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The depth of the imaginary part of the optical potential is derived from the assumption that, at a given energy and for 

each partial wave L, it is proportional to the compound nucleus density level up to a given excitation energy above the 

yrast level corresponding to the angular momentum L, and remains a constant for smaller values of L. The prescription is 

successfully tested for the system 160 + 28Si at nine different projectile energies between 33 and 81 MeV; it fails however 

at 141.5 MeV, as expected, because other channels, besides elastic scattering and fusion, are important. 

In heavy-ion physics the large decrease of the elastic 
cross section at energies where the nuclei begin to pen- 
etrate each other points to a large absorption out of 
the elastic channel. This is usually described by means 
of the imaginary potential in the optical model. During 
the last decade much effort has been made to derive 
this potential from different approaches [l-4] . In 
this paper, following a suggestion by Arima and 

Hodgson [5], we present a method to construct the 
imaginary part of the optical potential. This is inspired, 
in part, in the model proposed by Helling et al. [6] 
where that potential is given by the transition proba- 
bility from the elastic channel into a precompound 
state which is a doorway state for the formation of the 

compound nucleus. This transition probability is given 
in first order by Fermi’s golden rule: 

dw/d t = (27$)l Wcomp Ivintl+elas)12 P(E*,L) 3 Cl) 

where p(E* , L) is the level density of the precom- 
pound nucleus with excitation energy E* and angular 
momentum L. ~iin+ is the interaction between the pre- _-. I 

compound state Gcomp and the elastic channel +elas. 
To estimate the magnitude of the transition matrix 
element it is necessary to introduce microscopic wave 
functions. Because the nucleons in the overlap region 
contribute most to the transition probability, Fink et 
al. [7] assume that the radial dependence of the 
square of the matrix element in (1) is proportional to 

14 

the number of nucleons in the overlap region. This sug- 
gests a factorization of the imaginary potential: 

W, E, L) = B’(r) WE, L) > (2) 

where W(r) contains the radial dependence and 
W(E, L) the energy and angular momentum depen- 
dence through the level density p(E* , L) of the com- 
pound nucleus. This approximation implies that the 
formation of the compound nucleus is the dominant 
reaction mechanism. Such an assumption is reasonable 
only for not too high energy and not very heavy ions. 
This is one first limitation of our model. 

The yrast level is the state of highest possible angu- 
lar momentum for a given excitation energy. Since an- 

gular rotations have usually the highest angular mo- 
mentum, for a given energy the yrast level is reached 

if all excitation energy is converted into rotational en- 
ergy. Bellow the yrast line of the compound nucleus 
the imaginary potential (2) is exactly zero since no 
compound states can be reached. Based on these ideas 
the imaginary part (2) of the optical potential may be 

expressed as follows: 

W(r) = { 1 + exp [(r - R)/a] }-l , 

R =Q,@;‘~ +Ati3), (3) 
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W(E, L) = 0, for E* <E&5) ) 

wff,L) =cP(~*J), forEY(L)<E*<Ey(L)tEI , 

W(E,L) =c,, tclE, for E* > E,(L) t E,, (3 cont’d) 

where Ey(L) is the yrast energy for compound nucleus 
states with spin L, and E is the center of mass kinetic 
energy of the entrance channel. Above a limit energy 
E, the level density becomes so high that the probabil- 
ities of exciting different states compete with each 
other and the total probability is no longer a sum of 

independent probabilities. The model simplifies this 
effect by assigning a saturation value W(E, L), linear 

in E, for energies above a limit E, t E,. In our model 
E,, co and cl are the model constants to be deter- 

mined and c is fixed by continuity. 
Expression (3) implies the assumption that the for- 

mation of the compound nucleus is determined by the 

yrast energy. It has been shown (81, however, that in 
some reactions, specially for 2s-Id nuclei, the fusion 
is limited by dynamical processes in the entrance 
channel rather than by intrinsic characteristics of the 
compound nucleus. If this is to be generalized, the ex- 
perimental limit E*(L,) should be introduced in (3) 
instead of the yrast limit (here L, is the critical angu- 
lar momentum for the compound nucleus formation 
which is dependent on the E*). When the experimen- 
tal relation E* versus L, is not available, the semiem- 
pirical model of Glas and Mosel [9] can provide an ap- 
proximation for it. Nevertheless, we have preferred to 
be more systematic, for the sake of simplicity, and 
hope that the different approaches can be compen- 
sated by an adequate choice of the parameters, partic- 

