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Quadrupole moments and E2 transitions in the O (6) limit of the interacting boson model are studied within a formalism based 
on the intrinsic frame. We show that the values of these quantities for both ground- and/?-bands can be directly obtained, to higher 
order in N, by suitably projecting the corresponding matrix elements associated with the y-dependent intrinsic states. 

Within the geometrical model a particular situa- 
tion, pointed out many years ago by Wilets and Jean 
[ 1 ], arises when the energy surfaces in the fly-plane 
show a definite min imum for an equilibrium value 
fl0, but are otherwise independent o f  y. This specific 
feature leads to a sequence of  excited states and to 
values of  quadrupole matrix elements different from 
those characterizing the rotational and vibrational 
spectra. 

In the description of  nuclear spectra given by the 
interacting boson model ( IBM) a situation similar to 
that of  7-instability arises in the O (6) limit [ 2 ], which 
displays energy spectra similar to those predicted by 
the Wilets-Jean model [ 3 ]. Concerning the quadru- 
pole transitions, a crucial point in the IBM is the 
choice o f  the form of  the associated operator 

0_~, = [s*aT]zu + [d*g]2~, +x[ d *  Tc[12u . ( 1 ) 

Its form has been particularly debated in connection 
with this limit. I f  one requires the quadrupole oper- 
ator to be expressed in terms of  the generators of  the 
group, the d*d term in ( 1 ) must, in the O (6) case, be 
excluded. This action in turn leads to the formulation 
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o f  specific selection rules, such as no-crossover tran- 
sition between the ground state and the second 2 + 
state in the spectrum and a vanishing quadrupole 
moment  for all levels. It has been argued [4] that the 
failure of  these selection rules detected in experi- 
ments should not be viewed as a breaking of  the O (6) 
symmetry,  but rather as an indication for the need of  
retaining the d i d  term. Expressions for quadrupole 
moments  and B(E2)-values in the 0 ( 6 )  limit have 
been given in ref. [4] for the general form ( 1 ) of  the 
operator. 

In this letter we show that the values ofquadrupole  
moments  and electromagnetic transition rates can be 
directly obtained exploiting the intrinsic state de- 
scription o f  the IBM [5 ]. The selection rules and the 
interplay of  the different terms of  the quadrupole op- 
erator acquire in this approach a simple geometrical 
interpretation. Within this framework all the mem- 
bers o f  the ground-state band are viewed as originat- 
ing from the intrinsic state 

[ ~g ) = ( 1 /x~-- )  (7*) NI O) ,  (2) 

a condensate o f  the basic boson 

B.V. 
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1 
Y= (l+p2)1/2 

[s++pcos yd;f 

+t11JZ)Psinr(dt+dt2)l, (3) 

which depends on the shape-like parameters P and y. 
These parameters are to be determined by minimiz- 
ing the expectation value of the sd-boson hamilton- 
ian for the particular case under consideration. In the 
case of the 0 (6) hamiltonian the energy values be- 
come independent of y and show a minimum for /?= 1. 
The 0 (6 ) ground band is therefore viewed as origi- 
nating from a condensate of y-dependent bosons 

Y+=(l/J?)[s++ cosyd& 

+(1/J?) siny (dt+dt,)] . (4) 

In the familiar case of quadrupole-deformed ob- 
jects the kernels connecting the intrinsic and labora- 
tory frames are given by ~functions. In our case, 
where the intrinsic system is y-dependent, this oper- 
ation corresponds to a generalized rotation in five di- 
mensions and the appropriate kernels are provided 
by the functions @L,l,,(y, 0,), eigenfunctions of the 
free Bohr hamiltonian 

( -&$sin3yg+L i e: 
4k=, sirP(y-fnk) > 

X~A,I,MtY~ eO=~(~+3)@A.,~J4tY~ @i) Y (5) 

and characterized by the quantum number a, I and 
M. Note that the quantum number J., originally used 
in refs. [ I,6 1, corresponds to the quantum number 1: 
of the 0 (6 ) terminology. For details on the resulting 
spectra and on the CD functions, we refer to refs. [ 1,6]. 
In the present context the only relevant functions are 
those with zero component of the angular momen- 
tum. To simplify the notation we shall henceforth 
drop from the labels in @ the index corresponding to 
M=O. We quote here the explicit form of the func- 
tions associated with the lowest states, which depend 
only on the first two Euler angles 0 and #, 

@,.Z(Y, @, (5) = (1 /.&H cos Y Y*o(@, 0) 

+(l/~)siny[Y,,(8,4)+Yz-,(8,$)1), (6) 

cb*.2(Y,e,~)=(l/~){cos2Y ~m(~,O) 

-tlI~)sin2YIY,~(e,#)+Y;!--2(~,~)1), (7) 

and 

x{(6cos2y+sin2y)Y,,(6, 0) 

