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Abstract

In 1958, Hill conjectured that the minimum number
of crossings in a drawing of Kn is exactly Z(n) =
1
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. Generalizing the result by

Ábrego et al. for 2-page book drawings, we prove
this conjecture for plane drawings in which edges
are represented by x-monotone curves. In fact, our
proof shows that the conjecture remains true for x-
monotone drawings in which adjacent edges do not
cross and we count only pairs of edges which cross
odd number of times. We also discuss a combinato-
rial characterization of these drawings.

1 Introduction

Let G be a graph with no loops and multiple edges.
In a drawing D of a graph G in the plane, the vertices
are represented by distinct points and each edge is
represented by a simple continuous arc connecting the
images of its endpoints. As usual, we identify the
vertices and their images, as well as the edges and the
arcs representing them. It is required that the edges
pass through no vertices other than their endpoints.
We also assume for simplicity that any two edges have
only �nitely many points in common, no two edges
touch at an interior point and no three edges meet at
a common interior point.
A crossing in D is a common interior point of two

edges where they properly cross. The crossing number
cr(D) of a drawing D is the number of crossings in
D. The crossing number cr(G) of a graph G is the
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minimum of cr(D), taken over all drawings D of G.
A drawing D is called simple if no two adjacent edges
cross and no two edges have more than one common
crossing. It is well known and easy to see that every
drawing of G which minimizes the crossing number is
simple.
According to the famous conjecture of Hill [7, 8]

(also known as Guy's conjecture), the crossing num-
ber of the complete graph Kn on n vertices satis�es
cr(Kn) = Z(n), where

Z(n) =
1
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This conjecture has been veri�ed for n ≤ 12 [12] and
for each n, there are drawings of Kn with Z(n) cross-
ings [6, 7, 8, 9].
A curve α in the plane is x-monotone if every verti-

cal line intersects α in at most one point. A drawing
of a graph G in which every edge is represented by an
x-monotone curve and no two vertices share the same
x-coordinate is called x-monotone (or monotone, for
short). The monotone crossing number mon-cr(G) of
a graph G is the minimum of cr(D), taken over all
monotone drawings D of G.
The rectilinear crossing number cr(G) of a graph

G is the smallest number of crossings in a drawing
of G where every edge is represented by a straight-
line segment. Since every rectilinear drawing of G in
which no two vertices share the same x-coordinate is
x-monotone, we have cr(G) ≤ mon-cr(G) ≤ cr(G) for
every graph G.
We call a drawing of a graph semisimple if adja-

cent edges do not cross but independent edges may
cross more than once. The monotone semisimple odd
crossing number of G (called monotone odd + by
Schaefer [14]), denoted by mon-ocr+(G), is the small-
est number of pairs of edges that cross an odd num-
ber of times in a monotone semisimple drawing of G.
Clearly, mon-ocr+(G) ≤ mon-cr(G).
The monotone crossing number has been intro-

duced by Valtr [15] and recently further investigated
by Pach and Tóth [11], who showed that mon-cr(G) <
2cr(G)2 holds for every graph G. On the other hand,
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they showed that the monotone crossing number and
the crossing number are not always the same: there
are graphs G with arbitrarily large crossing numbers
such that mon-cr(G) ≥ 7

6cr(G)− 6.

We study the monotone crossing numbers of com-
plete graphs. The drawings of complete graphs with
Z(n) crossings obtained by Blaºek and Koman [6]
(see also [9]) are 2-page book drawings, which may
be considered as a strict subset of x-monotone draw-
ings. Thus we have mon-cr(Kn) ≤ Z(n). Ábrego
et al. [1] recently proved Hill's conjecture for 2-page
book drawings of complete graphs. We generalize
their techniques and show that Hill's conjecture holds
for all x-monotone drawings of complete graphs, even
for the monotone semisimple odd crossing number.

Theorem 1 For every n ∈ N, we have

mon-ocr+(Kn) = mon-cr(Kn) = Z(n).

The rectilinear crossing number of Kn is known
to be asymptotically larger than Z(n): this fol-
lows from the best current lower bound cr(Kn) ≥
(277/729)

(
n
4

)
−O(n3) [3, 5] and from the simple upper

bound Z(n) ≤ 3
8

(
n
4

)
+O(n3).

