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Abstract

The invisibility graph I(X) of a set X C R? is a (pos-
sibly infinite) graph whose vertices are the points of
X and two vertices are connected by an edge if and
only if the straight-line segment connecting the two
corresponding points is not fully contained in X. We
consider the following three parameters of a set X:
the clique number w(I(X)), the chromatic number
X(I(X)) and the minimum number «(X) of convex
subsets of X that cover X.

We settle a conjecture of Matousek and Valtr claim-
ing that for every planar set X, v(X) can be bounded
in terms of x(I(X)). As a part of the proof we show
that a disc with n one-point holes near its boundary
has x(I(X)) > loglog(n) but w(I(X)) = 3.

We also find sets X in R® with x(I(X)) = 2, but
~(X) arbitrarily large.

1 Introduction

Let X be a subset of a d-dimensional Euclidean space.
We say that two points z,y € X see each other if
the straight-line segment Ty connecting x and y is
a subset of X. The invisibility graph I(X) of a set

*This research was supported by the project CE-ITI
(GACR P202/12/G061) of the Czech Science Foundation and
by the grant SVV-2013-267313 (Discrete Models and Algo-
rithms). The second author was supported by the project
CZ.1.07/2.3.00/20.0003 of the Operational Programme Educa-
tion for Competitiveness of the Ministry of Education, Youth
and Sports of the Czech Republic. The fourth author was also
partially supported by ESF EuroGiga project ComPoSe (IP03),
by OTKA Grant K76099 and by OTKA Grant 102029. The
first, the third and the sixth author were partially supported by
project GAUK 52410. Part of the research was conducted dur-
ing the Special Semester on Discrete and Computational Geom-
etry at Ecole Polytechnique Féderale de Lausanne, organized
and supported by the CIB (Centre Interfacultaire Bernoulli)
and the SNSF (Swiss National Science Foundation).

tEmail: cibulka@kam.mff.cuni.cz.

{Email: miroslav.korbelar@gmail.com.

$Email: kyncl@kam.mff.cuni.cz.

YEmail: meszaros@math.tu-berlin.de.

Il Email: ruda@kam.mff.cuni.cz.

**Email: valtr@kam.mff.cuni.cz.

103

X C R%is a graph whose vertices are the points of
X and two vertices are connected by an edge if and
only if they do not see each other. Let x(G) be the
chromatic number of a graph G and let w(G) be its
clique number. For a set X C R? we define y(X) to
be the minimum possible number of convex subsets of
X that cover X. Further, let x(X) := x(/(X)) and
w(X) == w(I(X)).

Sets X with w(X) = n — 1 are sometimes called
n-convez [8].

Observe that w(X) < x(X) < y(X) for any set X.

If a planar set X is closed, then ~(X) can be
bounded by a function of w(X). This was proved
by Breen and Kay [2] and the current best known
upper bound is v(X) < O(w(X)?3) by Matousek and
Valtr [6]. From the other direction, there exist ex-
amples by Matousek and Valtr |6] with v(X) >
Qw(X)?).

However, if we don’t restrict ourselves to closed
sets, there is no upper bound on v(X) even for sets
with w(X) = 3. An example is the disc Dy with A
one-point holes punctured in the vertices of a regu-
lar convex A-gon near the boundary of Dy, for which
w(Dy) =3, but v(Dy) = [A/2] + 1 (see [6]).

A one-point hole in a set X C R? is a point that
forms a path-connected component of R?\ X. Let
A(X) be the number of one-point holes in the set X.

The example of the set D) led to studying the prop-
erties of planar sets with a limited number of one-
point holes by Matousek and Valtr [6]. In particular,
they proved the following theorem.

Theorem 1 (MatouSek and Valtr [6]) Let X C
R? be a set with w(X) =w < 00 and A(X) = A < .
Then

Y(X) < O(w* + Mw?).

For any w > 3 and A\ > 0 they also found sets X
with w(X) = w, A(X) = X and 7(X) > Q(w? + w)).

Matousek and Valtr [6] conjectured that for an ar-
bitrary planar set X, the value of v(X) is bounded by
a function of x(X). Then x(X) cannot be bounded
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by a function of w(X) as shows the above example
with D).

Lawrence and Morris [4] proved that for every k
there exists ng(k) such that whenever S is a set of
finitely many points in the plane and |S| > no(k),
then y(R?\ S) > k. ! Thus, whenever X is the com-
plement of a finite set of points, A(X) can be bounded
in terms of x(X). This implies, by Theorem 1, that
the value of v(X) can be bounded in terms of x(X),
settling the conjecture of MatouSek and Valtr in the
special case when X is a complement of a finite set of
points.

In this paper, we strengthen the result of Lawrence
and Morris [4] and settle the conjecture for every pla-
nar set X.

The tower function T;(k) is defined recursively as
To(k) = k and Tj,(k) = 27»-1(F) Its inverse is the
iterated logarithm log' (n), that is, log'®) (n) = n and
log" (n) = log(log" =" (n)).

