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Abstract

The effect of deformation on the excitation of multiple giant dipole resonances is studied. Analytical expressions are
derived in the framework of the interacting boson model for the energies and E1 properties of giant dipole resonances in
spherical and deformed nuclei, and a numerical treatment of transitional nuclei is proposed. Coulomb-excitation cross
sections are calculated in 238U and in the samarium isotopes. q 1999 Published by Elsevier Science B.V. All rights reserved.

Nuclear multiphonons both at low and at high
w xenergies have attracted much interest lately 1–4 . At

low energy, the controversy centers around the col-
lective character of multiphonon states. While in
vibrational nuclei firm experimental evidence now
exists for states with triple quadrupole phonon char-

Ž w x.acter see, e.g., Ref. 5 , in deformed nuclei the
collective character of double b and g vibrations is
still a matter of acrimonious debate. At high energy,
the study of multiphonons has pointed out the limita-
tions of the small-amplitude approximation for vibra-
tional collective motion and of the linear approxima-
tion for the external exciting field. These assump-
tions are routinely made for the first phonon but

w xrecent studies of double phonons 6–8 have shown
the importance of anharmonicities and non-linearities
in the excitation of large-amplitude vibrations. Simi-
larly, anharmonicities and non-linearities in nuclear
vibrations at low energy have been shown to play a

crucial role in the calculation of the heavy-ion fusion
cross sections at energies close to the Coulomb

w xbarrier 9,10 .
In this letter yet another aspect of phonon excita-

tions at high energy is investigated, namely the
modification of the excitation of the giant dipole

Ž .resonance GDR away from shell closure as a result
of deformation. Already at the level of the single
GDR the strength function shows a splitting into two
peaks associated with the two different frequencies
of vibration along with or perpendicular to the axis
of axial symmetry. The question under scrutiny here
is how deformation influences the E1 strength to the

Ž .double GDR DGDR and what its effect is on the
Coulomb excitation cross section. The proposed ap-
proach makes use of the interacting boson model
Ž . w xIBM 11 for the description of the low-energy
collective levels. These are coupled to the GDR
excitations modelled as p bosons. The advantage of
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using the IBM is that the multiphonon states are
obtained as exact eigensolutions of the hamiltonian
and, therefore, no folding procedure is required to
obtain the double phonon states, as is for instance the

w xcase in Refs. 12,13 . The folding procedure is only
approximately correct for vibrational or well-de-

Žformed nuclei in the latter case the folding must be
done in the intrinsic frame assuming additivity of

.intrinsic phonons but there is no simple recipe in the
intermediate case of transitional nuclei. Another ad-
vantage of the IBM is that calculations are quick and
this enables an easy estimate of the excitation cross
section to the triple GDR concerning which experi-

w xments are currently planned 14 .
A general and appropriate basis to discuss the

problem of multiple GDR excitations is of the form

< :a L=nR; JM . 1Ž .L J

The multiple GDR is built on a low-energy nuclear
state characterised by a L where L is the angularL

momentum of the state and a any other label. TheL
Žmultiplicity of the GDR is indicated by n i.e., ns1

.for a single GDR, ns2 for a double GDR, etc. and
its angular momentum by R. The single resonance is
approximated as a p boson; the allowed angular
momenta of the multiple GDR are Rsn,ny2, . . . ,0

Ž .or 1. The basis 1 can be referred to as a weak-cou-
pling basis in the sense that the angular momenta L
and R are good quantum numbers and are coupled to
total angular momentum J with projection M . TheJ

weak-coupling basis arises naturally when the inter-
action between the GDR and the low-lying states is

ˆ ˆweak or is of dipole type LPR. More general nuclear
interactions are not necessarily diagonal in the basis
Ž .1 . Specifically, the interaction predominantly re-
sponsible for the splitting of the GDR in deformed

ˆ ˆnuclei is of quadrupole type Q PQ and is notL R
Ž .diagonal in the weak-coupling basis 1 . From the

analogous problem in the particle–core coupling
w xmodel 15 it is known that the diagonalisation of