ularly E, . 
The essential ingredient in the model is the level 

density. There are many statistical formulae for 
p(E* , L) but we choose that of Kataria et al. [lo] for 
three reasons: first it takes into account the influence 
of the nuclear shell structure on the level density and 
the excitation energy dependence of shell effects; 
secondly it is capable to take into account the nuclear 
deformation; and finally it gives an acceptable fit to 
the experimental data on neutron resonance spacings 
and it also provides a reliable extrapolation to higher 
excitation energies. 

It is known that the level density is related to the 
state density W(E*) by the expression: 

p(E*,L) = [(2L + 1)W(E*)/2(2n)1/2~3(E*)] 

X exp[-L(L + 1)/2u2(E*)] , (4) 

where the spin cut-off factor u2 is related to the mo- 

ment of inertia of the nucleus by the relation: 

o2 = JT/Ii2 , (5) 

T being the temperature. The state density is mainly 
determined by the entropy S(E*) of the nucleus by 
the following expression: 

W(E*) = exp[S(E*)]/(2,)3/2D1/2 = Cexp[S(E*)] . 

(6) 

The constants D and Care determined by the follow- 
ing well-known relations: 

D =(rr2/12)g;T5 , C=~/%/(12a~/~E*~/~), (7) 

where go is the density of the single-particle states, re- 
lated to the Liquid Drop Model (LDM) value of the 
level density parameter a as: 

a =&r’2gu . (8) 

The analytical expression for the entropy as a function 

of the temperature, obtained by Gilbert [l l] , and the 

corresponding expression for the excitation energy are 
approximated by Kataria et al. [lo] in such a way that 
they can be written as: 

S = 2aT + (A$T)[ rr2~2T2cosh(nwT)/sinh2(n~T) 

- noT/sinh(nwT)] , (9) 

and 

E* = aT2 t A, [n2a2T2cosh(nwT)/sinh2(7rmT) - 11, 

(10) 

where A, is the ground state shell correction energy, 
i.e., the difference in the ground state energies between 
the actual nucleus and the corresponding smooth sys- 
tem. The values for A, were obtained as the differ- 
ences between the experimental binding energy and 
the LDM energy obtained with parameters of Seeger 
and Howard [12] . The constant w is related to the 
major shell spacing X simply through w = 2n/X. It is 
known that A = kfA113 where k is expected to be 
around 30 to 40 MeV. Hence one can write w 
= 0u,4~/~ where w 0 = 2n/k is a mass independent pa- 

rameter with a value [lo] equal to 0.185 MeV-l. The 
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effect of  nucleon pairing is accounted for by substitu- 
tion of  an effective excitation energy for the true exci- 
tation energy: E * '  =E *  - Ap, where Ap is equal to 
the pairing energy values of Gilbert and Cameron [13].  

For a noninteracting Fermi gas confined to a finite 
volume the level parameter can be expressed as: 

a = "),A(1 - [3BsA-1/3), (11) 

where 3' = 0.176 MeV -1 and/3 = 1.0. B s is the usual 
nuclear surface area relative to spherical shape. At ex- 
citation energies below 10 MeV the nuclear deforma- 
tion coincides with that of  the ground state for which 
B s is well known. This is not our case. For higher exci- 
tation energies we calculate B s from the approximation 
[14] for the moment of  inertia obtained in the LDM 
framework: 

Jnucl : Jrig( 1 + 6 L 2 ) ,  (12) 

where 6 is a constant specific for each nucleus. Assum- 
ing conservation of  the nuclear volume and that for 
the range of  angular momentum of  interest the nu- 
cleus adopts an oblate ellipsoidal shape we have found: 

Bs(L) : 5 {U + [.u(/-t3 - 1)] -112 

X ln[u 3/2 +(U 3 - 1)1/21}, (13) 

with/a = 1 + 6L 2. Fitting to LDM results for a number 
of  nuclei, we found the relation: 

