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Double folding with a density-dependent effective interaction and its analytical approximation
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The real part of the optical potential for heavy ion elastic scattering is obtained by double folding of the nuclear

densities with a density-dependent nucleon-nucleon effective interaction which was successful in describing the

binding, size, and nucleon separation energies in spherical nuclei. A simple analytical form is found to differ from

the resulting potential considerably less than 1% all through the important region. This analytical potential is used

so that only few points of the folding need to be computed, With an imaginary part of the Woods-Saxon type, this

potential predicts the elastic scattering angular distribution in very good agreement with experimental data, and

little renormalization (unity in most cases) is needed.

I

NUCLEAR REA CTIONS Optical model for nucleus-nucleus, double folding
model, nucleon-nucleon effective interaction.

I. INTRODUCTION

Folding potentials are an appealing option for the
construction of the optical potential to be used in

the calculation of heavy ion elastic scattering: the
simple folding of the (target) nuclear density with
a nucleon-nucleus (projectile) optical potential"
or the double folding of an effective nucleon-nu-
cleon interaction into the nuclear density distribu-
tions of the two colliding nuclei. ' ' This approach
seems to be more physical than the free fitting
to data of, for example, Woods-Saxon parameters
with ambiguous meaning. Unfortunately the fre-
quent need for a renormalizing factor weakens the
basic character of this approach. '

Recently Satchler and Love have done extensive
work in the application of the folding method to the
calculation of the elastic scattering cross section
between heavy ions. ' The real part of the potential
is obtained by double folding of the nuclear densi-
ties with a realistic effective interaction which has
been derived' from G-matrix elements based on
the Reid nucleon-nucleon potential and consists of
a 6 term plus two Yukawians with ranges 0.25
(repulsive) and 0.4 fm (attractive). An imaginary
part of the Woods-Saxon (WS) type is fitted to the
experimental data. The normalizing factor needed
for the real part is in general close to 1, except
with a 'Li projectile, which requires a much
smaller factor, typically 0.60. The same effective
interaction, used in double folding for ' B+' Ca,
requires' a normalizing factor as high as 1.38.

We thought it worthwhile to test the double fold-
ing model with a density-dependent effective in-
teraction which would take into account the over-

lap of the two density distributions. The interac-
tion is described in Sec. II. It was built for the
purpose of computing the general properties of
spherical nuclei in a globally self-consistent
shell model. In Sec. III we give some details on

the method chosen for the description of the nu-

clear matter distributions.
The six-dimensional folding integral is a tedious

task' and the density dependence of the interac-
tion adds some complexity. This will be compen-
sated for by the use of an analytical potential
which requires few folding points and approxi-
mates the folded potential very closely in the
range of distances that determine the elastic scat-
tering. This is shown in Sec. IV. These analytical
potentials, together with a WS imaginary part,
have been used for computing the elastic scatter-
ing of almost twenty pairs of heavy ions, and the
agreement with experimental data is reported in
Sec. V. Distances are given in fm and energies in
MeV all through this work.

II. THE EFFECTIVE INTERACTION

The following effective nucleon-nucleon inter-
action will be used in our folding

y„,(r, r) = —p, (1 —s;,n)[1 —cp(r)' 'p(r )' ']

x exp—

where r and r are the positions of the two nu-
cleons, and s;, =+1 (-1) for the interaction be-
tween like (unlike) nucleons. The use of a stronger
effective force between unlike nucleons compen-
sates for the lack of complete antisymmetrization.
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Interaction (1}was created by two of us (F.J.V.
and G.M. ) for the specific purpose of using it in a
shell model with global self-consistency'. The
central potential is produced by folding the nuclear
density with interaction (1), where nuclear density
is the sum of the squared wave functions obtained
by solving the single-particl. e Schrodinger equation
with such a simple folding potential. Also in-
cluded in the Schrodinger equations is the Cou-
lomb potential for protons and a spin-orbit con-
tribution of the Thomas type, proportional. to the
gradient of the central potential, -(a/r)(d V/

d&)l-s, with a strength a = 0.36 fm' fitted to the
experimental split of the l a ~ levels.

We summarize here some information on our
effective interaction (1). A density-independent
interaction was excluded because (a) it system-
atically fails to reproduce at the same time the
size and the energy of nuclei in Hartree-Fock
calculations"; (b) it cannot produce a self-con-
sistent density distribution that is sufficiently
uniform'; and (c} the saturation conditions inves-
tigated by Calogero et al." for density-independent
forces of the Wigner type require that their
Fourier transform be positive for any non-nega-
tive value of the momentum P. In particular, for
P =0, this means that the volume integral of the
interaction is positive, and its convolution with a
density distribution gives a repulsive potential un-
suitable for shell, model computations.