ˆ ˆ Ž .Q PQ in the basis 1 gives rise to a strong-cou-L R
w xpling basis with the quantum numbers 16

< :a =n;a K JM . 2Ž .L J J J

The angular momenta L and R no longer are con-
served quantities and are replaced by K , the projec-J

tion of the total angular momentum J on the axis of

axial symmetry. The choice of basis depends on the
competition between various terms in the nuclear
hamiltonian. Large splittings in L or R induce the

Ž .weak-coupling basis 1 ; if, in contrast, these are
small in comparison with the quadrupole coupling
between the low-energy states and the GDR, such as
is the case in well-deformed nuclei, the strong-cou-

Ž .pling basis 2 is obtained.
The above remarks are rather general and model

independent. Low-energy nuclear states and their
coupling with the GDR can be modelled in several
different ways and a convenient one is in the context

w xof the IBM 11,17 . In deformed nuclei the problem
was worked out analytically for a single GDR by

w xRowe and Iachello 18 , while numerical results were
w xpresented for the single GDR in Refs. 19–22 and

w xlater for the double GDR in Ref. 23 . In this letter
analytical results for the energies and E1 transitions
in spherical and deformed nuclei are generalised to
the multiple GDR, and numerical results are pre-
sented for intermediate cases. From these results the
Coulomb-excitation cross sections are calculated tak-
ing into account the dynamics of the collision, which
was lacking in previous IBM treatments of the single
and the double GDR.

It is assumed in the IBM that collective nuclear
states can be described in terms of N, s and d
bosons where N is half the number of valence

w xnucleons 11 . The dynamical algebra of the model is
Ž .U 6 in the sense that a single of its representations

Ž w x.namely the symmetric one, N is assumed to
contain all low-energy collective nuclear states. To
this space are coupled the multiple GDR excitations.
Assuming that a single GDR is described by a p
boson, multiple GDR excitations are represented by

Ž . Ž . Ž .the direct sum 0,0 [ 1,0 [ 2,0 [ PPP of sym-
Ž . Ž .metric representations n,0 of U 3 . The dynamical

Ž . Ž .algebra of the coupled system is thus U 6 mU 3
Ž .with the proviso that several U 3 representations

must be taken to build the model space.
w xThe model hamiltonian has the generic form 17

ˆ ˆ ˆ ˆHsH qH qV . 3Ž .sd p sdyp

w xThe first term is the usual IBM hamiltonian 11
which gives an adequate description of the low-en-
ergy spectrum of spherical, deformed and transitional
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Ž .nuclei. The second term in 3 governs the multiple
GDR spectrum and is of the form

ˆ ˆ2H se nqa n nq3 qb R , 4Ž . Ž .ˆ ˆ ˆp p p p

ˆwhere n is the p-boson number operator and R theˆ
associated angular momentum operator. The coeffi-
cient e represents the unperturbed single GDRp

Ž .energy. The second term in 4 induces a diagonal
anharmonicity in the excitation energy of the multi-

Ž .ple GDR. The interaction term in 3 , finally, ac-
quires the form

ˆ ˆ ˆ ˆ ˆ'V sa n nq2a LPRq2 3 a Q PQ , 5Ž .ˆ ˆsdyp 0 d 1 2 L R

with a monopole, dipole and quadrupole interaction.
More complicated, higher-order interactions that mix
excitations with different n are not included here.

Ž .The hamiltonian 3 can be diagonalised numerically
Ž . Ž .in the U 6 mU 3 model space. For particular val-

ues of the parameters analytical solutions are avail-
able. Two classes of analytically solvable hamiltoni-
ans exist.