See a recent survey by Schaefer [14] for an ency-
clopedic treatment of all known variants of crossing
numbers.
After submitting this extended abstract, we were

informed that the authors of [1] achieved the result
mon-cr(Kn) = Z(n) already during discussions after
their presentation at SoCG 2012, and that it will ap-
pear in the proceedings of LAGOS 2013 [2].

2 Monotone Crossing Number

To prove the upper bound on the 2-page crossing num-
ber of Kn, Ábrego et al. [1] generalized the notion
of k-edges to arbitrary simple drawings of complete
graphs. They also introduced the notion of ≤≤k-
edges. These capture the essential properties of 2-
page book drawings better than ≤k-edges, which had
been successfully used before for rectilinear and pseu-
dolinear drawings [10, 4, 3]. We show that the ap-
proach using ≤≤k-edges can be generalized to arbi-
trary semisimple x-monotone drawings.
For a semisimple drawing D of Kn and distinct ver-

tices u and v of Kn, let γ be the oriented arc repre-
senting the edge {u, v}. If w is a vertex ofKn di�erent
from u and v, then we say that w is on the left (right)
side of γ if the topological triangle uvw with vertices
u, v and w traced in this order is oriented counter-
clockwise (clockwise, respectively). This generalizes
the de�nition introduced by Ábrego et al. [1] for sim-
ple drawings. However, we were not able to �nd a
meaningful generalization of this notion to drawings

that are not semisimple, where the edges of the trian-
gle uvw can cross several times.
A k-edge is an edge {u, v} of D that has exactly k

points on the same side (left or right). Since every
k-edge has n−2−k points on the other side, every k-
edge is also an (n−2−k)-edge and so every edge of D
is a k-edge for some integer k where 0 ≤ k ≤ bn/2c−1.
An i-edge with i ≤ k is called a ≤k-edge. Let Ei(D)

be the number of i-edges and E≤k(D) the number
of ≤k-edges of D. Clearly, E≤k(D) =

∑k
i=0Ei(D).

Similarly, the number of ≤≤k-edges of D, E≤≤k(D),
is de�ned by the following identity.

E≤≤k(D) =
k∑

j=0

E≤j(D) =
k∑

i=0

(k + 1− i)Ei(D) (1)

Considering the only three di�erent simple draw-
ings of K4 up to a homeomorphism of the plane,
Ábrego et al. [1] showed that the number of cross-
ings in a simple drawing D of Kn can be expressed in
terms of the number of k-edges in the following way.

Lemma 2 ([1]) For every simple drawing D of Kn

we have

cr(D) = 3

(
n

4

)
−
bn/2c−1∑

k=0

k(n− 2− k)Ek(D), (2)

which can be equivalently rewritten as

cr(D) = 2

bn/2c−2∑
k=0

E≤≤k(D)− 1

2

(
n

2

)⌊
n− 2

2

⌋

− 1

2
(1 + (−1)n)E≤≤bn/2c−2(D).

In fact, Lemma 2 can be easily generalized to
semisimple drawings of Kn where cr(D) is replaced
by ocr(D), which counts the number of pairs of edges
that cross an odd number of times in D. The main
reason is that the cycle C4 cannot be drawn in the
plane in such a way that both its pairs of opposite
edges cross oddly while adjacent edges do not cross.
By Lemma 2, lower bounds on Ek(D) imply lower

bounds on cr(D) and ocr(D). Considering ≤k-edges,
Ábrego and Fernández-Merchant [4] and Lovász et
al. [10] proved that for rectilinear drawings of Kn,
the inequality E≤k ≥ 3

(
k+2
2

)
together with (2) gives

cr(G) ≥ Z(n). However, there are simple x-monotone
(even 2-page) drawings of Kn where E≤k < 3

(
k+2
2

)
for k = 1 [1]. Ábrego et al. [1] showed that similar in-
equality for ≤≤k-edges is satis�ed by all 2-page book
drawings. We show that the same inequality is satis-
�ed by all x-monotone semisimple drawings of Kn.
Let {v1, v2, . . . , vn} be the vertex set of Kn. Note

that we can assume that all vertices in an x-monotone
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drawing lie on the x-axis. We also assume that the
x-coordinates of the vertices satisfy x(v1) < x(v2) <
· · · < x(vn).