Theorem 2 Any set X C R? with x(X) = x < oo
satisfies
Y(X) < 021007,

The proof of Theorem 2 is omitted from this ex-
tended abstract. In the full version of the paper, we
also show that for every dimension d, A(X) can be
bounded in terms of y(X) for sets X C R? This
answers Question 6 of Lawrence and Morris [4].

A set X is star-shaped if X contains a point z € X
that sees every other point of X.

In Sections 2 and 3 we show that x and v can be
separated in dimensions 5 and more.

Theorem 3 For every positive integer g there exist
star-shaped sets
1. X C RS satisfying x(X) =2 and v(X) > g and
2. X. C RS that is closed and satisfies x(X.) = 4
and y(X.) > g.
Theorem 4 For every positive integer g there exist
star-shaped sets
1. X C R® satisfying x(X) =2 and v(X) > g and
2. X. C R® that is closed and satisfies x(X.) = 6
and y(X.) > g.

Problem 1 Does there exist a function f such that
2(X) < F(x(X)),
1. for every set X C R3?
2. for every set X C R*?

All logarithms in this paper are binary. We use
the notation Ty for the straight line segment between
points z and y.

IThe graph Gs in the paper of Lawrence and Morris is pre-
cisely the invisibility graph of R?\ S.

2 Constructions in dimension 6

2.1 Set with chromatic number 2

We prove part 1 of Theorem 3. Part 2 is omitted from
this extended abstract.

Let P, be the cyclic polytope on n > 7 vertices
(see for example [5]) and V,, its set of vertices. Thus
the convex hull of every triple of points from V,, is a
triangular face of P,.

Lemma 5 Let K, be the complete graph on the set
V of n > 7 vertices and let k := [2log(n) + 2]. It
is possible to orient the edges of K, so that every set
V' CV of size at least k contains a directed triangle.

Proof. For brevity, we call a set V' good if it contains
a directed triangle.

We orient the edges randomly and show that with
positive probability, every set V' C V of size at least
k is good.

First, we will bound the probability by that a given
set V' of k vertices is bad.

If there exists a directed cycle on V' of length
greater than 3, then one of the two cycles created
by adding an arbitrary diagonal to the cycle is again
directed. Thus there exists a directed triangle on V’.

There are 2(:=1)/2 possible orientations of edges
of a complete graph on k vertices out of which k! are
acyclic. Thus

k!

gy = KT

b =
The probability that some k-tuple V’ of vertices is
bad is thus at most

n nk 2
b < b — 2klog(n)fk /2+k/2 _
<k> S

_ 2k(log(n)7k/2+1/2) <

< 2k(log(n)—log(n)—1+1/2) < 2k(—1/2) <1.
(]

We fix the orientation of the edges of P, in which
every k-tuple of vertices is good. A triangular face
of P, has directed boundary if the three edges of the
face form a directed cycle. The set X is constructed
by puncturing a one-point hole in the barycenter of
triangular faces of P, with directed boundary.

Vertices of P, are colored black. Edges are cut in
thirds. In every edge, the interior of the middle third
together with the point at one third closer to the end
of the edge is colored white. The rest of the edges is
black. The coloring of triangular faces with directed
boundary is depicted on Fig. 1. The rest of X is
colored black.

All the edges of the invisibility graph of X are be-
tween pairs of points lying on the same triangular face
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Figure 1: Coloring of a face with directed bound-
ary. Lines determined by pairs (p1,p4), (p2,ps) and
(ps, pe) intersect in the barycenter and split the trian-
gle into monochromatic regions. Full lines and gray
areas represent black color, the rest is white.

with directed boundary. The coloring is proper on
each of these faces and thus the 2-coloring of the whole
X is proper.

If a convex set C contains at least k vertices of X,
then it contains a triangular face with directed bound-
ary and thus C contains a one-point hole. Therefore

n

7(X) = 2log(n) +3

3 Constructions in dimension 5

Here we present some parts of the proof of part 1 of
Theorem 4. The rest of the proof is omitted from this
extended abstract.

The constructions are similar to those in dimension
6: for part (1) of the theorem, the set X is a closed
cyclic polytope with one-point holes in some of the
2-dimensional faces. For part (2), instead of points
we remove small 5-dimensional polytopes attached to
the 2-dimensional faces. The difference from the con-
struction in dimension 6 is in the placement of the
holes: here we cannot apply the same argument as in
the previous section since for the cyclic polytope in di-
mension 5 only quadratically many triples of vertices
induce a 2-dimensional face and there is a 2-coloring
of the vertex set in which no 2-dimensional face is
monochromatic.

In the full version of the paper, we show two dif-
ferent ways how to choose the holes. In the first con-
struction we essentially show that randomly chosen
holes will do, but the proof (interestingly) requires a
rather nontrivial result from group theory. Also the
construction proves only part (1) of the theorem. In
the second construction we specify the locations of the
holes precisely. Moreover, we show that the holes can
be enlarged to open pyramids, which shows part (2)
of the theorem. The proof of part (2) of the theorem
is analogous to the proof of part (2) of Theorem 3 and
is omitted from this abstract.

