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Abstract: This work focuses on the high-temperature mechanic properties of a 3 mol %
yttria zirconia polycrystals (3YTZP), fabricated by hot-pressureless sintering.
Systematic measurements of mechanical loss as a function of temperature and
frequency were performed. An analytical method, based on the generalised Maxwell
rheological model, has been used to analyse the high temperature internal friction
background (HTB). This method has been previously applied to intermetallic
compounds but never to ceramics, except in a preliminary study performed on fine grain
and nano-crystalline zirconia. The HTB increases exponentially and its analysis
provides an apparent activation enthalpy which correlates well with that obtained from
creep experiments. This fact shows on the one hand the plausibility of applying the
generalised Maxwell model to ceramics, and on the other hand indicates the possibility
of using mechanical spectroscopy as a complementary helpful technique to investigate

the high temperature deformation mechanism of materials.
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1. Introduction

Ceramics materials posse a unique blend of physical, chemical and mechanical
properties (high wear-resistance, hardness, strength, thermal-chemical stability...)
which makes them suitable in a wide variety of technological applications, especially
under extreme conditions. Moreover, they can exhibit a superplastic behaviour by
decreasing the grain size. This fact was first reported for yttria tetragonal zirconia
polycrystal [1], and then this material has been the subject of numerous studies [2-5].
As a result of these investigations, grain boundary sliding has been recognized as the
main deformation mechanism for yttria tetragonal zirconia polycrystal, with an apparent
activation enthalpy between 5 and 7 eV, depending on the experimental conditions [6].
From a physical and technological point of view it becomes essential identifying the
deformation mechanisms that operates in a material in order to predict its mechanical
response under certain conditions. Creep provides information to understand how a
material deforms at high temperatures because some parameters intrinsically related to
the operating deformation mechanisms, like the activation energy and the stress

exponent, can be obtained from these experiments.

Mechanical spectroscopy is a technique which operates in the an-elastic range, applying
an oscillating stress to a specimen and then inducing the structural defects motion (point
defects, dislocations...). The mobility of these defects, which is intrinsically related to
the mechanical properties of material, can be investigated by this technique.
Furthermore, mechanical spectroscopy has also the advantage of being a non-
destructive technique, and therefore very useful when not much material is available
and many experiments have to be performed under different conditions. At high
temperatures, the HTB analysis provides an apparent activation enthalpy similar to the
one measured by creep tests. Thus, Schaller et al. [7] studied 3 mol % yttria-stabilized
tetragonal zirconia polycrystals (3Y-TZP), with an average grain size of 0.29 um,
obtaining an apparent enthalpy energy of about 5.6 eV. Donzel et al. [8] studied the
same material but with different grain size and they managed to observe a relaxation
peak, called Peak II, related to the well-known threshold stress exhibited by this
material. A more extended study was performed by Donzel et al. [9] on YTZP with
different grain sizes and sintered with different amounts of intergranular phase. They
observed another relaxation peak (Peak I) in samples with low purity which was
attributed to the glass transition of the amorphous pockets. These two peaks were
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already observed in silicon nitride [10-11], where a relationship between standard
equation for high temperature strain rate and mechanical loss was established. Recently,
a preliminary study performed on micro and nano-crystalline zirconia was reported
were nano-3YTZP specimens exhibited a higher increase of the internal friction HTB
compared to micro-3YTZP, due to a higher effective grain boundary area associated to

the former [12].

In this work we show the experimental results obtained by mechanical spectroscopy
performed on 3YTZP and the analysis using the generalised Maxwell model. We
compare them to the ones previously obtained by means of others analytical methods,
and also to the activation parameters obtained by creep in 3YTZP. So, the purpose of
this paper is twofold. Firstly, we want to show that mechanical spectroscopy is a
complementary technique together with creep experiments which seems to be very
valuable to investigate the high temperature deformation mechanisms, so important for
technological applications. And secondly, on the light of the coherent results obtained in
this work, the generalised Maxwell model can be applied for the experimental data

analysis in ceramics.
2. Experimental details
2.1. Material

High purity commercial 3 mol % yttria-zirconia powder, with 30 nm particle size, was
supplied by Tosoh, Japan. Powders were prepared by cold isostatic pressing at 300
MPa. The compact pieces were sintered in a conventional super-kanthal furnace at 1450
°C for 4 hours, with a heating and cooling rate of 600 -C/h. Dense specimens were

fabricated with a density, measured using Archimedes’ method, close to 100 %.
2.2 Microstructural characterization

The microstructure of the sintered samples was observed by high resolution scanning
electron microscopy HRSEM (Model HITACHI S5200, Electron microscopy service,
University of Seville, Spain) operating at 5 kV using backscattered and secondary
electrons. Prior to observation, the samples were polished with diamond paste of grain
sizes down to 1 um. Then, they were annealed for 30 min at 1400°C to reveal grain

boundaries. To study of 3YTZP grain morphology, the grain diameter (d; defined as d =



(4xArea/m)""?), and the form factor (F; defined as F = 4nxArea/(Perimeter)’) were

measured from HRSEM micrographs.
2.3. Mechanical spectroscopy

Sintered samples were cut for mechanical spectroscopy with dimensions of 30 mm x 5
mm X 1.3 mm. The equipment used in this work has been developed few years ago [13]
and is based on an inverted torsion pendulum. It can measure the internal friction and
the dynamic shear elastic modulus in two different working modes: (a) as a function of
temperature (300 — 1800 K) at imposed frequency, and (b) as a function of frequency

(107 — 10 Hz) in isothermal conditions. Here we describe its main components:

- An anti-vibratory system to provide stability to the pendulum, composed by three

Newport [-2000 laminar flow pneumatic dampers and two synthetic marble flagstones.