A linear dependence in p' ' was chosen, as
favored by Bethe" and Moszkowski. " Usually the
density is taken in the center of the two interacting
nucleons; this prescription overestimates the in-
fluence of the center of the nucleus and leads to
insufficient binding. " We take the geometric
mean of the densities at the sites of the two nu-
cleons.

Our interaction has four parameters: the
strength U~' and the density coefficient c can be
related to the equilibrium density and binding per
nucleon of symmetrical nuclear matter, and hence
to the corresponding parameters of one of the
existing mass formulas, as described in Ref. 9;
also the asymmetry coefficient n can be related
to the symmetry coefficient of the mass formula
via computation of asymmetric nuclear matter.
A first determination of U~', c, and e was thus
deduced from Seeger's 1970 mass formula. " A

parallel link of the interaction range a to the sur-
face energy of a mass formula can be established
by calculating semi-infinite nuclear matter in the
Thomas- Fermi approximation. But this approxi-
mation in its simpler form is not reliable in the
surface where the density and the potential vary
rapidly, " and such a link was not even attempted;
rather the value of a was left as the only free

parameter to be fitted to the energy and size of
the five magic nuclei "0, "Ca, "Ca, "Zr, and
'~Pb. A final readjustment of less than 5% was
made in three of the parameters to end up with
the following values:

Upa' = 174.4 MeV fm'

n =0.49,

c =1.73 fm',

a=0.87 fm.

Interaction (1), with the value of the parameters
given in (2) and the spin-orbit term mentioned
above, was used in the shell model described in
Ref. 9 and was found to predict the binding ener-
gies and rms charge radii of the five mentioned
magic nuclei with an error less than 1% on the
average. It also predicts remarkably well the
separation energy of the less bound nucleons.
The use of this interaction has been extended suc-
cessfully to nine groups of even isotopes and iso-
tones with the introduction of a pairing interac-
tion. ' Further (unpublished) computations of over
fifty nuclides gave the correct binding energy
within less than 0.5%.

III. NUCLEAR DENSITY DISTRIBUTIONS

The considerations of the previous sections give
us confidence that the use of interaction (1) will
give reasonable results in computing the nucleus-
nucl. eus interaction by double folding with the nu-
clear densities. But we are not committed to the
use of density distributions genetically related to
the same effective. interaction; any good density
distribution will do it. Actually for extrinsic
reasons our choice has been different.

Nuclear density distributions were obtained as
the sum of squared single-particle wave functions

g& weighted with occupation numbers n;,

according to the method developed by Malaguti et
al."" Eigenfunctions are first evaluated for a
WS potential

'df—V,f, (r)+ V, ~ 1 a+Vc(r),

where

f, (r) = (I + exp[(r —R,)/a, j}', R, = r, A ' '

and Vc is the Coulomb repulsion for protons only.
The Percy nonlocality correction factor is then
appl. ied" to the wave functions with a nonlocality
parameter P =0.87 and the final set is orthogon-
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+ 0.51 (B—15)b(B —15),

with 5(x) the step function, B the binding energy
of the level, and the +(-) sign holds for protons
(neutrons).

V2 = 7

r, = 1.236

r, =1.1
a, =0.52

a2 = 0.65

With this common set of parameters the rms
charge radii of the nuclides used in this work
either coincide with the experimental values"
within a standard deviation (for half of the cases)
or differ from them not more than 5'. The same
general fit has been successf'ul in detecting nu-

clear structure effects in the critical radii for the
elastic scattering of alpha particles by several
groups of isotopes" or of heavy ions in general"
as well as in the fusion cross section. "

IV. THE FOLDING AND ITS ANALYTICAL
APPROXIMATION

alized by the Gram-Schmidt procedure. Expres-
sion (3) is the nucleon point density distribution
used for our folding. For comparison with ex-
perimental rms charge radii the separated proton
and neutron densities are further folded into their
own charge distributions and added to a total
charge density.

Integer occupation numbers n; have been as-
sumed. Ideally fractional numbers near the
Fermi surface are determined from the empirical
spectroscopic factors or from nuclear structure
computations. Actually the latter are not reliable
enough and the former are not available in many
cases. Similarly the potential parameters can be
fitted to reproduce the experimental separation
energies and charge rms radii in particular cases.

