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Dispersive contribution to the nucleus-nucleus potential
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With a simple parametrization of the empirical imaginary potential depths, the real potential in-

duced by a dispersion relation is calculated analytically for the elastic scattering of ' 0 by several

target nuclei. Between 25—50%%uo of the real potential empirical depths can be attributed to this

dispersive contribution when the energy approaches the Coulomb barrier. Thus, the anomaly ob-

served in the microscopically calculated real potential at these energies can be explained by taking

into account the real part induced from the imaginary one through the dispersion relation.

The energy dependence of the nucleus-nucleus optical
potential is not well established so far. From an empirical
point of view the ambiguity of the parameter sets of sim-

ple forms, determined from the analysis of experimental
data, makes it difficult to obtain clear information about
their energy dependence. ' One of the best microscopic
methods to calculate the real potential is the double fold-
ing procedure by using a realistic effective interaction.
This can be derived from G-matrix elements based on the
Reid potential or it can be built for computing the gen-
eral properties of spherical nuclei. In both cases the dou-
ble folding potential has not any energy-dependent term.
The variation with the energy of the imaginary part is
better known from some empirical analyses (see, for in-

stance, Refs. 4—6) or from some phenomenological
models). In general, the optical potential constructed
with a double folding real potential and an empirical or
phenomenological imaginary part allows us to reproduce
fairly well the elastic scattering experimental data for a
wide range of masses and energies. There are two general
exceptions. The first one is the case of the scattering of
light-heavy ions, such as ' Li and Be, where the folded
potential has to be reduced almost 50%%uo in order to fit the
data. In these cases a detailed study of the reaction
mechanisms is needed to explain the necessity of such
strong renormalization of the real potential (see Ref. 8

and references therein). The second failure of the folding
potential has been reported more recently, mainly for the
system ' 0+ Pb at energies close to the Coulomb bar-
rier and for the system S+ Ca at three different ener-
gies. ' In principle, the anomalies of the potential can be
attributed to couplings of the elastic scattering with none-
lastic channels that could be described by explicit
coupled-channel calculations. " ' As an alternative,
Nagarajan, Mahaux, and Satchler have suggested' includ-
ing all possible couplings in a dispersion relation. Thus,
with an energy-dependent imaginary part an energy-
dependent real term can be obtained through the disper-
sion relation. The strong contribution of this term at en-
ergies close to the barrier and at the relevant distances for
the elastic scattering can explain the observed anomalies
of the optical potential. Some extensions of this disper-
sion relation approach to the extrapolation towards nega-
tive energy' and to the nucleus-nucleus potential of a

In principle, the real potential V(r) must coincide with
the microscopic potential and the sum V(r)+b, V(r, E)
must coincide with the empirical potential that reproduces
the elastic scattering experimental data.

In a recent work we proposed from phenomenological
considerations an imaginary potential of the form

W(r, E,L) = W(E,L) W(r),

where the geometrical part W(r) is parametrized as

W(r) =
I I+exp[(r —R;)/a;] I (4)

with R;=r;(AI +Az ), and the energy- and angular-
rnomentum-dependent depth of the form

W(E L):0 if E*&Ey(L)

=cp(E', L) if EY(L) &E*&E~(L)+E,

=co+e~E if E*&Ey(L)+E),

where p(E*,L) is the compound nucleus level density,
Ez(L) is the yrast energy, E* is the excitation energy, and
F-'&, co, and c& are the constants of the model. A numeri-

variety of systems' have been made recently.
In this work the energy-dependent contribution to the

real potential that arises from the imaginary potential
through the dispersion relation is estimated. A simple
linear parametrization of the empirical imaginary depths
is assumed for the quantitative determination. The addi-
tion of such a term to the microscopically calculated real
potential can avoid the necessity of renormalizing that po-
tential in order to fit the elastic scattering experimental
data at energies close to the Coulomb barrier.