Observation 3 Let D be a semisimple drawing of
Kn, not necessarily x-monotone. Let v be a vertex
incident with the outer face of D and let γi be the ith
edge incident with v in the counter-clockwise cyclic or-
der such that γ1 and γn−1 are incident with the outer
face in a small neighborhood of v. Let vki

be the other
endpoint of γi. Then for every i, j, 1 ≤ i < j ≤ n−1,
the triangle vki

vvkj
is oriented clockwise. Conse-

quently, for every k, 1 ≤ k ≤ (n − 1)/2, the edges
γk and γn−k are (k − 1)-edges. For even n, the edge
γn/2 is a halving edge. �

For an x-monotone drawing D of Kn, we use Ob-
servation 3 directly for the vertex vn and then for
each i, for the vertex vi and the subgraph induced by
vi, vi+1, . . . , vn.
The following de�nitions were introduced by

Ábrego et al. [1] for 2-page book drawings. Let D
be a semisimple x-monotone drawing of Kn and let
D′ be a drawing obtained from D by deleting the ver-
tex vn together with its adjacent edges. A k-edge in
D is a (D,D′)-invariant k-edge if it is also a k-edge
in D′. It is easy to see that every ≤k-edge in D′ is
also a ≤(k + 1)-edge in D. If 0 ≤ j ≤ k ≤ bn/2c − 1,
then a (D,D′)-invariant j-edge is called a (D,D′)-
invariant ≤k-edge. Let E≤k(D,D′) denote the num-
ber of (D,D′)-invariant ≤k-edges.
For i < j, the edge vivj is called the right edge at

vi. The right edges at vi have a natural vertical order.

Lemma 4 Let k be a �xed integer such that 0 ≤ k ≤
(n−3)/2. For every i ∈ {1, 2, . . . , k+1}, the k + 2− i
bottommost and the k + 2− i topmost right edges at
vi are ≤ k-edges in D. Moreover, at least k + 2− i of
these ≤ k-edges are (D,D′)-invariant ≤k-edges.

Proof. The �rst part of the lemma follows directly
from Observation 3. If the edge vivn is one of the
k + 2− i topmost right edges at vi, then the k + 2− i
bottommost right edges at vi are (D,D′)-invariant
≤k-edges. Otherwise the k + 2− i topmost right
edges at vi are (D,D′)-invariant ≤k-edges. �

Corollary 5 We have

E≤k(D,D′) ≥
k+1∑
i=1

(k + 2− i) =

(
k + 2

2

)
.

�

The following theorem gives the lower bound on
the number of ≤≤k-edges. The proof is essentially
the same as in [1], we only extracted Lemma 4, which
needed to be generalized. Together with Lemma 2,
Theorem 6 yields Theorem 1.

Theorem 6 Let n ≥ 3 and let D be a semisimple x-
monotone drawing of Kn. Then for every k, 0 ≤ k <
n/2− 1, we have E≤≤k(D) ≥ 3

(
k+3
3

)
.

Proof. The proof proceeds by induction on n where
the case n = 3 is trivially true. Let n ≥ 4 and let D
be a semisimple x-monotone drawing of Kn. For the
induction step we remove the point vn together with
its adjacent edges to obtain a drawing D′ of Kn−1,
which is also semisimple and x-monotone.
Using Observation 3 we see that for 0 ≤ i ≤ k <

n/2− 1 there are two i-edges adjacent to vn in D and
together they contribute with 2

∑k
i=0(k + 1 − i) =

2
(
k+2
2

)
to E≤≤k(D) by (1).

