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A dynamical polarization potential is defined taking into account the effects on the elastic chan-
nel due to the excitation of vibrational collective modes, described within the random-phase approx-
imation. The probability amplitudes for exciting these modes are evaluated by integration along
classical trajectories determined by the real part of the nucleus-nucleus potential with energy and
angular momentum loss. Calculations performed for the “°Ca-+*’Ca system show that, at high bom-
barding energy (E/ A =44 MeV), both the real and the imaginary parts of the polarization potential
arise mainly from the excitation of the high-lying modes. At energies near the Coulomb barrier, the
calculated elastic cross section is in good agreement with the experimental data. The inclusion of
the real part of the polarization potential improves this agreement.

I. INTRODUCTION

An important problem in the study of peripheral
heavy-ion processes is to connect the nucleus-nucleus po-
tential to the underlying nucleon-nucleon interaction and
to the microscopic structure of the two partners. In the
folding model' the real part of the optical potential is
constructed from the ground-state density distributions
of the two colliding nuclei. On the other hand, even in
the peripheral collision regime, processes like nucleon
transfer and excitation of collective degrees of freedom
take place. The problem then arises of constructing a po-
tential which describes the effects of such processes on
the elastic channel, the polarization potential.

The polarization potential arising from the transfer
mode was studied in Ref. 2 (see also, references quoted
therein). The modifications of the folding potential due
to the excitation of the collective vibrational states were
calculated, in the adiabatic limit, in Ref. 3. It was found
that the corrections are important and give a strong
enhancement of the sub-barrier fusion cross section.

In the present paper we extend the previous analysis by
taking into account the dynamics of the collision. This
gives rise to a complex polarization potential which, to-
gether with the folding one, defines an optical potential
while taking into account the coupling of the elastic
channel to the ones corresponding to the excitation of
collective degrees of freedom. The latter are described
within the random-phase approximation (RPA) while the
relative motion is treated classically as governed by the
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folding potential plus the real part of the polarization po-
tential. The energy and angular momentum loss are also
approximately taken into account.

The optical potential has been used to calculate the
elastic cross section. We have studied the system
40Ca+%Ca at various energies. Our results can be sum-
marized as follows. The theoretical cross section is in
good agreement with the existing experimental data,
which shows that our model is able to give, without any
adjustable parameter, a reasonable description of the op-
tical potential. At low energies, both the real and imagi-
nary parts of the polarization potential are needed in or-
der to reproduce the data. On the other hand, at slightly
higher energy (E/A=6 MeV), once the absorption has
been taken into account, the theoretical results with and
without the real part of the polarization potential are
equivalently good with respect to the available experi-
mental data. At low energies (e.g., at E/ A4 =10 MeV),
the contribution of the low-lying collective states to the
polarization potential is found to be dominant.

In order to analyze to which extent the excitation of
the giant resonances plays a role in the determination of
the optical potential, we have also made a calculation at
E/A=44 MeV, where their effects are expected to be
larger.* Due to the absence of experimental data in this
case, we only make a comparison between theoretical re-
sults obtained with or without them. We find that the in-
clusion of the giant quadrupole resonance (GQR) strong-
ly modifies the elastic scattering cross section at angles
near the grazing.
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II. THE MODEL

The basic assumptions of our model are that for graz-
ing collisions, the relative motion can be treated classical-
ly and the mutual excitation of the two partners can be
described as due to the mean field of one nucleus acting
on the other one. In particular, we will concentrate on
the excitation of collective vibrational states, which we
describe microscopically within the RPA. Under the
above-mentioned assumptions, the intrinsic Hamiltonian
of the system is the sum of two terms, one for the target
and one for the projectile, each of them having the form*

mlr zEkBkBk+ 2 VkO Bk

+H.c. +2ka BkBk , (1)

where the time dependence comes in through the relative
distance R(7), which obeys classical equations of motion.
The feedback of the excitation on the trajectory is taken
into account by defining the energy and angular-
momentum loss as equal to the mean values of the energy
and angular momentum stored in the collective degrees
of freedom. In addition to that, at each integration step
in time, we modify the nucleus-nucleus folding potential
by adding to 1t the real part of the polarization potential.
In Eq. (1), B)(B,) are boson operators corresponding to
the RPA operators Qk Q)
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where [0) is the RPA ground state and |¢, ) the collec-
tive states we are interested in. The amplitudes X and Y
and the energies E, are solutions of the RPA equations.
The matrix elements
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are calculated within the RPA. The operator U
represents the mean field of the other nucleus. In what
follows we have neglected the nonlinear terms in the in-
trinsic Hamiltonian of Eq. (1) since they are not impor-
tant for the present calculation. Indeed, as it was shown
in Ref. 4, at low-bombarding energy, their inclusion
enhances the population of the collective high-lying
states which, however, remains much smaller than the
population of the low-lying modes. Then, these mixing
terms are important only when one is studying a selective
process like the inelastic scattering. At high-bombarding
energy they affect very little, even the inelastic scattering
cross section.

