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Abstra
tThe invisibility graph I(X) of a set X ⊆ Rd is a (pos-sibly in�nite) graph whose verti
es are the points of
X and two verti
es are 
onne
ted by an edge if andonly if the straight-line segment 
onne
ting the two
orresponding points is not fully 
ontained in X . We
onsider the following three parameters of a set X :the 
lique number ω(I(X)), the 
hromati
 number
χ(I(X)) and the minimum number γ(X) of 
onvexsubsets of X that 
over X .We settle a 
onje
ture of Matou²ek and Valtr 
laim-ing that for every planar set X , γ(X) 
an be boundedin terms of χ(I(X)). As a part of the proof we showthat a dis
 with n one-point holes near its boundaryhas χ(I(X)) ≥ log log(n) but ω(I(X)) = 3.We also �nd sets X in R5 with χ(I(X)) = 2, but
γ(X) arbitrarily large.1 Introdu
tionLet X be a subset of a d-dimensional Eu
lidean spa
e.We say that two points x, y ∈ X see ea
h other ifthe straight-line segment xy 
onne
ting x and y isa subset of X . The invisibility graph I(X) of a set
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X ⊆ Rd is a graph whose verti
es are the points of
X and two verti
es are 
onne
ted by an edge if andonly if they do not see ea
h other. Let χ(G) be the
hromati
 number of a graph G and let ω(G) be its
lique number. For a set X ⊆ Rd we de�ne γ(X) tobe the minimum possible number of 
onvex subsets of
X that 
over X . Further, let χ(X) := χ(I(X)) and
ω(X) := ω(I(X)).Sets X with ω(X) = n − 1 are sometimes 
alled
n-
onvex [8℄.Observe that ω(X) ≤ χ(X) ≤ γ(X) for any set X .If a planar set X is 
losed, then γ(X) 
an bebounded by a fun
tion of ω(X). This was provedby Breen and Kay [2℄ and the 
urrent best knownupper bound is γ(X) ≤ O(ω(X)3) by Matou²ek andValtr [6℄. From the other dire
tion, there exist ex-amples by Matou²ek and Valtr [6℄ with γ(X) ≥

Ω(ω(X)2).However, if we don't restri
t ourselves to 
losedsets, there is no upper bound on γ(X) even for setswith ω(X) = 3. An example is the dis
 Dλ with λone-point holes pun
tured in the verti
es of a regu-lar 
onvex λ-gon near the boundary of Dλ, for whi
h
ω(Dλ) = 3, but γ(Dλ) = ⌈λ/2⌉+ 1 (see [6℄).A one-point hole in a set X ⊂ Rd is a point thatforms a path-
onne
ted 
omponent of Rd

\ X . Let
λ(X) be the number of one-point holes in the set X .The example of the set Dλ led to studying the prop-erties of planar sets with a limited number of one-point holes by Matou²ek and Valtr [6℄. In parti
ular,they proved the following theorem.Theorem 1 (Matou²ek and Valtr [6℄) Let X ⊆

R2 be a set with ω(X) = ω < ∞ and λ(X) = λ < ∞.Then
γ(X) ≤ O(ω4 + λω2).For any ω ≥ 3 and λ ≥ 0 they also found sets Xwith ω(X) = ω, λ(X) = λ and γ(X) ≥ Ω(ω3 + ωλ).Matou²ek and Valtr [6℄ 
onje
tured that for an ar-bitrary planar set X , the value of γ(X) is bounded bya fun
tion of χ(X). Then χ(X) 
annot be bounded
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On three parameters of invisibility graphsby a fun
tion of ω(X) as shows the above examplewith Dλ.Lawren
e and Morris [4℄ proved that for every kthere exists n0(k) su
h that whenever S is a set of�nitely many points in the plane and |S| ≥ n0(k),then χ(R2
\ S) ≥ k. 1 Thus, whenever X is the 
om-plement of a �nite set of points, λ(X) 
an be boundedin terms of χ(X). This implies, by Theorem 1, thatthe value of γ(X) 
an be bounded in terms of χ(X),settling the 
onje
ture of Matou²ek and Valtr in thespe
ial 
ase when X is a 
omplement of a �nite set ofpoints.In this paper, we strengthen the result of Lawren
eand Morris [4℄ and settle the 
onje
ture for every pla-nar set X .The tower fun
tion Tl(k) is de�ned re
ursively as

