Empty convex polytopes in random point sets

József Balogh ${ }^{* 1}$, Hernán González-Aguilar ${ }^{\dagger 2}$, and Gelasio Salazar ${ }^{\ddagger 3}$
${ }^{1}$ Department of Mathematics, University of Illinois at Urbana-Champaign. Urbana, IL, United States.
${ }^{2}$ Facultad de Ciencias, Universidad Autónoma de San Luis Potosí. San Luis Potosí, SLP, México.
${ }^{3}$ Instituto de Física, Universidad Autónoma de San Luis Potosí. San Luis Potosí, SLP, México.

Abstract

Given a set P of points in \mathbb{R}^{d}, a convex hole (alternatively, empty convex polytope) of P is a convex polytope with vertices in P, containing no points of P in its interior. Let R be a bounded convex region in \mathbb{R}^{d}. We show that if P is a set of n random points chosen independently and uniformly over R, then the expected number of vertices of the largest hole of P is $\Theta(\log n /(\log \log n))$, regardless of the shape of R. This generalizes the analogous result proved for the case $d=2$ by Balogh, González-Aguilar, and Salazar.

Introduction

Given a set P of points in \mathbb{R}^{d}, a convex hole (alternatively, empty convex polytope) of P is a convex polytope with vertices in P, containing no points of P in its interior.

Recently, we showed that the expected size of the largest convex hole in a random n-point set in the plane is $\Theta(\log n / \log \log n)$ [3]. One anonymous referee of this paper asked if this could be generalized to $d>2$ dimensions. Joe O'Rourke asked the same question in MathOverflow, and Douglas Zare replied that the $\Omega(\log n / \log \log n)$ lower bound carries over easily to the d-dimensional case [10]. At the end of his reply, Zare wrote: "I don't know whether their harder upper bound of the same form also extends to higher dimensions, but I suspect that it does."

Our aim in this note is to show that, indeed, the upper bound also holds for higher dimensions. Thus, our main result is:

Theorem 1 Let $d \geq 2$ be an integer, and let R be a bounded convex region in \mathbb{R}^{d}. Let R_{n} be a set of n points chosen independently and uniformly at random from R, and let $\operatorname{HoL}\left(R_{n}\right)$ denote the random variable

[^0]that measures the number of vertices of the largest convex hole in R_{n}. Then
$$
\mathbf{E}\left(\operatorname{HoL}\left(R_{n}\right)\right)=\Theta\left(\frac{\log n}{\log \log n}\right)
$$

Moreover, a.a.s.

$$
\operatorname{HoL}\left(R_{n}\right)=\Theta\left(\frac{\log n}{\log \log n}\right) .
$$

The proof, which is an immediate consequence of Theorems 2 and 3 below, follows very closely the main ideas of the proof of [3, Theorem 3]. Indeed, the strategy and the main ideas are so close that it seems best to follow as closely as possible the structure of [3]. As we shall see below, some of the results proved in [3] follow without any modification to arbitrary dimensions. The main adaptations needed are:

1. a generalization of the results in [3, Section 2] to $d>2$ dimensions, to approximate convex sets in \mathbb{R}^{d} with lattice polytopes; and
2. an adaptation to $d>2$ dimensions of the results on the probability that a random n-point set is in convex position, from the exact results of Valtr [11, 12] in \mathbb{R}^{2} to the asymptotic results of Bárány [6] in \mathbb{R}^{d}, for any $d \geq 2$.

The workhorse for the proof of Theorem 1 for arbitrary regions R is the following statement, which takes care of the particular case in which R is a parallelotope.

Theorem 2 Let R be a parallelotope in \mathbb{R}^{d}. Let R_{n} be a set of n points chosen independently and uniformly at random from R, and let $\operatorname{HoL}\left(R_{n}\right)$ denote the random variable that measures the number of vertices of the largest convex hole in R_{n}. Then

$$
\mathbf{E}\left(\operatorname{HoL}\left(R_{n}\right)\right)=\Theta\left(\frac{\log n}{\log \log n}\right) .
$$

Moreover, a.a.s.

$$
\operatorname{HoL}\left(R_{n}\right)=\Theta\left(\frac{\log n}{\log \log n}\right) .
$$

The other essential fact is that the order of magnitude of the expected number of vertices of the largest convex hole is independent of the shape of R :