The state of the system at any time ¢ is the product of
two coherent states®
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and all the integrals are evaluated along a classical trajec-
tory. From Eq. (6) it follows that the probability ampli-
tude for the system to remain in its ground state is given
by

(0|W,1) = il —1/2M0) 10)
where
No=3 [1,0)]*. an
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In the framework of the semiclassical approach,® we then -
define the complex polarization potential as
(olw,0)=exp—i [ dr[AV()+iw()],  (12)
where AV and W depend on time through the relative
distance R(¢) and the integration is made along a classi-
cal trajectory.
From Eqgs. (10) and (12) it follows:

AV (1) ¢>(t)—Im[ZI Ik(t)J, (13)
W(t)=-—%./\/(t)=—Re{EIZ(I)Ik(t)] , (14)
k

where the I, (¢) are defined in Eq. (8). The so-defined
functions AV and W cannot directly be interpreted as the
real and the imaginary parts of a potential. Indeed, they
depend on the whole history of the system up to the time
t. In particular, they have different values when the sys-
tem reaches the same relative distance in the approaching
and the outgoing phase. They will also depend on the
considered classical trajectory and then on the angular
momentum as well as on the energy. In the next section
we will discuss a procedure to define a local-polarization
potential starting from Egs. (13) and (14). A different
procedure is considered in Ref. 7 where the attention is
mostly concentrated on the relative importance of the
low-lying states and high-lying states in determining the
tail of the imaginary part of the optical potential at high-
incident energy.

III. THE POLARIZATION POTENTIAL

The bare nucleus-nucleus potential is calculated by
folding the M3Y effective interaction! with the Hartree-
Fock densities of the two nuclei. The collective states are
calculated within the consistent RPA with the Skyrme in-
teraction SGIL® The results we will show later were ob-
tained by including the states reported in Table I, i.e.,
those exhausting at least 5% of the energy weighted sum
rules (EWSR).

In order to discuss how to extract the polarization po-
tential from the quantities AV (z) and W(¢), let us exam-
ine in detail a specific case. We consider the *°Ca+%Ca



TABLE 1. Spectroscopic data used in the calculation.

Nuclei J7 E* (MeV) % EWSR
4Ca 3” 5.031 15
2t 16.561 11
2+ 16.970 24
2t 17.488 54
47 17.667 17
4+ 18.205 8
ot 18.399 10
ot 19.219 14
ot 22.166 14
0" 23.554 17
3” 32.716 10

system at E /A =44 MeV bombarding energy.

In Figs. 1 and 2 we show AV and W as functions of the
relative distance R, for L =240, 250, and 260 #. In the
three sectors of each figure we report the results obtained
by including, from right to left, only the low-lying 3~
state, the 3~ state, and the three 27 states (i.e., the
GQR), and all the states in Table I. When the two nuclei
approach each other (upper part of each curve) the quan-
tities AV and W increase, in absolute value, due to the ex-
citation of the collective states. They continue to in-
crease steadily for some time after the system reaches the
distance of closest approach and then they decrease, van-
ishing at a great distance. The behavior of AV and W in
the outgoing phase is governed by the interplay between
the collision time and the characteristic time (#/E) of
the collective states.

As it is apparent from the figures, the inclusion of the
GQR is crucial and gives the main contribution to AV
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FIG. 1. Real part of the polarization potential [Eq. (13)] for
the *°Ca+%Ca system at E., =880 MeV, as function of the
relative distance R. In the three sectors are reported the results
obtained by including, from right to left, only the low-lying 3~
state, the 3~ state, and the three 27 states (i.e., the GQR), and
all the states of Table I. In each sector, the three curves refer to
three different values of the angular momentum: L =240, 250,
and 260 #.
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FIG. 2. Same as Fig. 1, but for the imaginary part, Eq. (14).

and W. This behavior is due to the fact that, at this ener-
gy, the excitation probability of the GQR is large. Con-
versely, at low energies the contribution from the low-
lying 3~ state is predominant. -

The functions AV and W have different values for the
same R in the approaching and outgoing phase of the col-
lision. This is a manifestation of the memory effects
which are present in our dynamical calculation.