T0(k) = k and Th(k) = 2Th−1(k). Its inverse is theiterated logarithm log(l)(n), that is, log(0)(n) = n and
log(l)(n) = log(log(l−1)(n)).Theorem 2 Any set X ⊆ R2 with χ(X) = χ < ∞satis�es

γ(X) ≤ O(24T2(χ)
· χ3).The proof of Theorem 2 is omitted from this ex-tended abstra
t. In the full version of the paper, wealso show that for every dimension d, λ(X) 
an bebounded in terms of χ(X) for sets X ⊂ Rd. Thisanswers Question 6 of Lawren
e and Morris [4℄.A set X is star-shaped if X 
ontains a point x ∈ Xthat sees every other point of X .In Se
tions 2 and 3 we show that χ and γ 
an beseparated in dimensions 5 and more.Theorem 3 For every positive integer g there existstar-shaped sets1. X ⊂ R6 satisfying χ(X) = 2 and γ(X) ≥ g and2. Xc ⊂ R6 that is 
losed and satis�es χ(Xc) = 4and γ(Xc) ≥ g.Theorem 4 For every positive integer g there existstar-shaped sets1. X ⊂ R5 satisfying χ(X) = 2 and γ(X) ≥ g and2. Xc ⊂ R5 that is 
losed and satis�es χ(Xc) = 6and γ(Xc) ≥ g.Problem 1 Does there exist a fun
tion f su
h that

γ(X) ≤ f(χ(X)),1. for every set X ⊆ R3?2. for every set X ⊆ R4?All logarithms in this paper are binary. We usethe notation xy for the straight line segment betweenpoints x and y.1The graph GS in the paper of Lawren
e and Morris is pre-
isely the invisibility graph of R2 \ S.

2 Constru
tions in dimension 62.1 Set with 
hromati
 number 2We prove part 1 of Theorem 3. Part 2 is omitted fromthis extended abstra
t.Let Pn be the 
y
li
 polytope on n ≥ 7 verti
es(see for example [5℄) and Vn its set of verti
es. Thusthe 
onvex hull of every triple of points from Vn is atriangular fa
e of Pn.Lemma 5 Let Kn be the 
omplete graph on the set
V of n ≥ 7 verti
es and let k := ⌈2 log(n) + 2⌉. Itis possible to orient the edges of Kn so that every set
V ′

⊆ V of size at least k 
ontains a dire
ted triangle.Proof. For brevity, we 
all a set V ′ good if it 
ontainsa dire
ted triangle.We orient the edges randomly and show that withpositive probability, every set V ′
⊆ V of size at least

k is good.First, we will bound the probability bk that a givenset V ′ of k verti
es is bad.If there exists a dire
ted 
y
le on V ′ of lengthgreater than 3, then one of the two 
y
les 
reatedby adding an arbitrary diagonal to the 
y
le is againdire
ted. Thus there exists a dire
ted triangle on V ′.There are 2k(k−1)/2 possible orientations of edgesof a 
omplete graph on k verti
es out of whi
h k! area
y
li
. Thus
bk =

k!

2k(k−1)/2
= k!2−k2/2+k/2.The probability that some k-tuple V ′ of verti
es isbad is thus at most

(
n

k

)

bk ≤

nk

k!
bk = 2k log(n)−k2/2+k/2 =

= 2k(log(n)−k/2+1/2)
≤

≤ 2k(log(n)−log(n)−1+1/2)
≤ 2k(−1/2) < 1.