+fl sin2y 1 YM(& #) + Y4 J& @) I) . (8) 

For large deformations, in correspondence to each 
intrinsic state one has in the laboratory frame a band- 
like structure characterized by a sequence of levels 
whose angular momenta and energy spacing are gov- 
erned by eq. { 5). As an example all the members of 
the ground-state band are associated with the 
wavefunctions 

I~,~,~~,=%,,(~~ &)I y,> , (9) 

where 1 Yg) is the intrinsic state defined in (2). This 
simple form holds, in the IBM approach, in the limit 
of large number of particles. As a consequence one 
can expect to reproduce energies and transition rates 
only in lowest order in ( 1 /N). Within this scheme all 
matrix elements involve an integration over the vari- 
ables y and the Euler angles plus the matrix elements 
in the intrinsic frame. In particular, matrix elements 
of the quadrupole operators between different states 
associated to the same intrinsic state can all be ex- 
pressed in terms of the corresponding matrix ele- 
ments in the y-8; variables of a r-6, dependent 
intrinsic quad~pole moment. One has in fact, 

g(~J,OI&bsbl~‘,I’,O)~ 

=(ds,,,IQ~tr(Y,8,rp)I~~,,,,), 

where 

(10) 

Q~(y,8,QI)=<~~lI&b”biylg) 

=<%I C~(-l)“$,Yz,,(8,#)l~~V,), (11) P 

which depends on y via the y-dependence of the in- 
trinsic state. The quantity ( 11) can be evaluated from 
eqs. ( 1) and (2 ), leading to 

Q2(r, 6, #)=~~~,/?[Q)I,~(Y, 6 @I 

- WJ14PdY> f% @I 1 * (12) 

We remark that it has been possible to reconstruct in 
( 12) exactly the two functions cD,,~, G&. 

We can now calculate the quadrupole moments of 
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the different states (2, I). These are given by 

Q2(2, I) = ~56xg(2,  I, M = I I  (~[~ ab 12, I, M = I ) ~  

_ .  l/-i~-~( 1 - 2 I ~  

X (~ ) j (2 ,  0, 0)I i n t r  Q~ (7,0,~)1~,~,1(~,,0,(9)), 
(13) 

and are easily evaluated exploiting the orthogonality 
properties of the • functions. In particular, since the 
product ~ t , 2 ~ j  is always orthogonal to ~ j  [6] no 
contribution to the quadrupole moment arises from 
the ~l,2-term in (12), which originates from the 
staT+ dig term in the quadrupole operator ( 1 ). We 
have therefore simply 

X ( ~2,I(~ 2, 0, 0)  I (~)2,2 (e, 0, 0)  I q~,,(r, 0, O) ) • 

(14) 

As far as the low-lying members of the ground band 
is concerned, one can make use of the explicit 
relations 

q'2,2(7, 0, ¢) a,,.2 (~,, 0, O) 

= (1/4~) [ -~x/~1,2(7,  0, q~) 

+ ( 1 / x / ~ )  ~3,0(7, 0, ¢~)- + , ~ 3 , 4 ( ~ ,  0, O) ] ,  

~ 2 , 2 ( ~ , 0 , ~ ) ~ 2 , 2 ( ~ , 0 , 0 )  

=(1/8~)[x/-2~o.o(~,0,0)  

(15) 

(16) 

and 

(~2,2(~, 0, 0)(~2,4(~3, 0, ~) 

( l / n )  [ l x / ~ 2 . z ( r ,  0, ~ ) -  5 

+ 5 /3 -  0 . -~/~ ~..t~.o.o)-~.,/Sgo...(~,.o.o) 

- ~4xf~4,6 (~,, 0, 0) ] • (17) 

With these expressions it is straightforward to calcu- 
late the corresponding quadrupole moments; 

+ Q2 (2, [z=,,,=21) = 4 N z ~ 3 ~ ,  (18) 

Qz (22+[~=2,1=21) = - 4 N z  3x/~--25 n,  (19) 

and 

Q2 (41+[, t=2,1=4]) = 8Nzx/-~5" • (20) 

These results coincide, in the limit of large values of 
N, with those given in ref. [ 4 ]. 

