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Note on the number of obtuse angles in point sets
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Abstract

In 1979 Conway, Croft, Erdés and Guy proved that

every set S of n points in general position in the plane
3

determines at least = —O(n?) obtuse angles and also

showed the upper bound % — O(n?) on the mini-
mum number of obtuse angles among all sets S. We
prove that every set S of n points in convex position
determines at least % — o(n?) obtuse angles, hence
matching the upper bound (up to sub-cubic terms) in
this case. Also on the other side, for point sets with
low rectilinear crossing number, the lower bound on
the minimum number of obtuse angles is improved.

Introduction

A point set S in the plane is in general position if
no three points of the set lie on a common straight
line. Throughout, all considered point sets S will be
in general position in the plane and |S| = n. An angle
abe at b determined by three points {a, b, ¢} of S is ob-
tuse if it is greater than 7. Prominent problems and
results on obtuse and acute angles in point sets can
be found in [4]. Here we are interested in the number
of obtuse angles determined by point sets S. Conway

et al. [3] proved that the minimum number of obtuse
angles among all sets S is between n’ O(n?) and

5
% — O(n?). In this note we prove that point sets

S in convex position determine at least % — o(n?)
obtuse angles. Interestingly, this matches (up to sub-

cubic terms) the upper bound example from [3]. We
conjecture that % is indeed the right order of magni-
tude for the minimum number of obtuse angles. Point
sets in convex position are characterized as the point
sets that maximize the rectilinear crossing number.
The rectilinear crossing number cr(S) of a point set

S equals the number of convex quadrilaterals with
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Figure 1: Alternately skipping ¢ and j points in the
polygonal path for class (3, j).

vertices in S. Hence, an upper bound of () on the
rectilinear crossing number is obvious. As for point
sets with low crossing number, the current best lower
bound is 277 (’}) +©(n?®) [2] and there are point sets S
that only have cr(S) = 0.380488(}) + ©(n?) [1]. We
show that point sets S whose crossing number is not
too large, at most %(2), have more than ™ obtuse

18
angles.

Proofs

Theorem 1 Every set S of n points in conver and
3
general position in the plane determines at least 2% —

27
o(n?) obtuse angles.

Proof. First we consider the case when n is a prime
number; the case when n is not a prime number will be
treated at the end of the proof. We label the points of
S from 0 to n—1 in counter-clockwise order. For three
points a,b,c € S in counter-clockwise order, we say
that the angle abc at point b is of class (4, j) if the open
halfplane bounded by the line through points ¢ and
b, and not containing point ¢ contains ¢ points of S,
and if the open halfplane bounded by the line through
points b and ¢, and not containing point a contains j
points of S; see Figure 1. (Then ab is an i-edge and bc
is a j-edge.) Hence each angle defined by S belongs
to some class (i,7), where 0 < i+ j <n — 3. For i,j
fixed, i # j, we consider the polygon P that starts at
point 0, visits points of S in counter-clockwise order,
alternately skipping ¢ points and j points of S, until
it returns to point 0 the second time. Three steps of
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such a polygonal path of P are shown in Figure 1.
Note that the polygon P is self-intersecting and can
visit vertices more than once.

e Claim: Each angle of class (i,j) and each angle
of class (j,1) is encountered exactly once in P.

We modify P to obtain a new polygon P’ by pair-
ing two consecutive steps of P which skip ¢ points
and j points respectively; that is, we now move
from a point m to point m + ¢+ j + 2 mod n.
Since n is a prime number, each non-zero ele-
ment of the additive group Z, is a generator of
the group; in particular also ¢ + j + 2. This im-
plies that P’ returns to the starting point 0 after
it visited each point of S\{0} exactly once. We
now retrieve the original polygon P by splitting
the paired steps into steps skipping alternately ¢
points and j points. It follows that each point of
S is visited twice in P, and each angle of class
(i,7) and each angle of class (j,4) is encountered
exactly once in P.

e Claim: The rotation number [5] of the polygon
Pisi+j+2.
The rotation number measures how many times
the polygon turns around. Note that the under-
lying point set is in convex position and all steps
are done in counter-clockwise order. The polygon
visits each vertex m twice; from a point m the
polygonal path continues once to point m +i+1
mod n, and once to point m + j + 1 mod n; in
total the path advances ¢ + j + 2 points from
m. Hence, summing over all n vertices, we count
(i + j + 2)n steps between consecutive points of
the point set in counter-clockwise order. n steps
between consecutive points describe one full turn.
Thus the rotation number is i + j + 2.

e Claim: At least 2n — 3(i + j +2) angles of the 2n
angles of classes (i, j) and (j,¢) encountered in P
are obtuse.

For the sake of contradiction, suppose that P
contains less than 2n — 3(i+ j + 2) obtuse angles.
Then, P contains more than 3(i + j + 2) acute
or right angles. By an averaging argument, at
least one of the ¢+ j + 2 full turns of the polygon
contains more than three acute or right angles.
But this is not possible, unless P contains four
right angles forming a 4-cycle contradicting n
being a prime number.

Hence, each pair of classes (i,5) and (j,4) of an-
gles, with ¢ # j, contains at least 2n—3(i+j +2)
obtuse angles. Summing over all possible values
1,7 we thus get the lower bound on the number

of obtuse angles in S

el ] o3
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It remains to consider the case when n is not a
prime number. In this case it suffices to only
count the number of obtuse angles in a subset
S" of S consisting of n, points, where n, is the
largest prime number smaller than n. Since n, >
n — o(n), see e.g. [6], we get the lower bound on
the number of obtuse angles in S

2(n — o(n))? 2

— 2 —
27 O7) =5

—o(n®).
g

Lemma 2 FEvery set S of n points in general position
in the plane with rectilinear crossing number cr(S)
cr(S)
n—3

determines at least 15 — — O(n?) obtuse angles.

Proof. We first remark that the number of right an-
gles formed by S is negligible for our purpose. In fact,
it is enough to observe that no edge spanned by S is
incident to more than two right angles, due to the
general position assumption. Hence we upper bound
the number of right angles by 2(}). Each 4-tuple of
points in convex position forms at least one obtuse
angle or four right angles; and each 4-tuple of points
not in convex position forms at least two obtuse an-
gles. Thus, the total number of obtuse angles in S is

(er(s)- (")/4) ((") er(8))2

at least , where we divide
by n — 3 because each obtuse angle is counted n — 3
times. Simplifying gives the claimed bound. O
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