Theorem 3 There exist absolute constants b, b^{\prime} with the following property. Let R and S be bounded convex regions in \mathbb{R}^{d}. Let R_{n} (respectively, S_{n}) be a set of n points chosen independently and uniformly at random from R (respectively, S). Let $\operatorname{HoL}\left(R_{n}\right)$ (respectively, $\operatorname{HoL}\left(S_{n}\right)$) denote the random variable that measures the number of vertices of the largest convex hole in R_{n} (respectively, S_{n}). Then, for all sufficiently large n,

$$
b \leq \frac{\mathbf{E}\left(\operatorname{HoL}\left(R_{n}\right)\right)}{\mathbf{E}\left(\operatorname{HoL}\left(S_{n}\right)\right)} \leq b^{\prime}
$$

Moreover, there exist absolute constants c, c^{\prime} such that a.a.s.

$$
c \leq \frac{\operatorname{HoL}\left(R_{n}\right)}{\operatorname{HoL}\left(S_{n}\right)} \leq c^{\prime}
$$

We remark that Theorem 3 is in line with the following result proved by Bárány and Füredi [5]: the expected number of empty simplices in a set of n points chosen uniformly and independently at random from a convex set A with non-empty interior in \mathbb{R}^{d} is $\Theta\left(n^{d}\right)$, regardless of the shape of A.

Remark (Proof of Theorem 1). Theorem 1 is an immediate consequence of Theorems 2 and 3.

The proof of Theorem 2 is in Section 1. As we explain in Section 2, the proof of Theorem 3 is totally analogous to the proof of [3, Theorem 2].

We make a few final remarks before we move on to the proofs. For the rest of the paper we let $\operatorname{Vol}(U)$ denote the volume of a region U in \mathbb{R}^{d}. We also note that, throughout the paper, by $\log x$ we mean the natural logarithm of x. Finally, since we only consider sets of points chosen independently and uniformly at random from a region, for brevity we simply say that such point sets are chosen at random from this region.

1 Proof of Theorem 2

We start by noting that if Q, Q^{\prime} are two regions such that Q^{\prime} is obtained from Q by an affine transformation, then $\operatorname{Hol}\left(Q_{n}\right)=\operatorname{Hol}\left(Q_{n}^{\prime}\right)$. Thus we may assume without loss of generality that R is the isothetic unit area square centered at the origin.

We prove the lower and upper bounds separately. More specifically, we prove that for all sufficiently large n :

$$
\begin{gather*}
\operatorname{Pr}\left(\operatorname{HoL}\left(R_{n}\right) \geq \frac{1}{2} \frac{\log n}{\log \log n}\right) \geq 1-n^{-2} \tag{1}\\
\operatorname{Pr}\left(\operatorname{HoL}\left(R_{n}\right) \leq d\left(2+2 d^{2}\right) \frac{\log n}{\log \log n}\right) \geq 1-n^{-1} \tag{2}
\end{gather*}
$$

We note that (1) and (2) imply immediately the a.a.s. part of Theorem 2 . Now the $\Omega(\log n / \log \log n)$ part of the theorem follows from (1), since $\operatorname{Hol}\left(R_{n}\right)$ is a non-negative random variable, whereas the $O(\log n / \log \log n)$ part follows from (2), since $\operatorname{HoL}\left(R_{n}\right)$ is bounded by above by n.

Thus we complete the proof by showing (1) and (2).
Proof of (1)
Let R_{n} be a set of n points chosen at random from R. We prove that a.a.s. R_{n} has an empty convex polytope of size at least $\frac{\log n}{2 \log \log n}$.

Consider the 2 -dimensional projection π : $\mathbb{R}^{d} \rightarrow \mathbb{R}^{2}$ defined by $\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{d}\right) \rightarrow$ $\left(x_{1}, x_{2}, 0,0, \ldots, 0\right)$. Note that $\pi\left(R_{n}\right)$ is a set of n points chosen (independently and uniformly) at random from the unit square. Thus it follows from Eq. (1) in [3] that a.a.s. $\pi\left(R_{n}\right)$ has a convex hole H of size at least $\frac{\log n}{2 \log \log n}$. Clearly, $\pi^{-1}(H)$ is an empty convex polytope of R_{n} of size at least $\frac{\log n}{2 \log \log n}$.
Proof of (2)
Let R_{n} be a set of n points chosen at random from R. We remark that throughout the proof we always implicitly assume that n is sufficiently large.

We shall use the following easy consequence of Chernoff's bound. This is derived immediately, for instance, from Theorem A.1.11 in [1].