Let γ be an i-edge in D′. Then γ contributes by
(k− i) to the sum E≤≤k−1(D′) =

∑k−1
i=0 (k− i)Ei(D

′).
We already observed that γ is either an i-edge or an
(i+ 1)-edge in D. If γ is also an i-edge in D (that is,
γ is a (D,D′)-invariant i-edge), then it contributes by
(k+ 1− i) to E≤≤k(D). This is a gain of +1 towards
E≤≤k−1(D′). If γ is an (i + 1)-edge in D, then it
contributes only (k − i) to E≤≤k(D). Therefore we
have

E≤≤k(D) = 2

(
k + 2

2

)
+ E≤≤k−1(D′) + E≤k(D,D′).

By the induction hypothesis we know that
E≤≤k−1(D′) ≥ 3

(
k+2
3

)
and thus we obtain

E≤≤k(D) ≥ 3

(
k + 3

3

)
−
(
k + 2

2

)
+ E≤k(D,D′).

The theorem follows by plugging the lower bound
from Corollary 5. �

3 Combinatorial Description

In this section we develop a combinatorial charac-
terization of x-monotone drawings which is based on
the signature function introduced by Peters and Szek-
eres [13] for describing order types of points sets. Let
Tn be the set of ordered triples (i, j, k) of the set
[n] = {1, 2, . . . , n} and let Σn be the set of signature
functions σ : Tn → {−,+}.
Let D be an x-monotone drawing of the complete

graph Kn = (V,E) with vertices v1, v2, . . . , vn such
that their x-coordinates satisfy x(v1) < x(v2) < · · · <
x(vn). We assign a signature function σ ∈ Σn to the
drawing D according to the following rule. For each
e = {vi, vk} ∈ E and every integer j, i < j < k,
let σ(i, j, k) = − if the point vj lies above the arc
representing the edge e and σ(i, j, k) = + otherwise.
Note that if the drawing D is also semisimple,

then a triangle vivkvj , j ∈ (i, k), is oriented coun-
terclockwise (clockwise) if and only if σ(i, j, k) = −
(σ(i, j, k) = +, respectively). It is easy to see that
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for every signature function σ ∈ Σn there is an x-
monotone drawing D which induces σ. However,
such a drawing does not have to be semisimple. We
show a characterization of simple and semisimple x-
monotone drawings by small forbidden con�gurations
in the signature functions.
For a, b, c, d ∈ [n] with a < b < c < d and a

signature function σ ∈ Σn we say that the 4-tuple
(a, b, c, d) is of the form ξ1ξ2ξ3ξ4 in σ if σ(a, b, c) =
ξ1, σ(a, b, d) = ξ2, σ(a, c, d) = ξ3 and σ(b, c, d) = ξ4.

Theorem 7 A signature function σ ∈ Σn can be re-
alized by a semisimple x-monotone drawing if and
only if each ordered 4-tuple of indices is of one of
the forms ++++, −−−−, ++−−, −−++, −++−,
+−−+, −−−+, +++−, +−−−, −+++ in σ. The
signature function σ can be realized by a simple x-
monotone drawing if, in addition, there is no 5-tuple
(a, b, c, d, e), a < b < c < d < e, with

σ(a, b, e) = σ(a, d, e) = σ(b, c, d) = −σ(a, c, e).

Note that in a simple x-monotone drawing of
Kn the crossings can appear only between edges
whose endpoints induce a 4-tuple of one of the forms
++++,−−−−,++−−,−−++,−++−,+−−+.
Analogously to a similar correspondence in recti-
linear drawings of Kn, we may call these 4-tuples
convex. Then for a simple x-monotone drawing D of
Kn the crossing number of D equals the number of
convex 4-tuples.
A similar notion of convexity for general k-tuples

was used by Peters and Szekeres [13]. This description
of crossings is convenient for computer calculations.
Using it, we have obtained a complete list of optimal
x-monotone drawings of Kn for n ≤ 10.

4 Concluding remarks

It is an interesting direction of further research to see
if similar techniques can be helpful in proving Hill's
conjecture for general drawings of complete graphs.
We note that the same approach does not generalize
to all drawings: for example, a particular planar re-
alization of the so-called cylindrical drawing [7, 8] of
K10, with crossing number Z(10), does not satisfy the
lower bound on ≤≤1-edges in Theorem 6. It would
also be interesting to further generalize Theorem 1
to monotone drawings where also adjacent edges are
allowed to cross.
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