( )i Weak-coupling limit. A weak-coupling hamil-
tonian can be defined for each of the three limits
w Ž . Ž . Ž .xU 5 , SU 3 and O 6 of the IBM and is obtained

Ž .for a sa s0 in 5 . In the particular case of the0 2
Ž . Ž .U 5 limit, only a s0 is required. In the U 52

weak-coupling limit states are labelled by

< :w xN n Õn L= n ,0 R ; JM , 6Ž . Ž .d D J

where n is the number of d bosons, Õ the d-bosond

seniority and n an additional quantum number re-D

w xlated to the pairing of triplets of d bosons 11,25 .
Ž .The energy eigenvalues of the states 6 are

Ese n qa n n q4Ž .d d d d d

qg Õ Õq3Ž .d

q b ya L Lq1 qe nqa n nq3Ž . Ž . Ž .d 1 p p

q b ya R Rq1Ž .Ž .p 1

qa n nqa J Jq1 , 7Ž . Ž .0 d 1

ˆ2where b is the parameter associated with L ind

Ĥ .sd

( )ii Strong-coupling rotational limit. The appro-
priate classification of the low-energy states in this

Ž .case is SU 3 . This symmetry requires that the
ˆ Ž .quadrupole operator Q be a generator of SU 3 andL

3 Ž .that a s0 and b sb sa y a , In the SU 30 p d 1 24

strong-coupling limit states are labelled by

< :w xN l ,m = n ,0 ; l,m K JM . 8Ž . Ž . Ž . Ž .sd sd J J

Ž . Ž .The labels l ,m are associated with the SU 3sd sd

algebra of the s and d bosons. They characterise the
band structure of the low-energy spectrum; for ex-

Ž . Ž .ample, the ground band has l ,m s 2 N,0 . Thesd sd
Ž .energy eigenvalues of the states 8 are

Es a yaŽ .sd 2

= l l q3 qm m q3 ql mŽ . Ž .sd sd sd sd sd sd

qe nq a ya n nq3Ž . Ž .p p 2

qa l lq3 qm mq3 qlmŽ . Ž .2

3q a y a J Jq1 . 9Ž . Ž .Ž .1 24

The splitting of the GDR comes about because of the
Ž . Ž .nfourth term in 9 . The GDR excitation splits into

Ž .nq1 peaks corresponding to l,m values

l,mŽ .
s 2 Nqn ,0 , 2 Nqny2,1 , . . . , 2 Nyn ,n ,Ž . Ž . Ž .

10Ž .

where 2 NGn is assumed. The energies of the dif-
Ž .ferent peaks are found from 9 . The values of K J

Ž .and J allowed for a given l,m representation are
w xgiven by Elliott’s rule 11,24 .

The Coulomb excitation of GDRs occurs pre-
dominantly through E1. In the context of the present
model an E1 excitation corresponds to the creation

Žof a p boson annihilation in case of E1 de-excita-
. Ž .tion and thus the electric multipole operator MM E1m

w x Ž † .15 is parametrised as z p qp . The calculation˜m m

of E1 transition probabilities requires the matrix
† Ž . Ž .elements of p in the basis 6 or 8 which can be

done by standard group-theoretical techniques. Ana-
lytical expressions are found in the two limiting
cases.

( )i Weak-coupling limit. For the GDR excitations
built on the 0q ground state results up to the DGDR

Ž .are shown in Fig. 1a. Generally, for the B E1
values between multipole GDR excitations built on
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Ž .2 Ž .Fig. 1. E1 excitation patterns up to GDR in a the spherical
Ž .weak-coupling limit and b the deformed strong-coupling limit.

Ž . pa The levels are labelled by J on top. The numbers between
Ž Ž . Ž . X .levels are the strengths B E1; n,0 J™ nq1,0 J in units of

2 Ž . Ž . pz . b The levels are labelled by l,m underneath and by K on
top. The expressions between levels are the summed strengths

X X Ž Ž . Ž X X . X X . 2Ý B E1; l,m KL™ l ,m K L in units of z .K L

the 0q ground state one recovers the independent-
w xquanta result 15

B E1;n s0= n ,0 R s J ; JŽ .ŽÝ d i i i
f

™n s0= ny1,0 R sJ ; JŽ . .d f f f

s B E1;a nJ™a ny1 JŽ .Ž .Ý i f
f

snB E1;a ns1™a ns0 , 11Ž . Ž .
where a denotes all other quantum numbers that
cannot change.