Lemma 4 Let Y_{1}, \ldots, Y_{m} be mutually independent random variables with $\operatorname{Pr}\left(Y_{i}=1\right)=p$ and $\operatorname{Pr}\left(Y_{i}=\right.$ $0)=1-p$, for $i=1, \ldots, m$. Let $Y:=Y_{1}+\ldots+Y_{m}$. Then

$$
\operatorname{Pr}(Y \geq(3 / 2) p m)<e^{-p m / 16}
$$

Let S be the isothetic d-cube of volume 3^{d}, also (as $R)$ centered at the origin.

We need the following result on approximating convex sets by lattice parallelotopes.

Claim A. For each positive integer $d>0$ there exist integers $f_{1}(d)$ and $f_{2}(d)$ with the following property. Let H be a convex set in \mathbb{R}^{d}. Then there exists a lattice parallelotope Q_{1} such that $H \subseteq Q_{1}$ and $\operatorname{Vol}\left(Q_{1}\right) \leq\left(f_{1}(d)+1\right) \operatorname{Vol}(H)$. Moreover, if $\operatorname{Vol}(H) \geq$ $2^{d-1} \cdot 1000 / n$, then there is a lattice parallelotope Q_{0} such that $Q_{0} \subseteq H$ and $\operatorname{Vol}\left(Q_{0}\right) \geq\left(f_{2}(d)-1\right) \operatorname{Vol}(H)$.

Sketch of Proof. By a the theorem of M. Balla [2], for every convex compact set $H \subset \mathbb{R}^{d}$ there exists a parallelotope P such that $P \subset H \subset d P=\widehat{P}$ where $d P$ is the image of P under a homothety with ratio d. This implies that $d^{-d} \operatorname{Vol}(P) \leq \operatorname{Vol}(H) \leq d^{d} \operatorname{Vol}(P)$.

For each vertex $v_{i}, i=0, \ldots, 2^{d}$, of \widehat{P}, let us denote by $Q_{v_{i}}$ the parallelotope with side length $2 / n$ with
facets parallel to the facets of \widehat{P} that has v_{i} as one of its vertices and $\widehat{P} \cap Q_{v_{i}}=\left\{v_{i}\right\}$. Observe that each $Q_{v_{i}}$ contains a d-ball of diameter $2 / n$ and for that, there is a lattice point v_{i}^{\prime} in the interior of each $Q_{v_{i}}$. Let Q_{1} be the convex hull of the points $v_{1}^{\prime}, \ldots, v_{2^{d}}^{\prime}$. Note that $d\left(v_{i}, v_{i}^{\prime}\right) \leq \frac{2}{n} \sqrt{d}$ for each $i=1, \ldots, 2^{d}$, this implies that $\varrho\left(\widehat{P}, Q_{1}\right) \leq \frac{2}{n} \sqrt{d}$ where $\varrho(\cdot, \cdot)$ is the Hausdorff metric. Then

$$
\begin{aligned}
\operatorname{Vol}\left(Q_{1}\right) & \leq \operatorname{Vol}(\widehat{P})+\frac{2}{n} \sqrt{d} \cdot \operatorname{Surf}(\widehat{P})+\operatorname{Vol}(B) \\
& \leq d^{d} \operatorname{Vol}(H)+\frac{2}{n} \sqrt{d} \cdot \operatorname{Surf}(\widehat{P})+\operatorname{Vol}(B) \\
& \leq\left(f_{1}(d)+1\right) \operatorname{Vol}(H)
\end{aligned}
$$

where B is the d-ball of diameter $\frac{2}{n} \sqrt{d}$ and $\operatorname{Surf}(\cdot)$ is the volume $(d-1)$-dimensional.

Now, for each vertex $w_{i}, i=0, \ldots, 2^{d}$, of P consider the parallelotope $Q_{w_{i}}$ with side length $2 / n$ with facets parallel to the facets of P that has w_{i} as one of its vertices and $Q_{w_{i}} \subset P$. Because each $Q_{w_{i}}$ contains a d-ball of diameter $\frac{2}{n}$, then there exists a lattice point in each $Q_{w_{i}}$, let w_{i}^{\prime} this point. The existence of these points is guaranteed provided that $\operatorname{Vol}(H) \geq$ $2^{d-1} \cdot 1000 / n$ Let Q_{0} be the convex hull of the points $w_{1}^{\prime}, \ldots, w_{2^{d}}^{\prime}$. Note that $d\left(w_{i}, w_{i}^{\prime}\right) \leq \frac{2}{n} \sqrt{d}$ for each $i=1, \ldots, 2^{d}$, this implies that $\varrho\left(P, Q_{0}\right) \leq \frac{2}{n} \sqrt{d}$. Then $\operatorname{Vol}(P)-\frac{2}{n} \sqrt{d} \cdot \operatorname{Surf}\left(Q_{0}\right)-\operatorname{Vol}(B) \leq \operatorname{Vol}\left(Q_{0}\right)$ This implies

