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Abstract

Although the exact counting and enumeration of poly-
ominoes remain challenging open problems, several
positive results were achieved for special classes of
polyominoes. We give an algorithm for direct enumer-
ation of permutominoes [12] by size, or, equivalently,
for the enumeration of grid orthogonal polygons [19].
We show how the construction technique allows us to
derive a simple characterization of the class of convex
permutominoes, which has been extensively investi-
gated recently [4]. The approach extends to some of
its subclasses, namely to the row convex and the di-
rected convex permutominoes.

Introduction

The generation of geometric objects has applications
to the experimental evaluation and testing of geo-
metric algorithms. No polynomial time algorithm
is known for generating polygons uniformly on a
given set of vertices. Some generators employ heuris-
tics [1, 6] or restrict to certain classes of polygons, e.g.,
monotone, convex or star-shaped polygons [18, 20].
Numerous related problems have also been extensively
investigated, as the exact counting or enumeration
of polyominoes [9]. These remain challenging open
problems in computational geometry and enumera-
tive combinatorics. A polyomino is an edge-connected
set of unit squares on a regular square lattice (grid).
Polyominoes are defined up to translations. In this
paper, we give an algorithm for the enumeration of
permutominoes by size, or, equivalently, for the enu-
meration of grid orthogonal polygons (see Fig. 1).
Polyominoes are usually enumerated by area (i.e.,
number of cells). The direct enumeration of polyomi-
noes is a computational problem of exponential com-
plexity. An overview of the main developments con-
cerning direct and indirect approaches is given in [3].
Jensen’s transfer-matrix algorithm [13] — an indirect
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Figure 1: Permutominoes of size 1, 2, and 3 (i.e., with
4, 6, and 8 vertices) and their horizontal partitions.

method — is currently the most powerful algorithm for
counting fixed polyominoes. Exact counts are known
for polyominoes that have up to 56 cells [3, 14]. As
far as we can see, Jensen’s algorithm cannot, be easily
adapted for counting permutominoes.

1 Background

A polygon is called orthogonal if its edges meet at
right angles. If r is the number of reflex vertices of
an n-vertex orthogonal polygon, then n = 2r 4+ 4
(e.g. [16]). Grid orthogonal polygons (grid ogons)
were introduced in [19] as a relevant class for gener-
ation. A grid ogon is an orthogonal polygon without
collinear edges, embedded in a regular square grid,
and having exactly one edge in each line of its mini-
mal bounding square. They were addressed more re-
cently under the name of permutominoes [4, 8, 12],
because they correspond to polyominoes that are de-
termined by a suitable pair of permutations having
the same size. All polyominoes we will consider are
simply-connected and, similarly, all polygons are sim-
ple and without holes. A permutomino that is given
by permutations of {1,2,...,r + 2}, for r > 0, is said
to have size r + 1. The size is the width of its min-
imal bounding square. The topological border of a
permutomino of size r 41 is a grid ogon with r reflex
vertices, and so, it has n = 2r + 4 vertices in total.
In this paper, we give an algorithm for the enu-
meration of all permutominoes by size, based on the
INFLATE-PASTE' technique introduced in [19]. Every

!'Demos at http://www.dcc.fc.up.pt/~apt/genpoly
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grid n-ogon P results from a unit square by apply-
ing INFLATE-PASTE r times, where r = (n —4)/2 is
the number of reflex vertices of P. INFLATE-PASTE
glues a new rectangle to a grid ogon to obtain a new
one with 1 more reflex vertex. The rectangle is glued
by PASTE to an horizontal edge incident to a convex
vertex, say v, must be contained in a region that we
called the free neighbourhood of v (Fig. 2), and is fixed
to v. This region, denoted by F'SN (v), consists of the

Figure 2: INFLATE-PASTE: (a) gluing a rectangle to v
(b) FSN(v) is the shaded region (c) the rectangle is
defined by v and the center of a cell of F'SN(v).

external points that are rectangularly visible from v
and belong to the quadrant with origin v that con-
tains the horizontal edge incident to v (two points a
and b are rectangularly visible if the axis-aligned rect-
angle that has a and b as opposite corners does not
intersect the interior of the polygon). The INFLATE
operation keeps the grid regular: the grid lines are
shifted, if needed, to insert two new horizontal and
vertical lines for the new edges (Fig. 3).

Figure 3: Two applications of INFLATE-PASTE: the
center of the inflated cell becomes a convex vertex of
the polygon created at each step.

