introduction. The MIT Press, 1998.