$$
\begin{aligned}
\operatorname{Vol}\left(Q_{0}\right) & \geq \operatorname{Vol}(P)-\frac{2}{n} \sqrt{d} \cdot \operatorname{Surf}\left(Q_{0}\right)-\operatorname{Vol}(B) \\
& \geq \operatorname{Vol}(P)-\frac{2}{n} \sqrt{d} \cdot \operatorname{Surf}(P)-\operatorname{Vol}(B) \\
& \geq d^{-d} \operatorname{Vol}(H)-\frac{2}{n} \sqrt{d} \cdot \operatorname{Surf}(H)-\operatorname{Vol}(B) \\
& \geq\left(f_{2}(d)-1\right) \operatorname{Vol}(H) .
\end{aligned}
$$

For the rest of the proof, for simplicity we define $f_{3}(d):=f_{3}(d)$, where $f_{1}(d)$ and $f_{2}(d)$ are as in Claim A.

Since there are $(9 n+1)^{d}<(10 n)^{d}$ lattice points, out of which $(n+1)^{d}$ are in R, it follows that there are fewer than $\binom{(10 n)^{d}}{2^{d}}<(10 n)^{d 2^{d}}$ lattice d parallelotopes in total, and fewer than $\binom{n^{d}}{2^{d}}<n^{d 2^{d}}$ lattice d-parallelotopes all of whose vertices are in R.

Claim B. With probability at least $1-n^{-10}$ every lattice parallelotope Q with $\operatorname{Vol}(Q)<20 f_{3}(d) \log n / n$ satisfies that $\left|R_{n} \cap Q\right| \leq(3 / 2) \cdot 20 f_{3}(d) \log n$.

Proof. We note that, since $\left(f_{1}(d)+1\right) / f_{2}(d)>1$, it follows that $20 f_{3}(d)>d 2^{d}+10$. Let Q be a lattice parallelotope with $\operatorname{Vol}(Q)<20 f_{3}(d) \log n / n$, and let $Z=Z(Q) \subseteq R$ be any lattice parallelotope containing Q, with $\operatorname{Vol}(Z)=20 f_{3}(d) \log n / n$. Let X_{Q} (respectively, X_{Z}) denote the random variable that
measures the number of points of R_{n} in Q (respectively, $Z)$. We apply Lemma 4 with $p=\operatorname{Vol}(Z)$ and $m=n$, to obtain $\operatorname{Pr}\left(X_{Z} \geq(3 / 2) \cdot 20 f_{3}(d) \log n\right)<$ $e^{-(3 / 2) 20 f_{3}(d) / 24 \log n}=n^{-(5 / 4) f_{3}(d)}$. Since $Q \subseteq Z$, it follows that $\operatorname{Pr}\left(X_{Q} \geq(3 / 2) \cdot 20 f_{3}(d) \log n\right)<$ $n^{-(5 / 4) f_{3}(d)}$. As the number of choices for Q is at most $(10 n)^{d 2^{d}}$, with probability at least $\left(1-(10 n)^{d 2^{d}}\right.$. $\left.n^{-(5 / 4) f_{3}(d)}\right)>1-n^{-10}$, no such Q contains more than $(3 / 2) \cdot 20 f_{3}(d) \log n$ points of R_{n}.

A polytope is empty if its interior contains no points of R_{n}.

Claim C. With probability at least $1-n^{-10}$, there is no empty lattice parallelotope $Q \subseteq R$ with $\operatorname{Vol}(Q) \geq$ $20\left(d 2^{d}+10\right) \log n / n$.

Proof. The probability that a fixed lattice parallelotope $Q \subseteq R$ with $\operatorname{Vol}(Q) \geq d 2^{d}+10 \log n / n$ is empty is $(1-\operatorname{Vol}(Q))^{n}<n^{-d 2^{d}+10}$. Since there are fewer than $n^{d 2^{d}}$ lattice parallelotopes in R, it follows that the probability that at least one of the lattice parallelotope with area at least $\left(d 2^{d}+10\right) \log n / n$ (and hence with area at least $\left.20\left(d 2^{d}+10\right) \log n / n\right)$ is empty is less than $n^{d 2^{d}} \cdot n^{-\left(d 2^{d}+10\right)} \leq n^{-10}$.

