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Abstract. In this paper, we prove that for any number A < (\/@f 3)/2, any separable space X can
be renormed in such a way that X satisfies the weak fixed point property for non-expansive mappings
and this property is inherited for any other isomorphic space Y such that the Banach-Mazur distance
between X and Y is less than A\. We also prove that any, in general nonseparable, Banach space
with an extended unconditional basis can be renormed to satisfy the w-FPP with the same stability
constant.
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1. INTRODUCTION

A Banach space X is said to satisfy the fixed point property for non-expansive
mappings (FPP) (respectively the weak-fixed point property for non-expansive map-
pings (w-FPP)) if every non-expansive mapping defined from a convex closed bounded
(resp.: convex weakly compact) subset C of X into C has a fixed point. Many geo-
metrical properties of X (uniform convexity, uniform smoothness, uniform convexity
in every direction, uniform non-squareness, normal structure, etc) are known to imply
either the FPP or the w-FPP for Banach spaces. Furthermore, some of these prop-
erties imply a certain stability of the FPP (w-FPP) in the sense that if X satisfies
such a property and Y is another Banach space which is isomorphic to X and the
Banach-Mazur distance between them is small enough, then Y also satisfies the FPP
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(w-FPP). In this case we say that X satisfies the stable FPP (stable w-FPP). (The
monographs[1], [7] and [10] provide detailed information on this subject).

A relevant topic in the last years (see[5], [8],[9],[11] [12]) has been to determine
whether a Banach space can be renormed to satisfy either the w-FPP or the FPP.
More recently [6], the problem of existence of a renorming satisfying the stable FPP
(stable w-FPP) is considered. In this paper we continue the study of this problem,
proving that for any number A < (v/33 —3)/2 any separable space X can be renormed
in such a way that X satisfies the w-FPP and this property is inherited for any
other isomorphic space Y such that the Banach-Mazur distance between X and Y
is less than A. The value A < (v/33 — 2)/2 first appeared in Metric Fixed Point
Theory in a paper by P.K. Lin [13], where it is proved that any Banach space with
unconditional basis satisfies the w-FPP when the unconditional basic constant is less
than (v/33—3)/2. As we will see in the next section, an easy consequence of this result
is the following: every Banach space with unconditional basis X can be renormed to
satisfy the w-FPP with stability constant (v/33 — 2)/2. However, there are separable
Banach spaces without any unconditional basis. In spite of this fact, we shall prove
that the above stability property for a renorming still holds for every separable Banach
space.

In the case of nonseparable Banach spaces, we can use the technique in [13] to
prove that any Banach space with an extended unconditional basis can be renormed
to satisfy the w-FPP with the same stability constant.

2. STABLE RENORMINGS FOR SEPARABLE SPACES

We start proving the stability version of the Lin’s result [13]. Recall that a Schauder
basis {x,} of a Banach space X is said to be unconditional (see, for instance [2])
if every convergent series of the form -, ¢,x, is unconditionally convergent or,
equivalently, for every convergent series > ~_ t,z, , and every sequence {e,} with
€, = *1, the series Eff:l €ntnxy converges, or equivalently there exists a constant
K > 1 such that if A and B are finite subsets of N with A C B, then for any
sequence {t,} of scalars we have || Y 4 tnzn| < K| Y, cptn®nl/. The smallest K
satisfying this inequality is called the unconditional constant of {z,}. The basis is
called unconditionally monotone, if K = 1.

Theorem 2.1. Let X be a Banach space which can be isomorphically embedded in a
Banach space Z with an unconditional basis and X\ < (v/33 —2)/2. Then, there exists
an equivalent norm |- | on X such that if Y is an isomorphic Banach space and the
the Banach-Mazur distance between (X, |-|) andY is less than X, then'Y satisfies the
w-FPP.

Proof. Let {x,} be an unconditional basis of Z. For every x = > t,z, € Z, define
the equivalent norm

|z| = sup{||entnzn| : €n = £1}.
It is known [2] that | - | is equivalent to the original norm of Z and {x,} is uncon-

ditionally monotone for this new norm. Furthermore, if Y is isomorphic to (X, |- ])
and the Banach-Mazur distance between Y and (X, |- ) is not greater than A, we can
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assume that Y is the space X with a norm p which satisfies
(1/A)]z] < p(x) < ||

for every x € X. By lemma 2.2 in [6] this norm can be extended to a norm on Z
satisfying the same inequalities. Thus, {z,} is an unconditional basis for (X, p) with
unconditional constant less than A. Hence, (Z,p) satisfies the w-FPP and so does
Y. O

However, there are separable Banach spaces which cannot embedded in Banach
spaces with unconditional basis. Indeed, from Theorems 15.1, 15,2 15.4 in [16] (see
also Proposition 4.1 in [14]) we can deduce the following:

Theorem 2.2. The spaces C([0,1]), L1([0,1]) and the James space J cannot be iso-
morphically embedded in a Banach space with unconditional basis.