�We �x the orientation of the edges of Pn in whi
hevery k-tuple of verti
es is good. A triangular fa
eof Pn has dire
ted boundary if the three edges of thefa
e form a dire
ted 
y
le. The set X is 
onstru
tedby pun
turing a one-point hole in the bary
enter oftriangular fa
es of Pn with dire
ted boundary.Verti
es of Pn are 
olored bla
k. Edges are 
ut inthirds. In every edge, the interior of the middle thirdtogether with the point at one third 
loser to the endof the edge is 
olored white. The rest of the edges isbla
k. The 
oloring of triangular fa
es with dire
tedboundary is depi
ted on Fig. 1. The rest of X is
olored bla
k.All the edges of the invisibility graph of X are be-tween pairs of points lying on the same triangular fa
e
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Figure 1: Coloring of a fa
e with dire
ted bound-ary. Lines determined by pairs (p1, p4), (p2, p5) and
(p3, p6) interse
t in the bary
enter and split the trian-gle into mono
hromati
 regions. Full lines and grayareas represent bla
k 
olor, the rest is white.with dire
ted boundary. The 
oloring is proper onea
h of these fa
es and thus the 2-
oloring of the whole
X is proper.If a 
onvex set C 
ontains at least k verti
es of X ,then it 
ontains a triangular fa
e with dire
ted bound-ary and thus C 
ontains a one-point hole. Therefore

γ(X) ≥
n

2 log(n) + 3
.3 Constru
tions in dimension 5Here we present some parts of the proof of part 1 ofTheorem 4. The rest of the proof is omitted from thisextended abstra
t.The 
onstru
tions are similar to those in dimension

6: for part (1) of the theorem, the set X is a 
losed
y
li
 polytope with one-point holes in some of the
2-dimensional fa
es. For part (2), instead of pointswe remove small 5-dimensional polytopes atta
hed tothe 2-dimensional fa
es. The di�eren
e from the 
on-stru
tion in dimension 6 is in the pla
ement of theholes: here we 
annot apply the same argument as inthe previous se
tion sin
e for the 
y
li
 polytope in di-mension 5 only quadrati
ally many triples of verti
esindu
e a 2-dimensional fa
e and there is a 2-
oloringof the vertex set in whi
h no 2-dimensional fa
e ismono
hromati
.In the full version of the paper, we show two dif-ferent ways how to 
hoose the holes. In the �rst 
on-stru
tion we essentially show that randomly 
hosenholes will do, but the proof (interestingly) requires arather nontrivial result from group theory. Also the
onstru
tion proves only part (1) of the theorem. Inthe se
ond 
onstru
tion we spe
ify the lo
ations of theholes pre
isely. Moreover, we show that the holes 
anbe enlarged to open pyramids, whi
h shows part (2)of the theorem. The proof of part (2) of the theoremis analogous to the proof of part (2) of Theorem 3 andis omitted from this abstra
t.Let Pn be the 5-dimensional 
y
li
 polytope on
n ≥ 6 verti
es with (ordered) vertex set Vn =

{v1, v2, . . . , vn}. For brevity, we 
all the triangularfa
e with verti
es vi, vj and vk the ijk triangle. Sim-ilarly, the ij edge is the edge between verti
es vi and
vj . The 2-dimensional fa
es of Pn are the triangles
• 1ij for every 1 < i < j ≤ n (type 1ij triangles),
• ijn for every 1 ≤ i < j < n (type ijn triangles),
• i(i+1)j for every 1 < i < j−1 < n (type i(i+1)jtriangles) and
• ij(j+1) for every 1 < i < j < n−1 (type ij(j+1)triangles).3.1 Covering with 
onvex setsIn the 
onstru
tions proving part (1) of Theorem 4, weremove a one-point hole from every type 1ij triangle.In the 
onstru
tion proving part (2), we remove anopen �at simplex instead of the point (as in Se
tion 2).The following lemma shows that in both 
ases, theresulting set 
an not be 
overed by a bounded numberof 
onvex sets.Lemma 6 Let X be a subset of Pn su
h that ev-ery edge of Pn is a subset of X and none of thetype 1ij triangles is a subset of X. Then γ(X) ≥

Ω(logn/ log logn).Proof. Let X = C1 ∪ C2 ∪ · · · ∪ Ck be a 
overing of
X with 
onvex subsets of X . The 
overing indu
esa partition of ea
h open edge 1i, 2 ≤ i ≤ n, intoat most k intervals I1i , I

