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AbstratThe invisibility graph I(X) of a set X ⊆ Rd is a (pos-sibly in�nite) graph whose verties are the points of
X and two verties are onneted by an edge if andonly if the straight-line segment onneting the twoorresponding points is not fully ontained in X . Weonsider the following three parameters of a set X :the lique number ω(I(X)), the hromati number
χ(I(X)) and the minimum number γ(X) of onvexsubsets of X that over X .We settle a onjeture of Matou²ek and Valtr laim-ing that for every planar set X , γ(X) an be boundedin terms of χ(I(X)). As a part of the proof we showthat a dis with n one-point holes near its boundaryhas χ(I(X)) ≥ log log(n) but ω(I(X)) = 3.We also �nd sets X in R5 with χ(I(X)) = 2, but
γ(X) arbitrarily large.1 IntrodutionLet X be a subset of a d-dimensional Eulidean spae.We say that two points x, y ∈ X see eah other ifthe straight-line segment xy onneting x and y isa subset of X . The invisibility graph I(X) of a set
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X ⊆ Rd is a graph whose verties are the points of
X and two verties are onneted by an edge if andonly if they do not see eah other. Let χ(G) be thehromati number of a graph G and let ω(G) be itslique number. For a set X ⊆ Rd we de�ne γ(X) tobe the minimum possible number of onvex subsets of
X that over X . Further, let χ(X) := χ(I(X)) and
ω(X) := ω(I(X)).Sets X with ω(X) = n − 1 are sometimes alled
n-onvex [8℄.Observe that ω(X) ≤ χ(X) ≤ γ(X) for any set X .If a planar set X is losed, then γ(X) an bebounded by a funtion of ω(X). This was provedby Breen and Kay [2℄ and the urrent best knownupper bound is γ(X) ≤ O(ω(X)3) by Matou²ek andValtr [6℄. From the other diretion, there exist ex-amples by Matou²ek and Valtr [6℄ with γ(X) ≥

Ω(ω(X)2).However, if we don't restrit ourselves to losedsets, there is no upper bound on γ(X) even for setswith ω(X) = 3. An example is the dis Dλ with λone-point holes puntured in the verties of a regu-lar onvex λ-gon near the boundary of Dλ, for whih
ω(Dλ) = 3, but γ(Dλ) = ⌈λ/2⌉+ 1 (see [6℄).A one-point hole in a set X ⊂ Rd is a point thatforms a path-onneted omponent of Rd

\ X . Let
λ(X) be the number of one-point holes in the set X .The example of the set Dλ led to studying the prop-erties of planar sets with a limited number of one-point holes by Matou²ek and Valtr [6℄. In partiular,they proved the following theorem.Theorem 1 (Matou²ek and Valtr [6℄) Let X ⊆

R2 be a set with ω(X) = ω < ∞ and λ(X) = λ < ∞.Then
γ(X) ≤ O(ω4 + λω2).For any ω ≥ 3 and λ ≥ 0 they also found sets Xwith ω(X) = ω, λ(X) = λ and γ(X) ≥ Ω(ω3 + ωλ).Matou²ek and Valtr [6℄ onjetured that for an ar-bitrary planar set X , the value of γ(X) is bounded bya funtion of χ(X). Then χ(X) annot be bounded
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On three parameters of invisibility graphsby a funtion of ω(X) as shows the above examplewith Dλ.Lawrene and Morris [4℄ proved that for every kthere exists n0(k) suh that whenever S is a set of�nitely many points in the plane and |S| ≥ n0(k),then χ(R2
\ S) ≥ k. 1 Thus, whenever X is the om-plement of a �nite set of points, λ(X) an be boundedin terms of χ(X). This implies, by Theorem 1, thatthe value of γ(X) an be bounded in terms of χ(X),settling the onjeture of Matou²ek and Valtr in thespeial ase when X is a omplement of a �nite set ofpoints.In this paper, we strengthen the result of Lawreneand Morris [4℄ and settle the onjeture for every pla-nar set X .The tower funtion Tl(k) is de�ned reursively as

