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Abstract
A triangulation of a surface is irreducible if there is
no edge whose contraction produces another triangu-
lation of the surface. In this work we propose an al-
gorithm that constructs the set of irreducible trian-
gulations of any surface with precisely one boundary
component.

Introduction and terminology
We restrict our attention to the following objects:

• S = Sg orNk is the closed orientable surface Sg of
genus g or closed nonorientable surface of nonori-
entable genus k. In particular, S0 and S1 are the
sphere and torus, N1 and N2 are the projective
plane and the Klein bottle (respectively).

• S − D is S minus an open disk D (the hole).
This compact surface is called the once-punctured
surface. We assume that the boundary ∂S of S,
which is equal to ∂D, is homeomorphic to a circle.

We use the notation Σ whenever we assume the gen-
eral case - that is, Σ ∈ {S, S −D}.
If a (finite, undirected, simple) graph G is 2-cell

embedded in Σ, the components of Σ − G are called
faces. A triangulation of Σ with graph G is a 2-cell
embedding T : G→ Σ in which each face is bounded
by a 3-cycle (that is, a cycle of length 3) of G and any
two faces are either disjoint, share a single vertex,
or share a single edge. We denote by V = V (T ),
E = E(T ), and F = F (T ) the sets of the vertices, the
edges, and the faces of T , respectively. Equivalently,
the triangulation T of a surface can be defined as a
hypergraph of rank 3 or a 3-graph, with the vertex
set V (T ) and the collection F (T ) of triplets of V (T )
(called 3-edges, or triangles, of T ) (see [4]).
By G(T ) we denote the graph (V (T ), E(T )) of tri-

angulation T . Two triangulations T1 and T2 are called
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isomorphic, denoted T1 ∼= T2, if there is a bijection
α : V (T1)→ V (T2) such that uvw ∈ F (T1) if and only
if α(u)α(v)α(w) ∈ F (T2). Throughout this paper we
distinguish triangulations only up to isomorphism.
In the case Σ = S − D let ∂T , which is equal to

∂D, denote the boundary cycle of T . The vertices and
edges of ∂T are called boundary vertices and boundary
edges of T , respectively.
A triangulation of a punctured surface is irreducible

(term which is more accurately defined in Section 1)
if no edge can be shrunk without producing multiple
edges or changing the topological type of the surface.
The irreducible triangulations of Σ form a basis for
the family of all triangulations of Σ, in the sense that
any triangulation of Σ can be obtained from a member
of the basis by applying the splitting operation (intro-
duced in Section 1) a finite number of times. To have
such a basis in hand can be very useful in practical
application of triangulation generating; the papers [6]
and [19] are worth mentioning.
It is known that for every surface Σ the basis of

irreducible triangulations is finite (the case of closed
surfaces is proved in [2], [13], [12], and [7] and the
case of surfaces with boundary is proved in [3]). At
present such bases are known only for seven closed
surfaces and two once-punctured surfaces: the sphere
([14]), projective plane ([1]), torus ([8]), Klein bottle
([9] and [15]), S2, N3, and N4 ([16, 17]), the disk and
Möbius band ([5]).
In this paper we present an algorithm which is

designed as an application of some recent advances
on the study of irreducible triangulations of once-
punctured surface collected in [5]. Specifically, Lem-
mas 1-3 (in Section 1) are the main supporting the-
oretical results for the mentioned algorithm. As a
particular example, all the non-isomorphic combina-
torial types (293 in number) of triangulations of the
once-punctured torus are determined.

1 Previous results

Let T be a triangulation of Σ. An unordered pair
of distinct adjacent edges vu and vw of T is called
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a corner of T at vertex v, denoted by 〈u, v, w〉
(=〈w, v, u〉). The splitting of a corner 〈u, v, w〉, de-
noted by sp〈u, v, w〉, is the operation which consists
of cutting T open along the edges vu and vw and
then closing the resulting hole with two new triangu-
lar faces, v′v′′u and v′v′′w, where v′ and v′′ denote
the two images of vertex v appearing as a result of
cutting. Under this operation, vertex v is extended
to the edge v′v′′ and the two faces having this edge in
common are inserted into the triangulation; therefore
the order increases by one and the number of edges
increases by three.
If a corner 〈u, v, w〉 is composed of two edges vu

and vw neighboring around vertex v, sp〈u, v, w〉 is
equivalent to the stellar subdivision of the face uvw.
Especially in the case {Σ = S − D, uv ∈