- A high vacuum system (10 Pa) is essential for many reasons: (i) to reduce the noise
coming from the transmission of external acoustic vibrations (ii) to avoid overheating of
the mechanical system and (iii) to prevent sample oxidation or contamination at high
temperatures. This vacuum system consists in a Boc Edwards RV 8 rotary vane pump
and a Leybold Turbovac 340 M Turbomolecular pump, provided by two pirani and

penning vacuum S€nsors.

- A graphite resistance tubular furnace, which by radiation can heat up to 1800 K. The
temperature control system is carried out with a stability of + 0.1 K by a Eurotherm
3504 PID controller, which regulates the power sent to the furnace by a SM 300-10D
Delta Electronika supply.

- An excitation-detection system. A permanent magnet is excited by two Helmholtz
coils driven by a KEPCO power supply, which amplify the sinusoidal signal from a
Solartron frequency analyzer. The response signal due to the torsion angle is detected by
the displacement of the laser beam spot on a photocell. This response is filtered,
magnified and sent to the frequency analyzer which measures the phase lag between the
excitation and the response signal. The oscillating strain is measured through an Agilent

34970A voltmeter.

In this work the internal friction of 3YTZP has been measured at temperatures between

800 and 1650 K and oscillating stress frequencies between 0.01 and 3 Hz.



3. Experimental results and analysis

The microstructure of the sintered-3YTZP shown in Fig. 1 predominantly consists of
equiaxed grains in the submicrometric size range. The analysis of the grain size and
form factor distributions showed an average grain size of 0.6 um and a shape factor
around 0.7. Neither pores nor cavities are observed between grains, which is coherent

with the full densification measured by the Archimedes’ method.

Fig. 2 shows the mechanical loss measurements performed on 3YTZP as a function of
the temperature for an oscillating stress frequency of 0.3 Hz. The dynamic shear elastic
modulus variation is also plotted, and its smooth behaviour indicates that nothing
strange took place during the test, like a specimen failure, cracks... No peak is observed
from 800 to 1300 K, and above this temperature the internal friction experiences an
exponential increase, which is relatively monotonous in the whole high temperature
background (HTB) region. That indicates the uniqueness of the nature of the micro-

structural units stimulated during the experiments.

The internal friction versus temperature for different oscillating stress frequencies is
shown in Fig. 3. All the measurements have been carried out with an initial oscillating
amplitude at room temperature of =10 and a heating rate of 1.5 K/min. It is clear that
the internal friction value increases by decreasing the frequency, and in all cases we
observe an exponential increase in the high temperature background region. That
indicates that in the range of temperatures and frequencies studied here the micro-
structural units stimulated have the same nature. Thus, only one process is being
thermally activated, although it could be the result of the coupling of several individual

mechanisms related to the grain boundary sliding.

The high-temperature background (HTB) is determined by viscoelastic relaxation. For
mechanical spectroscopy analysis we use the generalised Maxwell model, assuming that

the high temperature background HTB of the internal friction Q™' is written as [14]:

Q'= /(w1 (1)

being o the oscillating stress frequency, 1 the relaxation time and n a parameter that
corresponds to the distribution of the relaxation times. The parameter n takes values

between 0 and 1, for ideal viscoelasticity. Taking logarithm in Eq. (1) we obtain:



In Q'=-nlnw —In 7" )

Since viscoelastic behavior is determined by thermally-activated processes, an

Arrhenius equation is expected for the relaxation time t:
T*=1"= 10" exp (n Hye/kpT) 3)