T0(k) = k and Th(k) = 2Th−1(k). Its inverse is theiterated logarithm log(l)(n), that is, log(0)(n) = n and
log(l)(n) = log(log(l−1)(n)).Theorem 2 Any set X ⊆ R2 with χ(X) = χ < ∞satis�es

γ(X) ≤ O(24T2(χ)
· χ3).The proof of Theorem 2 is omitted from this ex-tended abstrat. In the full version of the paper, wealso show that for every dimension d, λ(X) an bebounded in terms of χ(X) for sets X ⊂ Rd. Thisanswers Question 6 of Lawrene and Morris [4℄.A set X is star-shaped if X ontains a point x ∈ Xthat sees every other point of X .In Setions 2 and 3 we show that χ and γ an beseparated in dimensions 5 and more.Theorem 3 For every positive integer g there existstar-shaped sets1. X ⊂ R6 satisfying χ(X) = 2 and γ(X) ≥ g and2. Xc ⊂ R6 that is losed and satis�es χ(Xc) = 4and γ(Xc) ≥ g.Theorem 4 For every positive integer g there existstar-shaped sets1. X ⊂ R5 satisfying χ(X) = 2 and γ(X) ≥ g and2. Xc ⊂ R5 that is losed and satis�es χ(Xc) = 6and γ(Xc) ≥ g.Problem 1 Does there exist a funtion f suh that

γ(X) ≤ f(χ(X)),1. for every set X ⊆ R3?2. for every set X ⊆ R4?All logarithms in this paper are binary. We usethe notation xy for the straight line segment betweenpoints x and y.1The graph GS in the paper of Lawrene and Morris is pre-isely the invisibility graph of R2 \ S.

2 Construtions in dimension 62.1 Set with hromati number 2We prove part 1 of Theorem 3. Part 2 is omitted fromthis extended abstrat.Let Pn be the yli polytope on n ≥ 7 verties(see for example [5℄) and Vn its set of verties. Thusthe onvex hull of every triple of points from Vn is atriangular fae of Pn.Lemma 5 Let Kn be the omplete graph on the set
V of n ≥ 7 verties and let k := ⌈2 log(n) + 2⌉. Itis possible to orient the edges of Kn so that every set
V ′

⊆ V of size at least k ontains a direted triangle.Proof. For brevity, we all a set V ′ good if it ontainsa direted triangle.We orient the edges randomly and show that withpositive probability, every set V ′
⊆ V of size at least

k is good.First, we will bound the probability bk that a givenset V ′ of k verties is bad.If there exists a direted yle on V ′ of lengthgreater than 3, then one of the two yles reatedby adding an arbitrary diagonal to the yle is againdireted. Thus there exists a direted triangle on V ′.There are 2k(k−1)/2 possible orientations of edgesof a omplete graph on k verties out of whih k! areayli. Thus
bk =

k!

2k(k−1)/2
= k!2−k2/2+k/2.The probability that some k-tuple V ′ of verties isbad is thus at most

(
n

k

)

bk ≤

nk

k!
bk = 2k log(n)−k2/2+k/2 =

= 2k(log(n)−k/2+1/2)
≤

≤ 2k(log(n)−log(n)−1+1/2)
≤ 2k(−1/2) < 1.

�We �x the orientation of the edges of Pn in whihevery k-tuple of verties is good. A triangular faeof Pn has direted boundary if the three edges of thefae form a direted yle. The set X is onstrutedby punturing a one-point hole in the baryenter oftriangular faes of Pn with direted boundary.Verties of Pn are olored blak. Edges are ut inthirds. In every edge, the interior of the middle thirdtogether with the point at one third loser to the endof the edge is olored white. The rest of the edges isblak. The oloring of triangular faes with diretedboundary is depited on Fig. 1. The rest of X isolored blak.All the edges of the invisibility graph of X are be-tween pairs of points lying on the same triangular fae
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Figure 1: Coloring of a fae with direted bound-ary. Lines determined by pairs (p1, p4), (p2, p5) and
(p3, p6) interset in the baryenter and split the trian-gle into monohromati regions. Full lines and grayareas represent blak olor, the rest is white.with direted boundary. The oloring is proper oneah of these faes and thus the 2-oloring of the whole
X is proper.If a onvex set C ontains at least k verties of X ,then it ontains a triangular fae with direted bound-ary and thus C ontains a one-point hole. Therefore