In spite of this fact, we shall prove that 2.1 still holds for every separable Banach
space.

In the following, we will denote by o (X) (respectively co(X)) the linear space of all
bounded sequences (respectively all sequences convergent to zero) in the Banach space
X. By [X] we denote the quotient space £ (X)/co(X) endowed with the quotient
norm ||[z,]|| = limsup,, ||z || where [z,] is the equivalent class of (z;,) € s (X). By
identifying € X with the class [(x,x,...)] we can consider X as a subset of [X]. If
C is a subset of X we can define the set [C] = {[z,] € [X] : 2, € C for every n € N}.
If T is a mapping from C into C, then [T] : [C] — [C] given by [T]|([zy]) = [Tzy] is
a well defined mapping. If {S,} is a sequence of mappings from X into X, we will
denote by [S] the mapping from [X] into [X] defined by [S][zn] = [Sn(zn)]-

For two subsets A and B of N we writeA << B if maxA < min B. As in [14],
let X be a Banach space with a monotonous Schauder basis and G the set of all
nondecreasing bounded sequences of nonnegative integers g = {p(n)}. For any a €
(—1,0), consider an equivalent norm on X defined by |z|, = sup{|lg(z)] : g € G}

where g(z) := Za”(")tnen for g = {p(n)} and = = Ztnen. We will use the
n=1 n=1
following lemma which is a particular case of Lemma 3.1 in [6].

Lemma 2.3. Let X be a Banach space with a monotonous Schauder basis {x,} and

A1 << Ag two finite intervals in N. Denote by Pa, the natural projections onto
{z,, :n € A;}. Then, for m = 1,2 we have

I7=2) " Pa,lla <1+ 2m(1—a®).
i=1
Theorem 2.4. Let X be a separable Banach space and A < (v/33 —3)/2. Then, X
can be equivalently renormed in such a way that if | - | is the new norm and Y is an

isomorphic Banach space such that the Banach-Mazur distance between (X,|-|) and
Y is less than A, then Y satisfies the w-FPP

Proof. We know that X can be isometrically embedded in a Banach space with a
monotonous Schauder basis. Since the w-FPP is inherited by closed subspaces, we
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assume that X has a monotonous Schauder basis {e,}. For any a € (—1,0), define
|z]le as above. Assume that A < (v/33 — 2)/2 and choose a € (—1,0) such that

1 (+v33—-3
4 - Vo 0
a*>1 8( ) 1>.

V33 -3
2(1+8(1—a*)’

Assume that Y is X with a norm |- | which satisfies ||z]|, < |z] < A||z||q for
every z € X and that (X, |- |) fails the w-FPP. Hence, there exists a weakly compact
convex subset K of X which is not a singleton and it is minimal invariant for a
| - |-non-expansive mapping T. By multiplication, we can assume that diam(K) = 1.
Let {z,} be an approximate fixed point sequence for T' in K. By translation and
passing to a subsequence, we can assume that {z,} is weakly null. Let y,, = x2,
and z, = za,+1. Then {y,} and {z,} are also approximate fixed point sequences for
T. Passing to appropriated sequences and using the gliding hump method, we can
find two sequences of finite intervals {I,,} and {J,,} in N satisfying I, < J,, < In41
and such that the natural projections P, and @,, onto I,, and J,, respectively satisfy
1171?1 Poyn = Yn, li}ln Qnzn = zn, and lirrln Pz, = lirrln Qnyn = 0. We claim that

It is easy to check that the above inequality implies A <

limsup |y, + 20| < A1 +4(1 — a?)).

Indeed, by lemma 2.3 we have

lim sup |y, + 2| lmsup |y, — 2n — 2Qn (Yn — 21)|
n n

< Alimsup [[(1 —2Qn)(Yn — 2n)]la
< A1 44(1 —a?) limsup |y, — 2,
< A1+4(1—-d?)

= [yn], [2] = [2n] and the projections [P] = [P,] and [Q] = [@.]. Note
= [0] for every € X and moreover, [P][y] = [y],[Q][z] = [z] and
[P][z] = [@][y] = [0]. Let

(14 4(1 —a?)),

W] = {[w] € [K]: there exists € K such that ‘[w] - [3:]‘ < %

We have that [W] is a nonempty bounded closed convex set because % € [wW].