Let P, be the 5-dimensional cyclic polytope on
n > 6 vertices with (ordered) vertex set V, =
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{v1,v2,...,v,}. For brevity, we call the triangular
face with vertices v;, v; and vy, the ijk triangle. Sim-
ilarly, the 5 edge is the edge between vertices v; and
v;. The 2-dimensional faces of P, are the triangles

e 1ij for every 1 <i < j <n (type lij triangles),
e ijn for every 1 <1i < j < n (type ijn triangles),

o i(i+1)jforeveryl <i< j—1<n (typei(i+1)j
triangles) and

e ij(j+1)foreveryl <i<j<n—1(typeij(j+1)
triangles).

3.1 Covering with convex sets

In the constructions proving part (1) of Theorem 4, we
remove a one-point hole from every type 1¢j triangle.
In the construction proving part (2), we remove an
open flat simplex instead of the point (as in Section 2).
The following lemma shows that in both cases, the
resulting set can not be covered by a bounded number
of convex sets.

Lemma 6 Let X be a subset of P, such that ev-
ery edge of P, is a subset of X and none of the
type lij triangles is a subset of X. Then ~v(X) >
Q(logn/loglogn).

Proof. Let X = C; UCy U ---UC) be a covering of
X with convex subsets of X. The covering induces
a partition of each open edge 1i, 2 < ¢ < n, into
at most k intervals I}, I?,..., I’ where each of the
intervals I7 is covered by one of the convex sets Cy(; ;.
Since the convex sets in the covering may overlap, this
partition need not be unique; in such a case we just
pick one.

We say that the partitions of two edges 1i and 17’
are of the same type if k; = ki, 1(i,p) = (¢, p) for
each p=1,2,...,k; (in other words, the “colors” ap-
pear in the same order along the edges), and for each
p = 1,2,...,k; the type of the interval I? (that is,
closed, open, or half-closed from the left /right) is the
same as the type of the interval I};. Degenerate one-
point intervals are considered as closed. The number
of types of the partitions is at most 2% - k! . 2¥=1, In-
deed, there are at most 2% subsets of “colors”, each of
the subsets can be linearly ordered in at most k! ways,
and there are at most £ — 1 boundary points shared
by two intervals, where one of the intervals is locally
closed and the other one locally open.

It follows that if n > 25 - k! - 28=1 4 1, then there
are two edges 17 and 14’ of the same type. The convex
hulls conv(IP UIY) cover the whole open triangle 144/,
including the one-point hole inside, which is a contra-
diction. Therefore n < 2% . k!- 28~ 41, which implies
that v(X) > Q(logn/loglogn). O
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4 Concluding remarks

To solve Problem 1 in dimension 4 we could use a
construction similar to those in dimensions 5 and 6
provided the following problem has a positive answer.

Problem 2 Does there exist for every k a convex
simplicial polytope P(k) in R* such that in every col-
oring of vertices of P(k) by k colors we can find a
triangular face whose vertices are monochromatic?

Assuming the polytope P(k) from Problem 2 exists,
the set X from Problem 1 is obtained from P(k) by
making a one-point hole in an arbitrary point inside
every triangular face. Such a set X cannot be covered
by k convex sets since otherwise one of the convex sets
would contain three vertices of a triangular face.

The invisibility graph I(X) can be colored by 13
colors in the following way. All the vertices of P(k)
get color 1. Tancer [7] has shown that the edges of ev-
ery 2-dimensional simplicial complex PL-embeddable
in R? can be colored by 12 colors so that for every
triangular face, the three edges on its boundary have
three different colors. This applies, in particular, to
the 2-skeleton of every 4-dimensional convex simpli-
cial polytope. We use colors 2,3,...,13 to color the
interiors of edges of P(k) in this way. For each tri-
angular face and each point p on its boundary, the
interior of the segment conecting the one-point hole
with p is colored by the color of p. All the remain-
ing points of X are isolated in 7(X) and thus may be
colored arbitrarily.

The boundary complex of a 4-dimensional convex
simplicial polytope is a special case of a triangula-
tion of S3. If we relax the condition on polytopality
in Problem 2 and ask only for a triangulation of S3,
then the answer is yes. Heise et al. [3] constructed,
for every k, a 2-dimensional simplicial complex lin-
early embedded in R? such that in every coloring of
its vertices with k colors at least one of the trian-
gles is monochromatic. We found the same simplicial
complex independently, modifying Boris Bukh’s con-
struction, which was communicated to us by Martin
Tancer. The vertices of the complex are placed on
the moment curve and a suitable noncrossing subset
of triangles is chosen for the faces. It remains to ex-
tend the embedded complex to a triangulation of the
whole R?, or S [1].
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