For the rest of the proof, we let H be a maximum size convex hole of R_{n}.

Claim D. With probability at least $1-n^{-10}$ we have $\operatorname{Vol}\left(Q_{1}\right)<f_{3}(d) \log n / n$.

Proof. Suppose first that $\operatorname{Vol}(H)<2^{d-1} 1000 / n$. Then $\operatorname{Vol}\left(Q_{1}\right) \leq 2^{d-1} \cdot 1000\left(f_{1}(d)+1\right) / n$. Since this is obviously smaller than $f_{3}(d) \log n / n$, in this case we are done. Now suppose that $\operatorname{Vol}(H) \geq$ $2^{d-1} \cdot 1000 / n$, so that Q_{0} (from Claim A) exists. Moreover, $\operatorname{Vol}\left(Q_{1}\right) \leq\left(f_{1}(d)+1\right) \operatorname{Vol}(H)$. Since $Q_{0} \subseteq H$, and H is a hole of R_{n}, it follows that Q_{0} is empty. Thus, by Claim C, with probability at least $1-n^{-10}$ we have that $\operatorname{Vol}\left(Q_{0}\right)<$ $\left(d 2^{d}+10\right) \log n / n$. Now since $\operatorname{Vol}\left(Q_{1}\right)<\left(f_{1}(d)+\right.$ 1) $\operatorname{Vol}(H)$ and $\operatorname{Vol}\left(Q_{0}\right) \geq f_{2}(d) \cdot \operatorname{Vol}(H)$, it follows that $\operatorname{Vol}\left(Q_{1}\right) \leq\left(f_{1}(d)+1\right) \operatorname{Vol}\left(Q_{0}\right) / f_{2}(d)$. Thus with probability at least $1-n^{-10}$ we have that $\operatorname{Vol}\left(Q_{1}\right) \leq\left(\left(f_{1}(d)+1\right)\left(d 2^{d}+10\right) / f_{2}(d)\right) \log n / n=$ $f_{3}(d) \log n / n$.

Claim E. For each fixed integer $d>0$, there exist a universal positive constant $c_{2}:=c_{2}(d)$ with the following property. Let K be any convex polytope in \mathbb{R}^{d}. Then the probability that r points chosen at random from K are in convex position is at most $\left(c_{2} n^{\frac{2}{d-1}}\right)^{-n}$.

Proof. This is an immediate consequence of [6] (see for instance [4, Theorem 2.1]).

Claim F. With probability at least $1-2 n^{-2}$ the random point set R_{n} satisfies that no lattice parallelotope Q with $\operatorname{Vol}(Q)<20 f_{3}(d) \log n / n$ contains $d\left(2+2 d^{2}\right) \log n /(\log \log n)$ points of R_{n} in convex position.

Proof. Let Q be a lattice parallelotope with $\operatorname{Vol}(Q)<20 f_{3}(d) \log n / n$. By Claim B, with probability at least $1-n^{-10}$ we have $\left|R_{n} \cap Q\right| \leq(3 / 2)$. $20 f_{3}(d) \log n$. Thus it suffices to show that the probability that there exists a lattice parallelotope Q with with $\left|R_{n} \cap Q\right| \leq(3 / 2) \cdot 20 f_{3}(d) \log n$ and $d\left(2+2 d^{2}\right) \log n /(\log \log n)$ points of R_{n} in convex position is at most n^{-2}.

Let $c_{2}:=c_{2}(d)$ be as in Claim E. Thus the expected number of r-tuples of R_{n} in Q in convex position is at most

$$
\begin{aligned}
\binom{\left|R_{n} \cap Q\right|}{r} & \left(c_{2} r^{\frac{2}{d-1}}\right)^{-r} \\
& \leq\binom{(3 / 2) \cdot f_{3}(d) \log n}{r}\left(c_{2} r^{\frac{2}{d-1}}\right)^{-r} \\
& \leq\left(\frac{e \cdot(3 / 2) \cdot F_{2} \log n}{r}\right)^{r}\left(c_{2} r^{\frac{2}{d-1}}\right)^{-r} \\
& <\left(c_{3} \log n \cdot r^{-1-\frac{2}{d-1}}\right)^{r}
\end{aligned}
$$