( )ii Strong-coupling rotational limit. Results up to
the DGDR are shown in Fig. 1b. Although all indi-

Ž .vidual B E1 s are known, for simplicity of presenta-
Ž Ž .X Xtion only the summed strengths Ý B E1; l,m KLK L

Ž X X. X X.™ l ,m K L are shown. In the limit of large
boson number N one recovers harmonic results that
have a simple geometric interpretation. For example,

Ž . qthe B E1 values from the 0 ground state to the
two 1y GDRs are 1 and 2, respectively, the first
associated with an oscillation along the axis of sym-

Ž .metry say the z direction and the second with
oscillations in the x and y directions. For the single-

Ž .to-double GDR excitation one finds B E1 values
which are, for N™`, 2, 2, 1 and 3. The large-N

Ž .nresults can be generalised to GDR .
Coulomb excitation in heavy-ion collisions is usu-

ally described by treating the relative motion classi-
cally while the internal degrees of freedom of the
colliding nuclei are accounted for quantum mechani-
cally. The operator responsible for the excitation
depends on time through the relative distance. For

Ž .relativistic collisions its expression is as in Eq. 35
w xof Ref. 7 where each term of the multiple expan-

sion of the external field factorizes into two ele-
ments. The first depends on the collision properties,
the second on the structure of the nucleus being
excited. In the present study only contributions from

Ž .the MM E1 matrix elements are considered and those
are calculated within the model described above. The
solution of the time-dependent Schrodinger equation¨
leads to a set of coupled differential equations for the

Ž .nprobability amplitudes to excite the GDR states.
For each impact parameter b these equations are
integrated along the appropriate classical trajectory.

Ž .nFor each GDR state the total inelastic cross sec-
tion is then obtained by integrating the correspond-
ing probability over all impact parameters, starting

w 1r3 1r3from a mininum value b s1.34 A qA ymin 1 2
Ž y1r3 y1r3.x w x0.75 A qA fm 26 .1 2

The above formalism will now be applied to the
relativistic Coulomb excitation of the single and
double GDRs in 238 U and in the chain of even
isotopes 148Sm to 154Sm. The former is an example
of a well-deformed nucleus while the samarium iso-
topes exhibit a change from vibrational to deformed
as A increases. The description of such structural
changes requires the use of a transitional IBM hamil-
tonian and hence the following analysis is not con-
fined to any of the previously discussed analytical
limits but always involves a numerical diagonalisa-

238 ˆw xtion. For U, a consistent-Q 27 hamiltonian Hsd
ˆ x ˆ x X ˆ ˆsk Q PQ qk LPL is used with ksy16 keV,

k
X s1.5 keV and xsy0.72. These parameters yield

an adequate description of the ground–gamma band
splitting, of the moments of inertia and of the E2

ˆtransitions from gamma to ground band. The Hsd

hamiltonian for the Sm isotopes is taken as in Ref.
w x21 . The additional parameters e , a , a and z inp 0 2
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ˆ ˆH , V and in the E1 operator are given in Tablep sdyp

1. They have been chosen as to reproduce the ob-
w xserved photoabsorption cross section 28,29 to the

first GDR. Agreement is obtained if to each eigen-
state is associated a spreading width G s0.007E2.5

i i
238 1.81 Žin U and G s0.029E in the Sm isotopes withi i

.E and G in MeV . To reproduce the photoabsorp-i i

tion cross section of a well-deformed nucleus one
uses the fact that the energy splitting of the GDR is
very sensitive to the parameter a . Then, once a is2 2

fixed, one varies a to sligthly change the contribu-0

tion of each peak to the energy-weigthed sum rule
and e to shift the energy of the dipole states.p

Finally, the parameter z is obtained from a global
normalisation.