Hence [W] contains an approximate fixed point sequence for [T']. Assume that there
exists an element [w] € [W] such that |[w]| = 1. Let € K such that ’[w] — [:z:]’ <
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%(1 +4(1 - a?)) and let [f] € X* with [f]([w]) =1 = ’[f]‘. Then we have

L= 10D = (] = ) < [fw) - ] < 5
so [f1([y]) = % Similarly, [f]([z]) > % Since
L= [71(0e]) = [f)((w] ~ o) < |fw] — )] < 21+ 401 — %)

we have [f]([z])

Let a = [f]((1] ~ [P] - [Q))[u]

1 —«

1-a
2
Assume that [f]([P][w]

so either [f]([P][w]) <

~—

2(1 —a) — g(l +8(1 —a*))

2

<

<

AN VAN VAN | Il I

IA

N—

11—«

or [f{{[Q][w]) < ——.

1_
< 22 From lemma 2.3, we have
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and

aty = s+1-(1-a)
< 1A + (A = 20A(P)fw])
= [f1(0w] = o) + 20A)([s]) — 2Pl
= [f1(0w] = ) + 20 (Pl - 2AA(P][w)
= 1f1(0w] = o) + 207 ([PI(ly) — [w])
= 1A - 2AP) (] - b))
< |11 = 2PD(fw] - )|
< A 2P| |fwl - 1
< A (1+4(1—a2))é
< Z(1+8(1-a")

V33-3

Thus, we obtain that A > m which is a contradiction.

3. UNCONDITIONAL UNCOUNTABLE BASIS

In the case of nonseparable spaces we can also obtain some renormings with the w-
FPP by using extended basis. We recall [16] (Definition 17.5) that a family {z; : i € I'}
of elements in a Banach space X is called an extended unconditional basis of X (or, an
unconditional Enflo-Rosenthal set of X), if it is complete in X and if every countable
subfamily of {x; : ¢ € I'} is an unconditional basic sequence. This is equivalent ([16],
Theorem 17.5) to say that for every x € X there exists a unique family of scalars
{ti i € I} such that ), t;z; = x, i.e. for every € > 0 there exists a finite subset
A of I such that for every finite subset B of I, A C B we have ||}, g tiz; — x| <.
We will denote ¢; = fi(z), i.e. {fi : ¢ € I} are the functional coordinates for the
basis. As in the separable case, it can be proved that there exists a constant M

such that || Y7, 4 tixil| < M| ,cptixil| if A and B are finite subsets of I and
A C B. The smallest K satisfying this inequality is called the unconditional constant
of {x; : i € I}. If the inequality holds for M = 1 we say that {z; : ¢ € I} is an
extended unconditional monotonous basis.

Theorem 3.1. Let X be a Banach space with an extended unconditional basis with
constant M < @ Then X enjoys the w-FPP.

Proof. Otherwise there exists a nonexpansive mapping 7" and a 7T-minimal invariant
convex weakly compact subset K of X. It is known that K must be separable (see
[7], page 36). Thus, the set A ={i € I: f;(x) # 0 for some z € K} is countable and
{z; : i € A} is a (countable) unconditional basis for span {K} with unconditional
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constant M. From here, we can follow the same arguments as in [13] (Theorem 2) to
prove the result. O

Lemma 3.2. Assume that {x; : i € I} is an extended unconditional basis in X.
For every x = ), t;x;, the expression |v| = sup{|| ;o4 €itiwsl| :+ A C I finite}
where €; = £1 defines an equivalent norm on X such that {x; : i € I'} is an extended
unconditional monotonous basis for this norm

Proof. Let A, B finite subsets of I with A C B. Denote v = >, ptiz;, u =
Yica€itizi and v =}, py 4 €itizi. We have |z] > [lu+ v[| and || > [Ju — v[|. Thus,
2/ull < flu+ v + [lu —v|| < 2|z| which implies that |}, 4 tixi| <[>, cptizs|. O

Theorem 3.3. Let X be a Banach space which can be isomorphically embedded in a
Banach space Z with an evtended unconditional basis and X < (v/33 —2)/2. Then,
X has an equivalent norm | - | such that if Y is an isomorphic Banach space and the
Banach-Mazur distance between (X,|-|) and Y is less than A, then Y satisfies the

w-fpp.
Proof. Tt easily follows the same arguments used in Theorem 2.1. O

Remark. It is known [3] that ¢, cannot be isomorphically embedded in a Banach
space with an extended unconditional basis. This fact is also a consequence of the
above theorem, because ¢, fails the w-FPP and every renorming of /., contains
almost isometrically £, [15].
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