E(T ), and v ∈ V (T )}, the operation sp〈u, v] of split-
ting a truncated corner 〈u, v] produces a single trian-
gular face uv′v′′, where v′v′′ ∈ E(∂(sp〈u, v](T ))).
Under the inverse operation, shrinking the edge

v′v′′, denoted by sh〉v′v′′〈, this edge collapses to a
single vertex v, the faces v′v′′u and v′v′′w collapse
to the edges vu and vw, respectively. Therefore
sp〈u, v, w〉 ◦ sh〉v′v′′〈(T ) = T . It should be noticed
that in the case {Σ = S − D, v′v′′ ∈ E(∂T )}, there
is only one face incident with v′v′′, and only that sin-
gle face collapses to an edge under sh〉v′v′′〈. Clearly,
the operation of splitting doesn’t change the topolog-
ical type of Σ if Σ ∈ {S, S − D}. We demand that
the shrinking operation must preserve the topological
type of Σ as well; moreover, multiple edges must not
be created in a triangulation. A 3-cycle of T is called
nonfacial if it doesn’t bound a face of T . In the case
in which an edge e ∈ E(T ) occurs in some nonfacial
3-cycle, if we still insist on shrinking e, multiple edges
would be produced, which would expel sh〉e〈(T ) from
the class of triangulations. An edge e is called shrink-
able or a cable if sh〉e〈(T ) is still a triangulation of
Σ; otherwise the edge is called unshrinkable or a rod.
The subgraph of G(T ) made up of all cables is called
the cable-subgraph of G(T ).
The impediments to edge shrinkability in a trian-

gulation T of a punctured surface S−D are identified
in [2, 3, 1, 8]; an edge e ∈ E(T ) is a rod if and only if
e satisfies one of the following conditions:
(1) e is in a nonfacial 3-cycle of G(T ). In particular,

e is a boundary edge in the case in which the boundary
cycle is a 3-cycle.
(2) e is a chord of D -that is, the end vertices of e

are in V (∂D) but e /∈ E(∂D).
From now on, we assume that S 6= S0 and make

an agreement that by “non-facial 3-cycle” we mean a
non-null-homotopic 3-cycle whenever we refer to con-
ditions (1) and (2). Therefore, an edge e is a rod pro-
vided e occurs in some non-null-homotopic 3-cycle,
and e is a cable otherwise. Especially, the boundary
edges of stellar subdivided faces are now regarded as

cables unless they occur in some non-null-homotopic
3-cycles. The convenience of this agreement is that
once a rod turns into a cable in the course of any
splitting sequence, it always remains a cable under
forthcoming splittings.
A triangulation is said to be irreducible if it is free

of cables or equivalently, each edge is a rod. For in-
stance, a single triangle is the only irreducible trian-
gulation of the disk S0 −D.
Let T be an irreducible triangulation of a punctured

surface S −D where S 6= S0. Let us close the hole in
T by restoring the disk D add a vertex, p, in D, and
join p to the vertices in ∂D. We thus obtain a triangu-
lation, T ∗, of the closed surface S. In this setting we
call D the patch, call p the central vertex of the patch,
and say that T is obtained from the corresponding
triangulation T ∗ of S by the patch removal.
Notice that T ∗ may be an irreducible triangulation

of S but not necessarily. Using the assumption that
T is irreducible and the fact that each cable of T ∗
fails to satisfy condition (1) (in the strong non-null-
homotopic sense), it can be easily seen that in the
case T ∗ is not irreducible, all cables of T ∗ have to be
entirely in D ∪ ∂D and, moreover, there is no cable
which is entirely in ∂D whenever the length of the
boundary cycle ∂D is greater than or equal to 4. In
particular, we observe that each chord of D (if any) is
a rod in T because it meets condition (2), and is also
a rod in T because it meets condition (1). We now
come to a lemma which is to be stated shortly after
some necessary definitions.
A vertex of a triangulation R of S is called a pylonic

vertex if that vertex is incident with all cables of R. A
triangulation which has at least one cable and at least
one pylonic vertex is called a pylonic triangulation.
A triangulation may have a unique cable and there-

fore two pylonic vertices. However, if the number of
cables in a pylonic triangulation R is at least 2, R has
exactly one pylonic vertex.

Lemma 1 Suppose an irreducible triangulation T of
a punctured surface S −D (S 6= S0) is obtained from
the corresponding triangulation T ∗ of S by the patch
removal. If T ∗ has at least two cables, then either the
central vertex p of the patch is the only pylonic vertex
of T ∗, or else the length of ∂D is equal to 3.