2
i , . . . , I

ki

i , where ea
h of theintervals Iji is 
overed by one of the 
onvex sets Cl(i,j).Sin
e the 
onvex sets in the 
overing may overlap, thispartition need not be unique; in su
h a 
ase we justpi
k one.We say that the partitions of two edges 1i and 1i′are of the same type if ki = ki′ , l(i, p) = l(i′, p) forea
h p = 1, 2, . . . , ki (in other words, the �
olors� ap-pear in the same order along the edges), and for ea
h
p = 1, 2, . . . , ki the type of the interval Ipi (that is,
losed, open, or half-
losed from the left/right) is thesame as the type of the interval Ipi′ . Degenerate one-point intervals are 
onsidered as 
losed. The numberof types of the partitions is at most 2k · k! · 2k−1. In-deed, there are at most 2k subsets of �
olors�, ea
h ofthe subsets 
an be linearly ordered in at most k! ways,and there are at most k − 1 boundary points sharedby two intervals, where one of the intervals is lo
ally
losed and the other one lo
ally open.It follows that if n > 2k · k! · 2k−1 + 1, then thereare two edges 1i and 1i′ of the same type. The 
onvexhulls conv(Ipi ∪ Ipi′ ) 
over the whole open triangle 1ii′,in
luding the one-point hole inside, whi
h is a 
ontra-di
tion. Therefore n ≤ 2k · k! · 2k−1+1, whi
h impliesthat γ(X) ≥ Ω(logn/ log logn). �
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On three parameters of invisibility graphs4 Con
luding remarksTo solve Problem 1 in dimension 4 we 
ould use a
onstru
tion similar to those in dimensions 5 and 6provided the following problem has a positive answer.Problem 2 Does there exist for every k a 
onvexsimpli
ial polytope P (k) in R4 su
h that in every 
ol-oring of verti
es of P (k) by k 
olors we 
an �nd atriangular fa
e whose verti
es are mono
hromati
?Assuming the polytope P (k) from Problem 2 exists,the set X from Problem 1 is obtained from P (k) bymaking a one-point hole in an arbitrary point insideevery triangular fa
e. Su
h a set X 
annot be 
overedby k 
onvex sets sin
e otherwise one of the 
onvex setswould 
ontain three verti
es of a triangular fa
e.The invisibility graph I(X) 
an be 
olored by 13
olors in the following way. All the verti
es of P (k)get 
olor 1. Tan
er [7℄ has shown that the edges of ev-ery 2-dimensional simpli
ial 
omplex PL-embeddablein R3 
an be 
olored by 12 
olors so that for everytriangular fa
e, the three edges on its boundary havethree di�erent 
olors. This applies, in parti
ular, tothe 2-skeleton of every 4-dimensional 
onvex simpli-
ial polytope. We use 
olors 2, 3, . . . , 13 to 
olor theinteriors of edges of P (k) in this way. For ea
h tri-angular fa
e and ea
h point p on its boundary, theinterior of the segment 
one
ting the one-point holewith p is 
olored by the 
olor of p. All the remain-ing points of X are isolated in I(X) and thus may be
olored arbitrarily.The boundary 
omplex of a 4-dimensional 
onvexsimpli
ial polytope is a spe
ial 
ase of a triangula-tion of S3. If we relax the 
ondition on polytopalityin Problem 2 and ask only for a triangulation of S3,then the answer is yes. Heise et al. [3℄ 
onstru
ted,for every k, a 2-dimensional simpli
ial 
omplex lin-early embedded in R3 su
h that in every 
oloring ofits verti
es with k 
olors at least one of the trian-gles is mono
hromati
. We found the same simpli
ial
omplex independently, modifying Boris Bukh's 
on-stru
tion, whi
h was 
ommuni
ated to us by MartinTan
er. The verti
es of the 
omplex are pla
ed onthe moment 
urve and a suitable non
rossing subsetof triangles is 
hosen for the fa
es. It remains to ex-tend the embedded 
omplex to a triangulation of thewhole R3, or S3 [1℄.Referen
es[1℄ K. Adiprasito, F. Lutz and J. Moller, unpub-lished manus
ript.[2℄ M. Breen and D. C. Kay, General de
ompositiontheorems for m-
onvex sets in the plane, IsraelJournal of Mathemati
s 24 (1976), 217�233.

[3℄ C. G. Heise, K. Panagiotou, O. Pikhurko and A.Taraz, Coloring d-embeddable k-uniform hyper-graphs, arXiv:1209.4879 (2012).[4℄ J. Lawren
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