As another alternative we have preferred to take
from Ref. 21 a common set of parameters that fit
a wide range of data from "C to ' Pb. These are

V, = 55.7+39.3
N-2

s=r —C, —C, (7)

is the separation between the surfaces of the nu-
clei, which can be localized at the half density
distance"

C (
= R; —b'/R ( (i = 1, 2)

with

and

b =1 for our purpose

R, = (1.13+0.0002A;)A, ' '.

Figure 1 illustrates the meaning of the vectors
r„, if the p~(&) describe the nuclear density dis-
tributions relative to the center of nucleus i and

are taken as spherically symmetric functions.
The coefficient of a implies that the proton and
neutron distributions are assumed to be propor-
tional to the total density for each nuclide. This
approximation we hope will be sufficient in com-
puting the contribution to the energy of the system
coming from the interaction between the 4, nu-
cleons of the projectile and the A, nucleons of the
target when their centers are at a distance r such
that the extreme tails of the two nuclides overlap
slightly.

The interactions between the A)(4, ) nucleons of
the projectile (target), being density dependent,
will be modified by the invasion of the target (pro-
jectile) density tail. Nevertheless, we expect this
effect to be negligible at the internuclei distances
which are relevant for elastic scattering, not less
than the changes that will take place in the distri-
butions p;(&) themselves and are systematically
ignored in the usual foldings. Actually the explicit
computation of this effect in some points yielded a
modification of no more than a few percent of the
folding potential.

Satchler and Love' have reported that the tails
of their folded potentials do not decrease like a
simple exponential, but are well approximated by
a form factors" exp(-s/as) for s &1, where

In the double folding integral

vl ) fd"fd vl")v,=(,)v.„,. , , , (6)

the interaction (1) is written so that the density
dependence takes into account the contribution of
the two nuclei

V — V
1 2

x El —clp~(~))+p2(lr, —r, 1)7' '2

x[p, (lr, +r„l)+p, (~,)]'"jexp — —"
FIG. 1. Notation for the coordinates in the folding.
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TABLE I. Values of the parameters in Eq. (8) that fit the folding Eq. (6) in the region
s & 1. Column 6 gives the constant depth of the potential from the origin up to the value r = Ci
+ C2+ a~n of column 5. Energies are in MeV, distances in fm.

Nuclides

11B+208Bi
12t + 62Ni

12C+ '4Ge
12g + 100Mo
12g + 208pb
13+ y 207Pb

16p+ 28Si
16p+ 59co
16p+ 60Ni

16p+ 72Ge
16p+ ?4Ge
16p + 76Ge
16p+ 208pb

18p+ 72Ge

18p+ 74G

18p p 76G

40Ar + 208Bi

162.7
155.7
170.9
170.3
190.7
218.3
157.0
159.2
160.7
166g5

174.1
170.6
198.4
155.9
161.5
157.6
207.8

0.986
0.967
1.081
1.064
1.043
1.397
1.077
0.951
1.059
1.044
1.182
1.107
1.011
0.886
0.910
0.880
1.054

0.531
0.538
0.519
0.529
0.524
0,470
0.493
0.518
0.504
0.508
0.495
0.504
0.510
0.544
0.541
0.547
0.509

Ci + C2+ a~n

9.45
7.03
7.37
7.92
9.55
9.73
6.19
722
7+9
7.59
7.69
7.71
9.82
7.67
7.73
7.76

10.98

-&(0)

32.1
31.5
31.0
31.9
35.8
30.0
27.0
31.3
28.7
30.3
28.3
29.5
37.0
33.7
34.1
34,4
37.6

Moreover, it is well established that the elastic
scattering of heavy ions in the range of energies
we are interested in (5 to 10 MeV/nucleon) is de-
termined by the value of the potential at distances
greater than C, +C, +1. Hence we have decided to
substitute for the exact folded potential a function
which approximates to the tail in the form sug-
gested by Satchler and Love and which is constant
from the point with zero derivative (s = asn) up to
the origin.

Our analytical approximation to the folding po-
tential is therefore

A pleasing feature of this approximation is that
the values each parameter takes for different
pairs are fairly uniform. The average values and
rms deviations are V, =176+14%, n =1.045+11%,
a„=0.516+4%, and —V(0) = 32.5 + 11%.