In [19], FSN(v) was called the free staircase neigh-
borhood of v. Actually, F.ISN(v) is a Ferrers diagram,
with origin at v, and hence it can be given by a se-
quence of integers, each integer representing the num-
ber of cells that form each row of the diagram. Any
cell in F'SN(v) could be used for growing the polygon
using v. Therefore, for the example given in Fig. 2,
we could produce 9+7+6+4+4+3+2 = 35 distinct
grid ogons using the selected vertex.

2 Direct Enumeration

ECO was introduced in [2] as a construction paradigm
for the enumeration of combinatorial objects of a given
class, by performing local transformations that in-
crease a certain parameter (the size) of the objects.

In this section we propose a direct enumeration pro-
cedure for grid ogons (i.e., permutominoes) using
INFLATE-PASTE. It is based on the existence of a
unique depth-first generating tree for each n-ogon,
once we fix the order for visiting the horizontal par-
tition. One possibility is to define it as the order in-
duced by a clockwise walk around the polygon, start-
ing at its southwest vertex, as in Fig. 4. The bottom
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Figure 4: The unique generating tree for the repre-
sented grid ogon. Vertices 1, 2, 3 and 4 in the polygon
are the ones that could still be expanded in our enu-
meration method, and should be visited in this order.

line (i.e., the horizontal line that contains the SW-
vertex) is never moved upwards, but polygons can
move freely along it. Fig. 1 shows how permutomi-
noes can be generated by our method. The vertices
marked with a cross would be no longer available for
expansion.

PermuTOoMINOENUM(P,S,G,no,r)
if r = 0 then return fi
MakeEMpTY(T7S)
while not IsEmpTY(S) do
v:=PoP(S) /*vis (vg,vy) */
epy(v) := the horizontal edge of P that contains v
if IsConvex(v,P) then
for C in FreeNeighbourhood(v, P, G) do
(p, q) := the southwest corner of C
INFLATEGRID(p,q,G)
w1 = (p+ Lvy); w2 == (p+ Lg+ 1);
w3 = (Vg,q + 1)
PasTERECTANGLE(V, [w1, w2, w3], P)
if w1 € InTERIOR(epp(v)) then
Pusu({w2,ws},S,P)
else Pusu({w1, w2, ws},S,P) fi
OutpuTPoLYGON(P,ng + 2)
PermutoMiNOENUM(P,S,G,no + 2,1 — 1)
CuTRECTANGLE(v, (w1, w2, ws], P)
DerLaTEGRID(p + 1,9 + 1,G)
done
fi
Pusu(v,TrS);
done
while not IsEmpTv(TrS) do
Pusu(Por(TrS),S)
done

Here, P is the initial polygon, G a representation
of the grid lines, S a stack that contains the con-
vex vertices of P that are available for expansion,
ng the number of vertices of P and r the maximum
number of reflex vertices of the polygons. PERMU-
TOMINOENUM enumerates recursively all descendants
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of P that have up to ng + 2r vertices. If initially
P :={(1,1),(2,1),(2,2),(1,2)} (w.r.t. the standard
2D cartesian coordinate system and given in CCW-
order), S := {(1,2),(2,2)}, and ng = 4, then the al-
gorithm will enumerate and count all grid ogons that
have up to 2r + 4 vertices.

In contrast to other existing methods for the enu-
meration of polyominoes, PERMUTOMINOENUM, for
permutominoes, does not need to keep an exponen-
tial number of state configurations in order to count
them correctly. Each permutomino is generated ex-
actly once and, hence, there is no need to check for
repetitions. Nevertheless, the running time of the al-
gorithm is dominated by the number of permutomi-
noes generated (and thus it is exponential).

An algorithm for enumerating the convexr permu-
tominoes by size was published recently [10]. Its run-
ning cost is proportional to the number of permutomi-
noes generated. It is quite easy to design a specialized
version of our algorithm for enumerating convex per-
mutominoes with identical complexity. Actually, as
we will see, for convex permutominoes the free neigh-
bourhoods are linear (rectangles of width 1) and only
the two topmost convex vertices can be active.

3 Convex Permutominoes

Although the exact counting and enumeration of poly-
ominoes remain challenging open problems, several
positive results were achieved for special classes of
polyominoes [5, 7, 15], namely for the class of con-
vex polyominoes and some of its subfamilies (e.g.,
directed-convex polyominoes, parallelogram polyomi-
noes, stack polyominoes, and Ferrers diagrams). The
larger class of row-convex (resp. column-convex) poly-
ominoes was considered also [11]. A polyomino is said
to be row-convez (resp. column-convez) if all its rows
(resp. columns) are connected, i.e., the associated or-
thogonal polygon is y-monotone (z-monotone). A
polyomino is said to be convez if it is both row-convex
and column-convex. These classes, which satisfy con-
vexity and/or directness conditions, have been studied
using different approaches and are fairly well charac-
terized, for some parameters, e.g., area and perime-
ter [5]. The corresponding classes of permutominoes
have been addressed recently [4, 8].