The simplest way to define a polarization potential
(AYV+iW) depending, at fixed energy, only on the rela-
tive distance is to say that each trajectory (i.e., each L)
defines the value of the potential at the distance of closest
approach. Since the excitation of the collective modes
takes place in a small interval around the distance of
closest approach, this prescription should include the
main physical effects of the process. It can be easily
shown that the two quantities

$(+o0)=[ " “AV(t)dt

and (15)
IN+e)= [ Wi

are related by the dispersion relation connecting the real
and imaginary parts of the polarization potential. The
above-described procedure will not exactly preserve this
property. However, as we will see in the next section, the
agreement with the experimental data is quite good show-
ing that AY and W are both well estimated. This prob-
lem is not present in the procedure of Ref. 3. However,
this is achieved by making use of approximate parame-
trizations of the trajectory and the form factors.

In order to have an analytic expression for the real and
imaginary parts of the polarization potential, we fit the
collection of values obtained by using our procedure with
Woods-Saxon forms, with radius’

Ro=R,+R,,

where
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(16)

The deduced values for the depth and the diffusivity,
when all the states are included, are AY,= —14.26 MeV,
apy=0.491 fm for the real part and W,= —25.34 MeV,
aq) =0.495 fm for the imaginary part. The optical poten-
tial is then obtained by adding the real part AV to the
folding potential while the imaginary part is given by W.

Calculations have been done at several energies, in par-
ticular, we have studied the behavior of the polarization
potential near the Coulomb barrier. At such energies,
the main contribution comes from the low-lying 3~ state.
All the results are collected in Table II, where for each
energy we report the values of the depths and diffusivities
of AV and W. The energy dependence of the real part of
the optical potential is better illustrated in Fig. 3 where
we compare the bare-folding potential plus the Coulomb
part (dashed line), with the barriers obtained at the ener-
gies indicated in Table II and in the caption. As the in-
cident energy decreases, the correction to the folding po-
tential increases, reaching eventually the adiabatic limit
of the polarization potential (see Ref. 3).

This behavior with the energy can be related with the
findings of Ref. 10 where it was shown that in order to
get a good fit to the experimental elastic cross section, it
is not sufficient to vary the parameters of the absorptive
part of the optical potential, but it is also necessary to
multiply the folding potential by an energy-dependent
factor greater than 1, when the energy approaches the
barrier from above. This has been explained, and
confirmed by explicit calculations,!' as a coupled-
channels effect. The authors of Ref. 12 have interpreted
this energy dependence by using the dispersion relation
between the real and imaginary part of the optical poten-
tial. Our results are not based on a phenomenological
analysis, but rather on an approach which takes into ac-
count the collective vibrational modes in a completely
microscopic way. In the next section we will see that the
cross sections obtained, including the real part of the po-
larization potential, are in better agreement with the ex-
perimental data than the ones without such correction.

R;=(1.204!7*—0.09) fm .

IV. ELASTIC SCATTERING CROSS SECTION

The optical potential Vi, +AYV +iW, defined in the
previous section, has been used to calculate elastic
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FIG. 3. Bare double-folding potential plus the Coulomb term
(dashed line) compared with the barriers calculated at several
center of mass energies: 880, 120, 71.8, 64.8, 60.6, and 55.45
MeV (from above to below).

differential cross sections for the “°Ca+*°Ca system and
for several values of the energy. The case E/ A =44
MeYV is interesting since at such high energy the probabil-
ity of exciting the GQR is much higher than at lower en-
ergies. The effects of the GQR, which have already been
shown in the previous section to be very important in the
calculation of the polarization potential, show up also in
the elastic cross section. In order to have a better insight,
we have done calculations with the optical potential con-
structed by including only the low-lying 3~ state and all
the states of Table I. From the results shown in Fig. 4,
we see that for angles larger than the grazing one the
differences are important. This is in agreement with the
findings of Ref. 13, where it ws shown that the GQR is
strongly excited at this energy and around the grazing
angle.

The importance of the real part of the polarization po-
tential is illustrated in Fig. 5 where the result obtained,
without including it (dashed line), is compared with the
cross section calculated with the complete optical poten-
tial. From the figures we see that in the same angular
range as before the inclusion of the real polarization po-
tential strongly enhances the cross section. This novel re-

TABLE II. Parameters of the Woods-Saxon forms for the real and imaginary parts of the polariza-
tion potential for the **Ca+*Ca system. The value of R, (Ref. 9) is 8.0279 fm for both. The total reac-
tion cross section calculated with an optical potential whose real part is just V4 is denoted by o, the
one calculated by Satchler and Love (Ref. 1) is denoted by o3-. The last line refers to the calculation

done including only the low-lying 3~ state.