γ(X) ≥
n

2 log(n) + 3
.3 Construtions in dimension 5Here we present some parts of the proof of part 1 ofTheorem 4. The rest of the proof is omitted from thisextended abstrat.The onstrutions are similar to those in dimension

6: for part (1) of the theorem, the set X is a losedyli polytope with one-point holes in some of the
2-dimensional faes. For part (2), instead of pointswe remove small 5-dimensional polytopes attahed tothe 2-dimensional faes. The di�erene from the on-strution in dimension 6 is in the plaement of theholes: here we annot apply the same argument as inthe previous setion sine for the yli polytope in di-mension 5 only quadratially many triples of vertiesindue a 2-dimensional fae and there is a 2-oloringof the vertex set in whih no 2-dimensional fae ismonohromati.In the full version of the paper, we show two dif-ferent ways how to hoose the holes. In the �rst on-strution we essentially show that randomly hosenholes will do, but the proof (interestingly) requires arather nontrivial result from group theory. Also theonstrution proves only part (1) of the theorem. Inthe seond onstrution we speify the loations of theholes preisely. Moreover, we show that the holes anbe enlarged to open pyramids, whih shows part (2)of the theorem. The proof of part (2) of the theoremis analogous to the proof of part (2) of Theorem 3 andis omitted from this abstrat.Let Pn be the 5-dimensional yli polytope on
n ≥ 6 verties with (ordered) vertex set Vn =

{v1, v2, . . . , vn}. For brevity, we all the triangularfae with verties vi, vj and vk the ijk triangle. Sim-ilarly, the ij edge is the edge between verties vi and
vj . The 2-dimensional faes of Pn are the triangles
• 1ij for every 1 < i < j ≤ n (type 1ij triangles),
• ijn for every 1 ≤ i < j < n (type ijn triangles),
• i(i+1)j for every 1 < i < j−1 < n (type i(i+1)jtriangles) and
• ij(j+1) for every 1 < i < j < n−1 (type ij(j+1)triangles).3.1 Covering with onvex setsIn the onstrutions proving part (1) of Theorem 4, weremove a one-point hole from every type 1ij triangle.In the onstrution proving part (2), we remove anopen �at simplex instead of the point (as in Setion 2).The following lemma shows that in both ases, theresulting set an not be overed by a bounded numberof onvex sets.Lemma 6 Let X be a subset of Pn suh that ev-ery edge of Pn is a subset of X and none of thetype 1ij triangles is a subset of X. Then γ(X) ≥

Ω(logn/ log logn).Proof. Let X = C1 ∪ C2 ∪ · · · ∪ Ck be a overing of
X with onvex subsets of X . The overing induesa partition of eah open edge 1i, 2 ≤ i ≤ n, intoat most k intervals I1i , I