The analysis of the transformations performed by
INFLATE-PASTE during the application of PERMU-
TOMINOENUM allow us to derive simple characteri-
zations and exact countings for such classes of per-
mutominoes. Fig. 5 shows all n-vertex convex per-
mutominoes for n = 4,6, 8, each one embedded on a
grid. Only the two topmost convex vertices may be
active for INFLATE-PASTE (so, L and R stand for left
or right). Crossed vertices are inactive in the follow-

ing transformation steps: “u” means that the vertex
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Figure 5:
size.

Enumerating convex permutominoes by

would be discarded in PERMUTOMINOENUM as well
(due to uniqueness conditions) and “c” means that
the resulting permutomino would not be convex. The
sequence of {0, 1,2}* displayed on the grid top row is
the expansion key of the corresponding permutomino.
Each element of the key gives the number of active
convex vertices that see a certain grid cell (in Fig. 5,
each counter is in its cell). Here, see means that the
cell belongs to the free neighborhood of the vertex.
For all the remaining empty cells, the counter is 0
and, thus, we omitted it. If we add up the elements
of the expansion key of a given convex permutomino,
we get the number of convex permutominoes that it
yields immediately in PERMUTAMINOENUM. In this
way, the expansion keys provide an exact encoding
of the structural features that are relevant for count-
ing convex permutominoes according to the number
of vertices. Actually, it is the key as a whole that
matters but not the particular cells associated to each
counter. By analysing INFLATE-PASTE in the scope
of PERMUTAMINOENUM, we may conclude that the
expansion key of any convex permutomino with r > 0
reflex vertices must be of one of the following forms:

127"+1 1

1270, for1 <j<r-—1,
0271, for 1 < j <r—1, and
0270, for 1 <j <r—2.

INFLATE-PASTE operations acting on convex permu-
tominoes can be seen as rewrite rules. Each rule
rewrites the key of a convex permutomino with r — 1
reflex vertices to the key of one of the convex per-
mutominoes derived from it, having one more reflex
vertex, for » > 1. The rewrite rules are:

1271 LR qortly

121 =L 19270, for1<j<r

1271 =B 0271, for1 <j<r

1270 =L 120, for 1 <j<j <r—1
12770 =R 120+, for 1 <j' <r—1
12770 =R 02i0, for1<j<j <r—1
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0211 B 0271, for 1 <j<j <r—1
0211 =L 020"t for1<j <r—1

0211 =L 020, for 1 <j<j <r—1
02’0 LR 0290, for 1 <j<j <r—2

where L (left) and R (right) identify the topmost ver-
tex selected. For rules with annotation “L, R”, both
vertices can be selected, one at a time. Figs. 6-8 il-
lustrate the idea underlying these rules.

3]

Figure 6: Rewriting 12”1 using the rewrite rules
1271 —L 127+11 and 1271 B 127+1q,

Figure 7: Rewriting 1270 using (a) 127’0 —f
12/'+10 and (b) arule 127'0 —% 0270, for 1 < j < j'.

Figure 8: Rewriting 027'0 using (a) 027°0 —% 0270
and (b) 0270 —® 0270, for some 1 < j < j5'.

The correctness and completeness of this rewrite
system can be checked easily by case-analysis, taking
into account the conditions on convexity.

Proposition 1 Let Agzﬁ be the mumber of convex

permutominoes of the class a2’ 3 with r reflex ver-
tices, for o, € {0,1}, 1 < j <r+1andr > 0.

Then, A"

01 = Agfj)',o’ for all r and j (symmetry by
reflection w.r.t. V-azis) and Ag)j 5 18 inductively de-

fined as follows.

(0) _
A1,1,1 = 1
() (r—1)
A17,T+1,1 = 2A17:r,1 s Jorr >1
r—1
(r) _ (r—1) (r—1) .
Ao = ALY+ DD Al g fori<j<r
j/=max(1,j—1)
—1 —2
AN o 2T AlrD 2r Alr=h) 1<j<r=1
0,5,0 Z 1570 T Z 0,00 for1<j<r—

i'=3 i'=j

The number of convex permutominoes of size n is
given by sequence A126020, in [17]. A closed for-
mula for this number is given in [8]. In a similar way,
we may deduce the recurrences for row-convex permu-
tominoes and the simpler classes of bargraphs, stacks,
and Ferrers diagrams.
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