The nucleus-nucleus optical potential can be expressed
in a local and angular momentum independent form as

U(r, E)= V(r)+b, V(r,E)+iW(r, E),
where b, V(r, E) is the "dispersive" term arising from the
absorptive potential W(r, E) through the dispersion rela-
tion
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where the meaning of the constants is clear in Fig. 1. The
evaluation of the dispersion relation (5) for the imaginary
potential W(r, E) constructed with a geometrical factor as
expressed by Eq. (4) and with a depth as that of Eq. (6)
gives a dispersive real potential of the form

6 V(r, E)=b, V(r)EV(E),

being

Ei Ec Ef E

FIG. 1. Scheme of the straight-line fit to the empirical imagi-
nary potential depths.

and

b. V(r)+ {)+exp[(r —R;)la;] )

cal evaluation of the dispersion relation using this poten-
tial will be published elsewhere. In order to obtain an
analytical expression of the dispersive potential, expres-
sion (5) can be simplified along the same line as has been
done by Mahaux, Ngo, and Satchler, ' in the schematic
form

W(E)=0 if E &E;
=a&+b&E if E; &E &E,
=a2+b2E if E, &E &Ef,

b, V (E)= —(a 1+b, E)ln
E, E-

/E; E/—
( Ef E-

+ (a 2 +b2E)ln
E, —E

it being well understood that the geometrical parameters
r; and a; are energy independent. The constants a&, b&,
a2, b2, E;, E„and Ef are determined from lineal least
square fits of the empirical depths for each system. Fig-
ure 2 shows these fits for the elastic scattering of ' 0 by
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FICx. 2. The values of real {open circles), imaginary (full circles and other symbols in the last case), and dispersive (triangles) poten-
tial well depths, as functions of center of mass energy for the elastic scattering of ' O from " Ni (Ref. 4), &e, Zr (Ref. 5), and

Pb (Ref. 6). The straight line fit to the real and imaginary depths is shown. The full heavy line joins the dispersive depths.
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different target nuclei. The data are taken from Ref. 4
(' 0+ ' '~Ni), Ref. 5 ('60+ Ge, Zr), and Ref. 6
(' 0+ Pb). The error bars are a measure of the uncer-
tainties associated with the ambiguity of the optical model
parameters. ' The reported points in Fig. 2 are those
around and above the Coulomb barrier.

In the case of ' 0+ Ni the same values of az and b2
as for ' 0+ Ni are adopted since there are no empirical
depths at the higher energies and not much difference is
expected in principle between these two systems. The
geometry parameters for the first five systems reported in
Fig. 2 were the same for the real and the imaginary parts
and energy independent. ' These are r =1.22 fm and
a =0.50 fm for ' 0+ ' ' Ni, r =1.25 fm and a =6.0
fm for ' 0+ Ge, and r =1.25 fm and a =0.50 fm for
' 0+ Zr. For the case of ' 0+ Pb Videbaek et al.
offer three different sets of Woods-Saxon parameters with
the same geometry for the real and imaginary potentials
and with a common real depth of 100 MeV. Although in
this case the radius parameter of each set varies slightly
with energy, it was not considered in the integration of the
dispersion relation. For the imaginary depths an average
value for the lineal fits of the three sets has been taken,
a I

———294.7 MeV, b i ——4.33, a2 ——195.7 MeV, and
bq ———1.37 that give the following values of the energies:
E; =68 MeV, Ef ——143 MeV, and E, =86 MeV. Once the
constants of expression (6) are determined from the lineal
fits, the dispersive potential depths are calculated with Eq.
(9). The result is displayed in Fig. 2 by the heavy line
joining the triangular points. As can be seen, in every
case the part of the empirical real depth attributed to the
dispersive contribution is very important, especially when
the energy approaches the Coulomb barrier. Only a few
MeV above the barrier the importance of this term de-
creases rapidly, and for a certain energy the dispersive po-
tential changes its sign. Since, in general, the increasing
part of the depths (in absolute value) with the energy is
better fitted by a straight line than the decreasing one, ex-
pression (9) has been calculated for different values of the
constants a2, b2, and Ef. The results do not change sig-
nificantly, as can be expected from the results of Mahaux,
Ngo, and Satchler. '