where $c_{3}:=3 e f_{3}(d) / 2 c_{2}$.
Since there are at most $n^{d 2^{d}}$ choices for Q, it follows that the expected total number of such r tuples with $r=d\left(2+2 d^{2}\right) \log n / \log \log n$ is at most $n^{d 2^{d}} \cdot\left(c_{3} \log n \cdot r^{-1-\frac{2}{d-1}}\right)^{r}<n^{-2}$ (this last inequality follows from an elemenary but long manipulation). This completes the proof, since it follows that the probability that such an r-tuple exists is at most n^{2} 。

To finish the proof of (2), recall that H is a maximum size empty convex polytope of R_{n}, and that $H \subseteq$ Q_{1}. It follows immediately from Claims D and F that with probability at least $1-n^{-1}$ the parallelotope Q_{1} does not contain a set of $d\left(2+2 d^{2}\right) \log n /(\log \log n)$ points of R_{n} in convex position. In particular, with probability at least $1-n^{-1}$ the size of H is at most $d\left(2+2 d^{2}\right) \log n /(\log \log n)$.

2 Proof of Theorem 3

The proof of Theorem 3 is totally analogous to the proof of [3, Theorem 2]. Indeed, in that proof, essentially all the arguments are independent of the dimension. The only adaptation that needs to be done is that we need a version of [3, Corollary 6] for $d>2$ dimensions. We recall that [3, Corollary 6]
claims that if H is a closed convex set in \mathbb{R}^{2}, then there exist rectangles U, K such that $U \subseteq H \subseteq K$, $\operatorname{Vol}(U) \geq \operatorname{Vol}(H) / 8$, and $\operatorname{Vol}(K) \leq 2 \operatorname{Vol}(H)$.

A d-dimensional analogue of this statement follows from the following result in [9]: if H is a convex body in \mathbb{R}^{d}, then H contains a parallelotope P such that some translate of $d P$ contains K. Indeed, this implies at once that if H is a closed convex set in \mathbb{R}^{d}, then there exist parallelotopes U, K such that $U \subseteq H \subseteq K$, $\operatorname{Vol}(U) \geq \operatorname{Vol}(H) / d$, and $\operatorname{Vol}(K) \leq d \cdot \operatorname{Vol}(H)$.

References

[1] N. Alon and J. Spencer. The probabilistic method, 3rd. Edition. Wiley, 2008.
[2] M. Y. Balla, Approximation of convex bodies by parallelotopes, Internal Report IC/87/310, International Centre for Theoretical Physics, ICTP, Trieste, 1988
[3] J. Balogh, H. González-Aguilar, and G. Salazar, Large convex holes in random point sets. Comp. Geom. 46 (2013), 725-733.
[4] I. Bárány, Random points, convex bodies, lattices. Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), 527-535. Higher Ed. Press, Beijing, 2002.
[5] I. Bárány and Z. Füredi, Empty simplices in Euclidean space, Canad. Math. Bull. 30 (1987) 436-445.
[6] I. Bárány, A note on Sylvester's four-point problem. Studia Sci. Math. Hungar. 38 (2001), 73-77.
[7] I. Bárány, Sylvester's question: the probability that n points are in convex position, Ann. Probab. 27 (1999), 2020-2034.
[8] I. Bárány and P. Valtr, Planar point sets with a small number of empty convex polygons. Studia Sci. Math. Hungar. 41 (2004), 243-266.
[9] G.D. Chakerian and S. K. Stein, Some intersection properties of convex bodies. Proc. Amer. Math. Soc. 18 (1967), 109-112.
[10] J. O'Rourke, Empty convex polytopes for random point sets.
http://mathoverflow.net/questions/107875 (2012).
[11] P. Valtr, Probability that n Random Points are in Convex Position. Discrete and Computational Geometry 13 (1995), 637-643.
[12] P. Valtr, The Probability that n Random Points in a Triangle Are in Convex Position. Combinatorica 16 (1996), 567-573.

[^0]: *Email: jobal@math.uiuc.edu. Research supported by NSF CAREER Grant DMS-0745185.
 ${ }^{\dagger}$ Email: hernan@fc.uaslp.mx. Research supported by PROMEP.
 ${ }^{\ddagger}$ Email: gsalazar@ifisica.uaslp.mx. Research supported by CONACYT Grant 106432.