Recently, an experiment was done for 238 U q
208 ŽPb at 0.5 GeVrA the data analysis is in progress
w x.30 . The result of the corresponding calculation is
shown in Fig. 2. The full line corresponds to the total
cross section obtained by smoothing the cross sec-
tion to each discrete state with a Lorentzian having a

'width of G s2.5 MeV and G s 2 G for the1 2 1

single and double GDR states, respectively. As ex-
pected, the GDR peak is split in two while a broad
plateau occurs in the DGDR region. The integrated
cross sections are s GDR s 3.5 b and s DGDR s 0.3

w xb, lower than those of Ponomarev et al. 13 . The
difference can be ascribed to the fact that a coupled-

w xchannel method is used while in Ref. 13 the cross
sections are calculated in first- and second-order
perturbation theory. In fact, if we use perturbation
theory then the result for the s GDR increases up to
4.2 b. The two approaches give similar results only
for large impact parameters. Some difference comes

Ž .also from the different B E1 distribution. Fig. 2
also shows the contributions associated with the 0q

Ž . q Ž .dashed line and 2 dot-dashed line component of

Table 1
Parameters of the hamiltonian and of the E1 transition operator

'Ž . Ž . Ž . Ž .Isotope e MeV a keV 2 3 a keV z e fmp 0 2

148Sm 14.84 0 y275 3.84
150Sm 14.59 0 y275 3.84
152Sm 14.05 250 y275 3.84
154Sm 13.99 150 y225 3.84
238 U 13.00 0 y160 5.06

Fig. 2. Coulomb excitation of the single and double GDR in 238 U
238 Ž . 208in the U 0.5 GeVrA q Pb reaction. The dashed line is the

contribution from the 0q component of the two-phonon state
while the 2q one is represented by the dot–dashed line. The
results corresponding to the 1q component are too small to be
seen.

the DGDR. The 1q component does not appear in
the figure since it is extremely small. After substrac-
tion of the long single GDR tail, the three peaks,

Ž . Žexpected from 10 , are clearly visible. If the convo-
lution of the cross section were done with a G s2

2 G , the three peaks are still visible though less1
.evident . Therefore, an exclusive experiment in coin-

cidence with g–g decay might conceivably give a
direct signature of the excitation of the DGDR.

The present results differ from those of Pono-
w xmarev et al. 13 who study the same reaction with

the particle–phonon model, using second-order per-
turbation theory to calculate the cross section. In

w xRef. 13 the DGDR cross section appears as a
structureless peak while here it does not. The reason
is that the calculated cross section to the single GDR

w xin Ref. 13 shows three peaks in the energy region
11–15 MeV. As a result, since the DGDR states are
constructed as products of two single GDR states,
one expects six peaks in the DGDR energy region
which eventually smear out the cross section to the
DGDR. In our case we have only two peaks, which
are present in the experimental data, because we
have fixed the parameters of our hamiltonian by
fitting the photoabsorption cross section.

The results of the calculated inelastic cross sec-
tions for the reactions 208 Pb q ASm at 0.5 GeVrA
are shown in Fig. 3. The cross sections to each
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Fig. 3. Coulomb excitation cross sections of single and double
208 Ž .GDR in several samarium isotopes in the Pb 0.5 GeVrA q

ASm reaction. The bars correspond to the cross sections to the
discrete states and the full line corresponds to the convolution of
these cross sections by a lorentzian of width G s2.5 MeV for the1'one-phonon states and G s 2 G for the two-phonon states.2 1

discrete state are shown as well as the ones obtained
by the same smoothing procedure described above.
In the transition from spherical to deformed one
observes a continous evolution in the shape of the
cross section resulting in the deformed case in a
clear splitting in two peaks of the GDR and, corre-
spondingly, three bumps in the DGDR energy re-
gion. This effect is due to the increase in separation
between the two main components of the single
GDR and the concentration of the small components
in a more narrow energy range which in turn results
from the increasing coupling of the GDR with
quadrupole modes.

In summary, energy and E1 properties of multiple
giant dipole resonances have been studied in the
context of the interacting boson model. The model
has been applied to 238 U and to transitional samar-
ium isotopes for which Coulomb excitation cross
sections have been calculated in the reaction with
208 Pb at 0.5 GeVrA. The example of the samarium
isotopes shows how the excitation cross section is
modified when going from spherical to deformed
nuclei. The calculation shows also that exclusive
experiments on a well-deformed nucleus like 238 U
could give a direct signature of the existence of the
double giant dipole resonance.
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