6 = 0.23 A -1.56 . (14) 

As an application of  the model we have studied the 
reaction 160 + 28Si at 10 different projectile energies: 
Ela b -- 33, 36, 38, 50, 53, 55, 66, 72, 81, and 141.5 
MeV. The constants in (3) were determined by fitting 
the elastic experimental data [15].  To do it we have 
used the Niels Bohr Institute version of  the GENOA 
code [16] modified by introducing our L-dependent 
imaginary potential. For the real part we have used a 
folding potential obtained with a density-dependent 
effective interaction [ 17]. The criterion to determine 
the constants of  the model was the minimization of  
the X 2 defined as usual. Two preliminary points were 
apparent in the first calculations. The fitted value of  
E 1 is around 10 MeV which turns out to switch off  
the o(E*, L) proportionality when the slope o f p  ver- 
sus L becomes significantly steeper. On the other hand, 
the scattering data at 141.5 MeV did not admit a rea- 
sonable fit within the model. This fact is consistent 
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Fig. 1. Yrast line (dashed) and yrast + E  l (solid line) with the 
p-proportionality zone shaded. Horizontal lines correspond to 
the compound nucleus excitation energy in the nine sets of  
data fitted. 

with the basic assumption that the compound nucleus 
formation must be the dominant reaction mechanism: 
at that energy the competition of other reaction chan- 
nels is so important that the model is not adequate at 
all. 

Fig. 1 shows the area of  level density proportional- 
ity of  W(E, L) for 44Ti, in an (E*, L) plane, limited by 
Ey(L) and Ey + 10. The yrast line has been determined 
with the moment of  inertia defined by eqs. (12) and 
(14). Since the imaginary potential is proportional to 
the density of  states, for a given E the absorption will 
also be largest from the upper line to the left (smaller 
L) due to the nature of  the E 1 limit. This is strictly ac- 
curate only if the transition matrix elements in (1) are 
independent of E and L, as expressed by eq. (2). The 
level density and hence W(E, L) are rapidly decreasing 
from the upper line towards the yrast curve (larger L). 

The value of  the constants c o and c I in (3) ob- 
tained by fitting simultaneously the 9 experimental 
angular distributions can be established as c o -- 26 
MeV and c 1 = -0 .2 .  In fig. 2 the elastic scattering an- 
gular distributions predicted by the model are com- 
pared to the experimental data used in the fit. The to- 
tal reaction cross sections deduced from the resulting 
optical potentials are compared to the experimental 
fusion cross sections of ref. [18] in fig. 3. The theoret- 
ical reaction cross sections are about 15% above the 
experimental data. This small inconsistency with the 
underlying idea of  fusion being the only reaction 
channel, may derive from the use of  the yrast limit 
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Fig. 2. Elastic scattering angular distributions predicted in this 
work for the system 160 + 28 Si are compared to experimental 
data at 9 different energies between 33 and 81 MeV. 
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Fig. 3. Data on the fusion cross section of 160 + 28Si from 
Rascher et al. [18] are compared with the total reaction cross 
sections deduced from the resulting optical potentials. 

rather than the experimental one, as mentioned above. 

We have also checked that the exact value o f E  1 
can be modified within a wide range, from 7 to 12 
MeV, provided that the constants are adjusted within 

certain limits, c 0 = 26.0 _+ 0.8 MeV and c 1 = - 0 .20  
_+ 0.02, and the quality of the fit does not sensibly 
change. With smaller or higher values o f E  1 the quality 
of the fit at the same energies of our range worsens so 
that a simultaneous fit to all of the data is not possible. 

In summary we see that the idea of relating the L- 
dependent depth of the imaginary potential to the 
compound nucleus level density looks very useful for 
the fitting of elastic scattering data and deserves fur- 

ther attention. The data thus far analyzed are smooth 
and restricted to forward angles. The success of the 
model encourages us to apply it in a further work to 
systems with a wider range of angles and showing some 
structure. 

The authors are grateful to P.E. Hodgson and 
A. Arima for useful discussions, and to the Comisi6n 
Asesora de Investigaci6n Cientifica y T~cnica for finan- 
cial support. 
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