In order to see if the addition of the dispersive potential
to the folding real potential can avoid the renormalization
of this one, the system ' O+ Pb was chosen. Figure 3
shows the empirical %'oods-Saxon potentials of Videbaek
et al. for two energies, E =74.3 and 83.6 MeV (80 and
90 MeV laboratory), at the strong absorption radius. This
is defined here as the point where potentials with different
diffusivities (0.45, 0.50, and 0.55 fm) cross each other.
The long dashed line represents the double folding poten-
tial in that region calculated with the method of Ref. 3.
The short dashed line is the dispersive potential (7) con-
structed with a geometrical part (8) corresponding to the
parameter set of diffusivity 0.50 fm of Videbaek et a1.
and a depth calculated with expression (9). Finally, the
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FIG. 3. The real nuclear potentials as a function of the ra-
dius in the tail region for the elastic scattering of ' 0 by ' 'Pb at
80 and 90 MeV of laboratory energy. The three lines crossing
each other correspond to best fit Woods-Saxon potentials with
diffusivities 0.45, 0.50, and 0.55 fm as taken from Videbaek
et al. (Ref. 6). The long dashed line is the double folding poten-
tial (Ref. 3). The short dashed line is the dispersive contribution
to the real potential (see the text) and the full heavy line is the
sum of the last two potentials.
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heavy continuous line is the sum of these two potentials.
As it can be seen, the agreement with the empirical poten-
tials is remarkable for the rough approximations that have
been made.

In conclusion, the causality principle that induces a
dispersion relation connecting the imaginary part of the
optical potential with the real one can explain the
anomalies presented by the microscopically calculated real
potential between ' 0 and several target nuclei. In this
light, the reanalysis of early obtained empirical potentials
shows the part of the real potential that can be attributed
to couplings of the elastic with nonelastic channels at en-
ergies close to the Coulomb barrier. These couplings can
be included in a global way in the dispersion relation.

IM. Lozano and G. Madurga, Nucl. Phys. A334, 349 (1980).
~G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).
F. J. Vinas, M. Lozano, and G. Madurga, Phys. Rev. C 23, 780

(1981)~

L. West, Jr. , K. W. Kemper, and N. R. Fletcher, Phys. Rev. C
11, 859 (1975).

5A. W. Obst, D. L. McShan, and R. H. Davis, Phys. Rev. C 6,
1814 (1972).



36 BRIEF REPORTS 455

F. Videbaek, R. B. Goldstein, L. Grodzins, S. G. Steadman, T.
A. Belote, and J. D. Garret, Phys. Rev. C 15, 954 (1977).

~M. V. Andres, J. M. Quesada, M. Lozano, and G. Madurga,
Nucl. Phys. A443, 380 (1985).

J. Gomez-Camacho, M. Lozano, and M. A. Nagarajan, Nucl.
Phys. A440, 543 (1985).

~J. S. Lilley, B. R. Fulton, M. A. Nagarajan, I. S. Thompson,
and D. W. Banes, Phys. Lett. 151B, 181 (1985).
A. Baeza, B. Bilwes, R. Bilwes, J. Diaz, and J. Ferrero, Nucl.
Phys. A419, 412 (1984).

I. J. Thompson, M. A. Nagarajan, J. S. Lilley, and B. R. Ful-
ton, Phys. Lett. 157B, 250 (1985).

' S. C. Pieper, M. J. Rhoades-Brown, and S. Landowne (unpub-
lished).
A. A. Ioannides and R. S. Mckintosh (unpublished).
M. A. Nagarajan, C. Mahaux, and G. R. Satchler, Phys. Rev.
Lett. 54, 1136 (1985).
C. Mahaux and R. Sartor, Nucl. Phys. A460, 466 (1986).
C. Mahaux, H. Ngo, and G. R. Satchler, Nucl. Phys. A449,
354 (1986).