Similar arguments apply to B (E2) transitions. In 
general 

B(E2; (2 ,Ii ) g---~ (22/2)g) 

1 
- 2I~ + 1 [g(21Ii [IQlabll2zI2 )g I 2 

_ 1 ( 1 0 2 / 0 ) - 2  
211 + 1 0 

x i (qsz,~,(~,, 0, 0)i i,,r Q,, (~', 0, O) I q'~222(y, 0, 0) ) 12 
(21) 

Then the problem of evaluating B (E2) values is again 
reduced to the problem of exploiting the orthogonal- 
ity and recursion properties of the q~ functions. In 
particular one directly sees that both A2= _+ 1 and 
A2 = 0, _+ 2 are allowed, through the first and second 
terms in the intrinsic quadrupole moment (12). As a 
particular case the form (12) yields the selection rule 
that from the ground state only transitions to the first 
and second 2 + states are allowed. For these transitions 

B(E2;2 + --*0+ ) = ½N 2 , (22) 

B(E2;2~- ~ 0  + ) = 1 N E z 2  , (23) 

while for the transition from the second to the first 
2 + state one obtains 

B(E2;22 + _.2 + 2 2 ) = T N  . (24) 

As in the case of the quadrupole moments, these val- 
ues coincide, to higher order in N, with the O (6) val- 
ues obtained directly in the laboratory frame. 

In a similar way one can evaluate interband tran- 
sitions. In the O (6) limit the first excited band (cor- 
responding in the geometrical picture to a vibration 
in the fl degree of freedom around the equilibrium 
value flo) can be viewed as originating from an in- 
trinsic excited state of the form 



Volume 212, number 1 PHYSICS LETTERS B 15 September 1988 

1 i ~,g//> -- ~ (~+)N--I ( ~ t ) l 0  > , (25)  

where one of  the basic bosons of  the condensate has 
been promoted  to the orthogonal combinat ion 

~+= ( 1 / x / 2 )  [ - s t +  cos ? d~ 

+ (1 /x f2 )  sin ?(d~ +de_2) ] • (26)  

In analogy with (9) ,  each member  I)., I, M > a  of  the 
//-band is assumed to be characterized by the wave 
function 

12, L M > p =  q~x,,.M(Y, 0i) I ~v, > • (27)  

All interband transitions between the ground- and/ / -  
bands are connected to an off-diagonal matrix ele- 
ment  of  the quadrupole operator  between the two in- 
trinsic states (2) and (26).  We get in this case 

B(E2; (;~ l I ~ ) p ~  (22Iz)g) 

1 
- 211 + 1 18 <;t 111 II 0)abll labl[)'212 >g [ 2 

l ( I  2 1 0 ) - 2  
- 211+1 10 0 

X I < ~x11, (~, 0, im~ ¢) I G,~ (~', e, ¢) I qh~,,d~,, O, ¢) > 12 , 

(28) 

where we have defined 

in,r ~ l .b  I Qg~ (y, 0, O) = < ~g~[ 7tg> 

= < ~ , 1 Y ~ x / ~ g ~ ( - 1 ) u O u Y 2 . ~ , ( O , ~ ) l ~ a > .  (29)  
# 

The evaluation of  this matrix element yields 

4nzx /N ~ . 
Qg~r (~, 0, ~) = -- 7 tP2"2 [~' 0, q~). (30)  

Note, in comparison with (12) ,  the precise cancella- 
tion (occurring only in the O (6)  limit, i.e. for f l=  1 ) 
of  the term associated with ~1,2(~, 0, ~). The evalu- 
ation of  interband transition rates are therefore once 
more  determined by the orthogonality propert ies of  
the q) functions. As a direct consequence of  (30) ,  
there is no direct connection between 0 + and the first 
2~- or for any other A2= _+ 1 transition. One has in- 
stead non-vanishing transitions (corresponding to 
A2 = _+ 2) from the second 2~-state to the ground state 

B(E2;2~.p ~0~s )  = ~oNX 2 , (31 ) 

f rom the band-head of  the / / -band  to the second 2 + 
state of  the ground band 

B (E2;0 ~,p ~ 2~.g) = ~4Nx 2 , (32) 

and, for instance, among the first 2 + states in the/ / -  
and ground band ( a 2 = 0 )  

B(E2;2  ~p--,2~a) = ~ N x  2 . (33)  

In all cases these results correspond in leading or- 
der with those obtained in the laboratory. It should 
also be possible to evaluate in-band transit ions rates 
and quadrupole moments  within the / / -band by eval- 
uating the corresponding intrinsic quadrupole  mo-  
ment  Q ~ r  between states of  the form (26) .  

We have made use of  the concept of  intrinsic state 
for ~,-unstable systems and of  the associated project- 
ing kernels in order to derive electromagnetic transi- 
tion rates and quadrupole moments  of  the O (6) limit 
of  the interacting boson model. We have to ment ion 
that a t tempts  have been recently made [7] in order 
to relate the O (6)  dynamical  symmetry  to the one 
arising from a triaxial (~,= 30)rotor.  Part  of  the mo-  
t ivation may  have originated f rom the fact that, at 
first glance, to project a (asymmetr ic )  rotor implies 
a more  standard technique than the y-unstable case. 
As shown in this letter, dealing with ~,-dependent 
quantities in the intrinsic frame and with the ~,-de- 
pendent  kernels does not imply technical problems 
qualitatively different f rom those associated with the 
projection of  a triaxial rotor with a definite value of  
y. 
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