2
i , . . . , I

ki

i , where eah of theintervals Iji is overed by one of the onvex sets Cl(i,j).Sine the onvex sets in the overing may overlap, thispartition need not be unique; in suh a ase we justpik one.We say that the partitions of two edges 1i and 1i′are of the same type if ki = ki′ , l(i, p) = l(i′, p) foreah p = 1, 2, . . . , ki (in other words, the �olors� ap-pear in the same order along the edges), and for eah
p = 1, 2, . . . , ki the type of the interval Ipi (that is,losed, open, or half-losed from the left/right) is thesame as the type of the interval Ipi′ . Degenerate one-point intervals are onsidered as losed. The numberof types of the partitions is at most 2k · k! · 2k−1. In-deed, there are at most 2k subsets of �olors�, eah ofthe subsets an be linearly ordered in at most k! ways,and there are at most k − 1 boundary points sharedby two intervals, where one of the intervals is loallylosed and the other one loally open.It follows that if n > 2k · k! · 2k−1 + 1, then thereare two edges 1i and 1i′ of the same type. The onvexhulls conv(Ipi ∪ Ipi′ ) over the whole open triangle 1ii′,inluding the one-point hole inside, whih is a ontra-dition. Therefore n ≤ 2k · k! · 2k−1+1, whih impliesthat γ(X) ≥ Ω(logn/ log logn). �
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On three parameters of invisibility graphs4 Conluding remarksTo solve Problem 1 in dimension 4 we ould use aonstrution similar to those in dimensions 5 and 6provided the following problem has a positive answer.Problem 2 Does there exist for every k a onvexsimpliial polytope P (k) in R4 suh that in every ol-oring of verties of P (k) by k olors we an �nd atriangular fae whose verties are monohromati?Assuming the polytope P (k) from Problem 2 exists,the set X from Problem 1 is obtained from P (k) bymaking a one-point hole in an arbitrary point insideevery triangular fae. Suh a set X annot be overedby k onvex sets sine otherwise one of the onvex setswould ontain three verties of a triangular fae.The invisibility graph I(X) an be olored by 13olors in the following way. All the verties of P (k)get olor 1. Taner [7℄ has shown that the edges of ev-ery 2-dimensional simpliial omplex PL-embeddablein R3 an be olored by 12 olors so that for everytriangular fae, the three edges on its boundary havethree di�erent olors. This applies, in partiular, tothe 2-skeleton of every 4-dimensional onvex simpli-ial polytope. We use olors 2, 3, . . . , 13 to olor theinteriors of edges of P (k) in this way. For eah tri-angular fae and eah point p on its boundary, theinterior of the segment oneting the one-point holewith p is olored by the olor of p. All the remain-ing points of X are isolated in I(X) and thus may beolored arbitrarily.The boundary omplex of a 4-dimensional onvexsimpliial polytope is a speial ase of a triangula-tion of S3. If we relax the ondition on polytopalityin Problem 2 and ask only for a triangulation of S3,then the answer is yes. Heise et al. [3℄ onstruted,for every k, a 2-dimensional simpliial omplex lin-early embedded in R3 suh that in every oloring ofits verties with k olors at least one of the trian-gles is monohromati. We found the same simpliialomplex independently, modifying Boris Bukh's on-strution, whih was ommuniated to us by MartinTaner. The verties of the omplex are plaed onthe moment urve and a suitable nonrossing subsetof triangles is hosen for the faes. It remains to ex-tend the embedded omplex to a triangulation of thewhole R3, or S3 [1℄.Referenes[1℄ K. Adiprasito, F. Lutz and J. Moller, unpub-lished manusript.[2℄ M. Breen and D. C. Kay, General deompositiontheorems for m-onvex sets in the plane, IsraelJournal of Mathematis 24 (1976), 217�233.

[3℄ C. G. Heise, K. Panagiotou, O. Pikhurko and A.Taraz, Coloring d-embeddable k-uniform hyper-graphs, arXiv:1209.4879 (2012).[4℄ J. Lawrene and W. Morris, Finite sets as om-plements of �nite unions of onvex sets, Dis-rete & Computational Geometry 42 (2009), no.2, 206�218.[5℄ J. Matou²ek, Letures on Disrete Geometry,Springer-Verlag, New York (2002).[6℄ J. Matou²ek and P. Valtr, On visibility and over-ing by onvex sets, Israel Journal of Mathematis113 (1999), no. 3, 341�379.[7℄ M. Taner, unpublished manusript.[8℄ F. Valentine, A three point onvexity property,Pai� Journal of Mathematis 7 (1957), no. 2,1227�1235.
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