V. PREDKTIONS AND COMPARISON
VGTH DATA

The elastic scattering cross section for the pairs
and at the energies reported in Table II was com-
puted with the optical potential

—Vo(asn)"e " if s ~asn,~

~
—V,s"exp(-s/as) if s ~ a„n.

(8)
I

50-
I ) I

The parameters V„w„and a&, are fixed by
l.east square approximation to the folded values
(6) computed at six to eight points uniformly
spaced in the interval 1.5 &s &3.8. Table I gives
the values of the parameters which approximate
the folding for each one of the pairs we use in
this work. In all the points used for the fits the
difference between the folded potential and the
analytical approximation is smaller than 1%, and
the rms relative difference (folded to analytical
approximation) for the fitting points of each pair
is, on the average of all the pairs, 0.26%. The
approximation is quite satisfactory with the ad-
vantage of having an analytical expression for the
potential. Figure 2 shows the folding potential
compared with the approximation (8) in the case
16O + 28Sl

10—

5-

X

)
G5-

(c~p

6
I l I I I

7 r(fm)

FIG. 2. Folded potential, Eq. (6), (dashed line) and
its analytical approximation, Eq. (8), (solid line) for
iBp+ 288i
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FIG. 3. Angular distributions predicted by our folding (solid line) compared with experimental data.

y I (A
y

+g )3f V(&) —iWo 1+exp
I

+V (r),

where V(t') is given in Eq. (8) and the values of
the parameters in Table I; V~ is the Coul. omb po-

tential produced by a sphere of radius 1.35(A, ' '
+A, ' '). The imaginary radius parameter && was
initially fixed at 1.25 and the depth 8', and dif-
fuseness al were fitted to the experimental data
with the optical model code GENOA

In most cases this search led to a good fit with
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TABLE II. Imaginary potential parameters (col»~~a 5-7) and renormalizing factor+
needed for the Qt of data. Energies are in MeV and distances in fm.

Nuclides Ref.
Potential

W0 a X/N

iiB + 209Bi
12C+ e2Ni
12C + 74Ge

"C+' Mo
12C + 208Pb
18C + 207Pb

iep+ 28Si

iep+ 58C

O+ Ni
iep+ nGe
iep+ ~46e
iep+ zeGe

ieP+ 208Pb

18p + 72Ge
isp+ r46e
isp+ ceGe

40Ar+ ™Bi

74.6
48
42
48
96
86.1

141.5
215
141.7
141.7

56
56
56

129,5
192
56
56
56

286

29
30
30
30
29
29
29
31
29
29
30
30
30
29
29
30
30
30
32

1.00
0.61
1.00
1.00
0.92
1.00
0.83
0.73
0.93
0.96
1.00
1.00
1.00
1.00
1.00
1,00
1.00
1.00
1,00

32.66
12.92
37.83
48.80
52,20
32.87
31.78
80.6
58.27
52.75
8.98
6.32

43.64
27.15
26.25
20.48
21.09
15.70

188.0

1.25
1.25
1.25
1.25
1.25
1.25
1.072
1.072
1.085
1.071
1.25
1.25
1 25
1.25
1.25
1,25
1.25
1.25
1.25

0.508
0.491
0.443
0.444
0.414
0.514
1.097
1.101
0.783
0.814
0.750
0.795
0.455
0.676
0.618
0,634
0,637
0.674
0.373

1,37
2.11
0.42
1,06
4.70
1.10
6.36
272
2.33
2.54
1.99
0.70
0.50
0.55
1.16
0.28
0.38
0.50
4.17

y'/N & I, comparable to the optimum WS fit (see
Table 11 of Ref. 33), and X= 1. In other cases a
smaller imaginary radius was preferred and a
renormalizing factor %11 improved the quality
of the fit. Table II gives the final values of the
parameters and the y'/N for the reactions con-
sidered in this work. Figures 3{a) to 3(d) show
some of the angular distributions predicted by our
fol.ding against the experimental data used for the
fit of the imaginary potential (and eventually of
the %).

The agreement is quite satisfactory, particular-
ly if we recall that no free parameter was avail-
able for the construction of the real potential.

(with the exception of X, when different from 1)
and that a bad real potential cannot be healed by
any imaginary partner to avoid catastrophically
high values of y'. The effective interaction itself
was created for another purpose and deduced from
an existing mass formula with little freedom.

We believe this result confirms the powerful
ability of such a simple density dependence as in-
cluded in Eq. {1)to describe the overall features
of the average nucl. eon-nucleon interaction in a
wide range of circumstances.
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