E . AV, apy Wy ay OR Ug(z’]d USRL
(MeV) (MeV) (fm) (MeV) (fm) (mb) (mb) (mb)
55.45 —179.87 0.380 —37.40 0.424 100 59
60.6 —155.84 0.385 —33.23 0.441 361 302
64.8 —142.68 0.386 —50.36 0.411 534 474 671
71.8 —127.06 0.389 —92.14 0.371 779 719 939
120 —49.78 0.459 —31.22 0.443 1642 1583 1893
880 —14.26 0.491 —25.34 0.495 2423 2414
880 —1.27 0.504 —8.54 0.475 2038 2037
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FIG. 4. Elastic differential cross section for the *°Ca+*Ca
system at E_,, =880 MeV. The dashed line shows the result
obtained by using the potential constructed including only the
low-lying 3~ state, while the full line corresponds to the com-
plete calculation.

sult shows that a renormalization of the real part of the
optical potential is also important at high energies and
gives rise to detectable differences in the cross section.

In order to test our model, we have also calculated the
elastic cross section at lower energies where experimental
data exist. In particular, as is well known,!° a strong en-
ergy dependence of both the real and the imaginary parts
of the optical potential is needed in order to fit the experi-
mental elastic cross section near the Coulomb barrier.
We have then done calculations at several energies in this
region to see to which extent our model is able to repro-
duce this behavior with the energy. The results are re-
ported in Fig. 6. The dashed lines correspond to calcula-
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FIG. 5. Same as Fig. 4, but in this case the dashed line is the
result of a calculation done with our imaginary part and the
double-folding potential without the real polarization correc-
tion. The latter is taken into account in the calculation
represented by the solid line.
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tions where the real part of the optical potential is given
only by the folding one. The agreement with the experi-
mental data is improved by the inclusion of the real part
of the polarization potential. Its effect is appreciable also
on the total cross section, whose values are reported in
Table II together with those calculated in Ref. 1 by using
the optical potential obtained by fitting the elastic cross
section. This effect is not general. For example, at
E /A =6 MeV, the elastic cross section is not sensitive to
the real part of the polarization potential, at least in the
angular range where experimental data exist (see Fig. 7).

10*

103

102

64.8 MeV

de /dQ (mb/sr)

S cm. (deg)

FIG. 6. Comparison between experimental data (Ref. 14) and
theoretical results for the elastic cross section for the
“Ca+40Ca system at several center-of-mass energies as indicat-
ed. The dashed line is the result obtained using Viy,q+iW,
while the solid line is from using Vi, + AV +iW.



104 M. V. ANDRES, F. CATARA, PH. CHOMAZ, AND E. G. LANZA 39

10 T

10*k

10k

do/dQ (mb/sr)
S,

10
10 Eem =120 MeV

10° ! . ) . 2
) 10 20 30 40 50

9cmideg)

FIG. 7. Same as Fig. 6 but at E_,, =120 MeV.

In all the considered cases, the agreement with the ex-
perimental data is rather good. This is an indication that
the optical potential is well estimated in our model and
shows the relevance of the collective modes. We stress
that we do not have any adjustable parameter. Besides,
in general, other degrees of freedom, such as nucleon
transfer and noncollective particle-hole excitation,
neglected in the present calculation, are expected to play
some role.

V. CONCLUSION

We have calculated a dynamical polarization potential
as due to the coupling to the collective vibrational states,
described within the RPA. The dynamics is introduced
by integrating the equations of motion for the relevant
degrees of freedom along classical trajectories governed
by the real part of the optical potential. Energy and
angular-momentum loss are taken into account con-
sistently. The optical potential is then constructed by
adding the polarization potential to the folding one.

We have performed calculations of elastic differential
cross section for the *°Ca+%Ca system at several ener-
gies. Our results are in good agreement with the experi-
mental data, showing that the optical potential is well es-
timated. The inclusion of the real part of the polarization
potential improves this agreement. At energies near the
barrier, this behavior can be related to the findings of
Ref. 10 where a renormalization of the folding potential
was shown to be necessary in order to fit the elastic
scattering cross section. A detailed analysis of the contri-
butions coming from the different collective modes shows
that at low energies the polarization potential arises
essentially from the low-lying 3~ state. Conversely, at
high energy, namely at £/ A4 =44 MeV, the GQR plays a
very important role in the determination of the optical
potential and has a strong effect on the elastic differential
cross section around the grazing angle.
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