Let Ξn = Ξn(S) denote the set of triangulations of
a fixed closed surface S that can be obtained from an
irreducible triangulation of S by a sequence of exactly
n repeated splittings.
In the following result, by the “removal of a vertex

v” we mean the removal of v together with the inte-
riors of the edges and faces incident with v and by
the “removal of a face” we mean the removal of the
interior of that face.
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Lemma 2 Each irreducible triangulation T of S−D
(S 6= S0) can be obtained either

(i) by removing a vertex from a triangulation in
Ξ0 = Ξ0(S), or

(ii) by removing a pylonic vertex from a triangulation
in Ξ1 ∪ Ξ2 ∪ · · · ∪ ΞK , where the constant K is
provided by [3] (whenever a pylonic triangulation
occurs), or

(iii) by removing either of the two faces containing
a cable in their boundary 3-cycles provided that
cable is unique in a triangulation in Ξ1 (whenever
such a situation occurs), or

(iv) by removing the face containing two, or three, ca-
bles in its boundary 3-cycle provided those two,
or three, cables collectively form the whole cable-
subgraph in a triangulation in Ξ1 ∪ Ξ2 (if such a
situation occurs).

Lemma 3 If a triangulation of S has at least two ca-
bles but has no pylonic vertex, then no pylonic vertex
can be created under further splitting of the triangu-
lation.

2 Sketch of the algorithm

In this section triangulations are considered to be
hypergraphs of rank 3 or 3-graphs. Let T be a 3-
graph with V = V (T ) and F = F (T ) the sets
of the vertices and the triangles of T . This 3-
graph can be uniquely represented as a bipartite
graph BT = (V (BT ), E(BT )) in the following way:
V (BT ) = V (T )∪F (T ), uv ∈ E(BT ) if and only if the
vertex u lies in the triangle v in T .
The algorithm input is the set I of irreducible tri-

angulations of a closed surface S 6= S0. The output
of the algorithm is the set of all non-isomorphic com-
binatorial types of irreducible triangulations of the
once-punctured surface S −D.
The first step is the generation of the set Ξ1 ∪ Ξ2

from the set I. Next, every 3-graph T ∈ Ξ1 ∪ Ξ2

is then represented by their corresponding bipartite
graph BT . This has been implemented with the com-
putational package Mathematica ([18]).
The second step consists of discarding all duplicate

bipartite graphs and then, all duplicate triangulations
in Ξ1∪Ξ2 will be discarded. That is, the obtention of
all non-isomorphic triangulations, denoted Ξ̃1∪ Ξ̃2 re-
spectively, which is implemented with the computing
packages Nauty (and gtools, [10], [11]).
Next, all pylonic vertices in Ξ̃1∪Ξ̃2 are detected and

operations (i)–(iv) described in Lemma 2 are applied
to obtain irreducible triangulations (using Mathemat-
ica).

If Ξ2 has no pylonic triangulation, immediately pro-
ceed to the final step: Discard all duplicate triangula-
tions by using Nauty and gtools. Otherwise generate
Ξ3 and apply the preceding steps to Ξ3. Repeat this
procedure to process Ξ4,Ξ5, . . . until no pylonic tri-
angulation is left in the current Ξn; then the process
terminates and a required output is produced.
The validity of this procedure is justified by Lem-

mas 1 - 3 along with the results of [3]. In particular,
the finiteness of the procedure is deduced from the
upper bound [3] on the number of vertices in an irre-
ducible triangulation of S−D. In particular, that up-
per bound implies (along with Lemma 3) that Ξn does
not have a pylonic triangulation for any n ≥ K + 1,
where K = 945 for S1 and K = 376 for N1. In reality
K is much less than these values. By computer ver-
ification (and also by hand) we have checked that in
fact K = 1 for S1, and K = 2 for N1.
Let us now mention two examples.
Firstly, this algorithm has been implemented for the

set of two irreducible triangulations of N1 ([1]). The
algorithm gives a set of 6 irreducible triangulations of
the Möbius band, N1−D, which is precisely the same
as that obtained by some of the authors of this work
in [5], although by using no computational package.
Secondly, we introduce the details of the torus case,

S1.

Example: the once-punctured torus

Input: The set of 21 irreducible triangulations of S1

(as they are labelled in [8]).

• Ξ1(S1) has 433 non-isomorphic triangulations:
232 of them have no pylonic vertex, 193 have
an only pylonic vertex and 8 have two pylonic
vertices.

• Ξ2(S1) has 11612 non-isomorphic triangulations,
none of them is a pylonic triangulation.

• Operations described in Lemma 2 provide:

(i) 184 triangulations; only 80 of them are non-
isomorphic.

(ii) 209 triangulations; only 203 of them are
non-isomorphic.

(iii) 16 triangulations, 10 of them are non-
isomorphic.

(iv) 0 triangulations.

Output: 293 non-isomorphic combinatorial types of
irreducible triangulations of the once-punctured torus
S1 −D.

3 Final conclusion
It is clear that this algorithm can be implemented for
any closed surface whenever its basis of irreducible
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triangulations is known. In a future contribution we
hope to present the set of irreducible triangulations of
the once-punctured Klein bottle, N2 −D.
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