T* being the apparent relaxation time. Since the dissipated mechanical work during
plastic deformation is proportional to the strain rate, Q"' is proportional to this later
quantity. Thus the activation enthalpy displayed in Eq. (3) should be coincident with the
activation energy for creep [10]. From the experimental results shown in Fig. 3, we
have selected different temperatures and for each one we have reported the internal
friction value as a function of the frequency. Then we have plotted the internal friction
logarithm versus the frequency logarithm (Fig. 4) following the method developed by
Weller et al [15] and recently applied to intermetallic compounds [16-17]. A linear
dependence of InQ™' versus Ino for each temperature is clearly observed in the HTB
(Fig. 4). Furthermore, it is worth emphasizing that this linear dependence has the same
slope for all temperatures, indicating that the operating microscopic mechanism is the
same in the temperature and frequency range studied here. From the linear regression
slope of each isothermal a distribution factor of the relaxation time n=0.3 is calculated,
and from the interception with the In Q™' axis the apparent relaxation time t* for each
temperature is obtained. Assuming an Arrhenius dependence of T* on temperature (Eq.
(3)) we can obtain the activation enthalpy of the mechanism involved in the HTB. Fig. 5
shows the In 7 vs. 1/T plot, whose fit provides an activation enthalpy of Hact=6.3 + 0.2
eV and a relaxation time 1o ~ 4.3-10"® s. Schaller et al. [7], studied a 3YTZP material
sintered at higher temperatures (1643 K) whose mean grain size was about 0.29 um.
Taking the equation for the high temperature background [18], Schaller et al. [7]
reported an apparent activation enthalpy energy of about 5.6 eV, a limit relaxation time
7o~ 10™"® s and a broadening factor 1/o. equal to 3.2. The small value of the limit
relaxation time has no physical meaning and has to be corrected by models, which take
into account the entropy variations in the grain boundaries at high temperature. This
factor is just introduced to take into account that a relaxation peak is broader than a
Debye peak. Comparing equations it is easy to notice that the inverse of o corresponds
to the distribution factor n in the generalised Maxwell model. As we can see our value

n=0.3 is in good agreement with a=1/3.2=0.31 obtained by Schaller et al. [7]. Also the
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relaxation time 1o compares well to their value. However, we obtain an apparent
activation enthalpy a bit higher. That could be ascribed to the smaller grain size of their
samples and also to differences in the experimental conditions since they worked at

higher temperatures than in our experiments.

Alternatively to this method we have carried out a similar one, which has some
advantages, as we will see later on. Instead of measuring the internal friction as a
function of the temperature for several oscillating stress frequencies, as shown before,
we have performed measurements of the internal friction as a function of the frequency
o for several temperatures. The In Q' — In  plot (Fig. 6) is provided with much more
data for each isothermal compared to Fig. 4, contributing to a more reliable fit. In fact,
this higher amount of data allows us to see the appearing of the Peak II [8], however it
is quite weak because of the grain size of our samples and then we can consider a linear
dependence of InQ™' on Inw. Coherently, the linear regression of each isothermal has the
same slope, and a value for the distribution factor of the relaxation time n = 0.29 + 0.01
is obtained. We can see that both methods provide the same value for this parameter.
From data plotted in Fig. 6 and taking into account Eq. (2) and Eq. (3), the Arrhenius
diagram (Fig. 7) provides an activation enthalpy of Hact=6.2 £ 0.2 eV and a relaxation
time of tg=1.3-10"" s. So, similar values are obtained by using both methods. However,
for this sort of calculations, measuring the internal friction as a function of the

frequency consumes much less time for the experimental results analysis.

The activation enthalpy value, measured by means of both methods, is in good
agreement with the one obtained by other authors by creep experiments, since they
reported a value for the activation enthalpy between 5 and 7 eV depending on the creep
conditions [6]. On the one hand, this agreement is surprising if we take into account the
large difference between creep and mechanical spectroscopy experiments due to the
much lower stresses involved in the latter. And, on the other hand it constitutes a proof
that mechanical spectroscopy is a helpful non-destructive technique that can provide
useful information like activation enthalpy of thermally-activated deformation
mechanism, and therefore its use as a complementary technique for creep experiments is

obviously of huge worth.



4. Conclusions

Mechanical spectroscopy has been performed in 3 mol % yttria zirconia polycrystals
(3YTZP). We have applied two different methods to study the high temperature
background, obtaining important parameters such as the activation enthalpy of the
deformation mechanism. By means of mechanical spectroscopy we find the same
activation energy for YTZP than those obtained by creep experiments. That attests that
mechanical spectroscopy, which also has the advantage of being a non-destructive
technique, seems to be very useful together with creep experiments to investigate the

high temperature deformation mechanisms operating in ceramic materials.
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FIGURE CAPTIONS

Fig. 1. Scanning electron micrograph showing the grain microstructure of YTZP-

samples, whose average grain size is 0.6 microns.

Fig. 2. Internal friction and dynamic Young’s modulus versus temperature of a YTZP

specimen under a oscillating stress frequency of 0.3 Hz.

Fig. 3. Plot of the YTZP set, showing the internal friction vs. temperature for different

frequencies, taken from [12].
Fig. 4. Plot of the In Q™' as a function of In w for different temperatures [12].

Fig. 5. Arrhenius diagram for the high temperature internal background of YTZP
specimen [12], whose fit provides an activation enthalpy of H,=6.3 £ 0.2 ¢V and a

relaxation time to~ 4.3- 1018 s.

Fig. 6. In Q' as a function of In w obtained from measuring the internal friction as a

function of the frequency for different temperatures.

Fig. 7. Arrhenius diagram plotted from data in Fig. 6. An activation enthalpy of Hy.=
6.2 £ 0.2 eV and a relaxation time of to=1.3" 10" s are obtained. These results are

similar to the ones shown in Fig. 5.
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